MITSUBISHI HEAVY INDUSTRIES, LTD.

General Purpose Robot PA10 SERIES

PROGRAMMING MANUAL

INDEX

Chapter 1	Foreword	Page 1-1
Chapter 2	Arm designation and motion	2-1
2	1 Axis designation	2-2
2	2 Coordinate system	2-4
2	3 Coordinate system creation	2-5
2	4 Rotation direction on coordinates	2-8
2	5 Transformations	2-9

Chapter 3 C	ontrol Mode	3–1
3. 1	Motion control mode	3-2
3. 2	Trajectory control mode	3-6
3.3	Axis angle interpolation	3-7
3.4	RMRC tip interpolation	_3-8
3.5	Velocity control	3-11

Chapter 4 Motion and operation control section	4-1
4. 1 Motion control section	4-2
4. 2 Operation control section	4-3
4. 3 Operation and motion control section interface	4–4

Chapter 5 Program Development Environment	5-1
5. 1 Development and implementing environm	1ent5-2
5. 2 PA library configuration	5-2
5. 3 PA library directory composition	5-3
5. 4 Notes for the application development e	mploying Visual C++5-6
5. 5 Notes for the application development e	mploying Visual BASIC5-8

Chapter	6 Programming	6-1
	6. 1 Control arm	6-2
	6. 2 Common items	6-3
	6. 3 Axis angle Control	6-7
	6. 3. 1 Axis angle Control	6-8
	6. 3. 2 Axis orientation Control	6-9
	6. 4 Tip position / orientation (RMRC) control: 6 (six) axis arm	6-11
	6. 4. 1 Tip position / orientation (RMRC) control	6-11
	6. 4. 2 Motion in peculiar orientation (at a peculiar point)	6-19
	6. 4. 2. 1 Types of peculiar points	6-20
	6. 4. 2. 2 Singularity avoidance motion	6-21
	6. 4. 2. 3 Control around angle limit	6-23
	6. 5 Tip position / orientation (RMRC) control: 7-axis arm	6-24
	6. 5. 1 Tip position / orientation (RMRC) control	6-24
	6. 5. 2 Elbow actuating control changing tip position / orientation	6-26
	6. 5. 3 Elbow actuating control not changing tip position / orientation	6-33
	6. 5. 4 Notes for RMRC control	6-34
	6. 5. 5 Redundant axis control	6-35
	6. 5. 5. 1 Redundant axis control mode	6-36
	6. 5. 5. 2 Redundant axis operation control	6-41
	6. 6 Velocity Control	6-44
	6. 6. 1 Axis velocity control	6-45
	6. 6. 2 Tip position velocity control	6-47
	6. 6. 3 Tip orientation velocity control	6-49
	6. 6. 4 Tip position / orientation velocity control	6-51
	6. 6. 5 Redundant axis velocity control	6-53
	6. 7 Direct Control	6-55
	6. 8 Real-Time Control	6-57
	6. 8. 1 Axis real-time control	6-58
	6. 8. 2 RMRC real-time control mode	6-60
	6. 9 DIO Control	6-67
	6. 10 Teach / Playback Motion	6-70
	6. 10. 1 Teach point and data	6-72
	6. 10. 2 Teach data operation	6-77
	6. 10. 2. 1 Current point alteration	6-78
	6. 10. 2. 2 Additional teach points	6-80
	6. 10. 2. 3 Teach point (data) deletion	6-81
	6. 10. 3 Shift to current point (teach point)	6-82
	6. 10. 4 Starting of playback motion (check-up operation)	6-83

PA10 Series Programing Manual SKC-GC20002

Rev. O

Chapter 1. Foreword

This is the programming manual of the new concept robot "Mitsubishi heavy Industries, Ltd. – General Purpose Robot: PA" to be employed in various ways for a wide range of customers.

The "PA" has two controllers: at the operation and motion control section. At the operation control section, the C- language library (PA library) is provided to access the motion control section.

This manual explains how to use this "PA library" in C and BASIC language.

Remark

In this manual both 6-axis and 7-axis arm are explained as the same. If there is a different function either in 6 or 7 axis, it is respectively shown as follows.

The only function obtained by 6-axis arm
The only function obtained by 7-axis arm

6 axis arm function
7 axis arm function

Chapter 2. Arm Designation and Motion

2. 1 AXIS DESIGNATION

Joint structure, axis designation and motion of "Mitsubishi heavy Industries, Ltd. – General Purpose Intelligent Robot PA" are shown in the drawing below. It might have a difference between configuration of the actual machines and this illustration. However, the coordinate system is the same to both.

6 -AXIS ARM

7 -AXIS ARM

2. 2 COORDINATE SYSTEMS

In manipulator control, to indicate the current position/orientation and the target position/orientation, the standard coordinate system is needed. Inputting the deviation of position and orientation (rotation angle on the standard axis) for coordinates they can be controlled.

The coordinate systems used in the motion controller are as follows:

 Base Coordinates

 The manipulator origin is the basic standard. <u>Its standard is for all coordinate systems and will never change.</u>

 Mechanical Interface Coordinates

 The coordinate system is altered by changes of each axis angle in the manipulator tip coordinate (included tool + offset.)
 (Tip coordinate system)

Memo

Later on, this kind of coordinate system will be needed if combining with motion mechanism or attaching sensors.

2. 3 COORDINATE SYSTEM CREATION

How should the coordinate system shown in the section 2.2 be created:

Here it is explained how to assign coordinate to each link which constructs a manipulator.

[Link parameters]

	Axis	Axis Des.	Twisting Angle	Rotation Angle	Х	Y	Z			
Link 1	1st	S1	Roll	ϕ_{s_1}	0	0	1b			
Link 2	2nd	S2	Pitch	ϕ_{s_2}	0	-1s	0			
Link 3	3rd	S3	Roll	$\phi_{_{S3}}$	0	0	0			
Link 4	4th	E1	Pitch	$\phi_{{\scriptscriptstyle E}{\scriptscriptstyle I}}$	0	-1e	0			
Link 5	5th	E2	Roll	$\phi_{_{E2}}$	0	0	0			
Link 6	6th	W1	Pitch	ϕ_{w_1}	0	-1w	0			
Link 7	7th	W2	Roll	$\phi_{_{W2}}$	0	0	0			
	Remark									

This chart shows only the 7-axis arm composition. For the 6-axis arm, there is no Link 3.

Twisting Angles

Roll : Rotation around Z-axis of the base coordinate.

Pitch: Rotation around Y-axis of the base coordinate.

Yaw: Rotation around X-axis of the base coordinate.

Joint Coordinates

Roll coordinate: the same as the base coordinate.

Pitch coordinate: 90 degrees diverted around X-axis of the base coordinate.

Yaw coordinate: 90 degrees rotated around Y axis of the pitch coordinates.

<A-Matrix>

Any manipulator is constructed with a series of links connected by joints. At each link (each axis) the coordinate is fixed one by one. At this point, the conversion matrix showing the relation between a link and another one is called A-matrix. To summarize: the A-matrix indicates a relative translation and rotation between link coordinates.

<T-Matrix>

It can be indicated by the A-matrix product if seeing each link from the base coordinate (the origin. of the manipulator coordinate.) <u>This A-matrix product is</u> <u>called T-matrix</u>. T-matrix of each link seeing from the base coordinate is indicated with $T_i(={}^{\circ}T_i)$.

(1) Base Coordinate Systems

The base coordinate is the origin of a manipulator. This coordinate itself becomes the standard coordinate system (the absolute coordinate system) as follows:

$$T_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(2) Mechanical Interface Coordinates

Mechanical interface coordinates (tool tip coordinate) will be created as follows:

First of all, create the conversion matrix A1 from the manipulator origin, indicating the S1 origin.
 →The coordinate of S1 origin located at base coordinate:

 $T_1 = T_0 A_1$

• Then, create conversion matrix: A2 indicating the S2 origin for the S1 origin (T1 coordinate.) →The coordinate of S2 origin located at the base coordinate:

$$T_2 = T_1 A_2 = A_1 A_2$$

Then, create conversion matrix: A3 indicating the S3 origin for the S2 origin (T2 coordinate.)
 →The coordinate of S3 origin located at the base coordinate:

$$T_3 = T_2 A_3 = A_1 A_2 A_3$$

Then, create conversion matrix: A4 indicating the E1 origin for the S3 origin (T3 coordinate.)
 →The coordinate of E1 origin located at the base coordinate:

$$T_4 = T_3 A_4 = A_1 A_2 A_3 A_4$$

Then, create conversion matrix: A5 indicating the E2 origin for the E1 origin (T4 coordinate.)
 →The coordinate of E2 origin located at the base coordinate:

$$T_5 = T_4 A_5 = A_1 A_2 A_3 A_4 A_5$$

Then, create conversion matrix: A6 indicating the W1 origin for the E2 origin (T5 coordinate.)
 →The coordinate of W1 origin located at the base coordinate:

$$\Gamma_6 = T_5 A_6 = A_1 A_2 A_3 A_4 A_5 A_6$$

Then, create conversion matrix: A7 indicating the W2 origin for the W1 origin (T6 coordinate.)
 →The coordinate of W2 origin located at the base coordinate:

$$T_7 = T_6 A_7 = A_1 A_2 A_3 A_4 A_5 A_6 A_7$$

•Then, create conversion matrix: A tool indicating tool tip for the W2 origin (T7 coordinate.)

 \rightarrow The tool tip coordinate located at the base coordinate:

 $\mathsf{T}_{\mathsf{tool}} = \mathsf{T}_7 \mathsf{A}_{\mathsf{tool}} = \mathsf{A}_1 \mathsf{A}_2 \mathsf{A}_3 \mathsf{A}_4 \mathsf{A}_5 \mathsf{A}_6 \mathsf{A}_7 \mathsf{A}_{\mathsf{tool}}$

Thus, if it is successively indicated with a conversion for new coordinates, multiply the conversion matrix of each joint on the right.

To summarize: the finally created $\underline{T}_{tool}({}^{O}T_{t})$ matrix indicates the position / direction of the mechanical interface coordinate (included the tool) seen from the base coordinate. Using this matrix, it also makes the conversion from the mechanical interface coordinate to the base coordinate.

2. 4 ROTATION DIRECTION FOR COORDINATE SYSTEMS

Input values for each coordinate as follows.

(1) Input values in the base coordinate

<Position>

- •Deviation toward $X(\Delta X)$
- •Deviation toward $Y(\Delta Y)$
- •Deviation toward $Z(\Delta Z)$
- •Velocity toward X(VX)
- Velocity toward Y(VY)
- •Velocity toward the V-axis(VZ)
- <Orientation>
 - •Rotation deviation on $X(\Delta Yaw)$
 - •Rotation deviation on $Y(\Delta Pitch)$
 - •Rotation deviation on $Z(\Delta Roll)$
 - •Rotation velocity on X(VYaw)
 - •Rotation velocity on Y(VPitch)
 - •Rotation velocity on Z(VRoll)

<Position>

- •Deviation toward $X(\Delta x)$
- •Deviation toward $Y(\Delta y)$
- •Deviation toward $Z(\Delta z)$
- •Velocity toward X(Vx)
- Velocity toward Y(Vy)
- •Velocity toward Z(Vz)

<Orientation>

- •Rotation deviation on X(∆yaw)
- Rotation deviation on Y(Δpitch)
 Rotation deviation on Z(Δroll)
- •Velocity toward X(Vyaw)
- •Velocity toward Y(Vpitch)
- •Velocity toward Z(Vroll)

2. 5 CONVERSION

Space conversion with a 4x4 Matrix can indicate the conversion of translation and rotation.

Using these conversions and coordinates, they designate the position and orientation of a manipulator.

(1) Position designation

Position designation (conversion) is to translate X, Y and Z directions of the basic coordinate T.

Trans(x,	у,	z)=	$\left(\right)$	1	0	0	х	
				0	1	0	У	
				0	0	1	z	
				0	0	0	1	J

(2) Orientation designation (Roll, Pitch, Yaw)

Roll, pitch and yaw is generally used for the orientation designation (conversion).

In a standard coordinate T, Yaw is the rotation around X-axis. Pitch is the rotation around Y-axis. Roll is the rotation around Z-axis.

Memo

As these three conversions are based on the original coordinate, pay attention to the conversion formula, the multiplication order is reversed.

RPY (roll, pitch, yaw)

		<	-						— F	roce	ssing	order
=	Rot (z	, ro	II)R	ot (y,	pitch)	Rot (х, у	aw)				
	(C _r	$-S_r$	0	Ō	(C _p	0	S_p	Ō	$\int 1$	0	0	0)
=	S _r	C_r	0	0	0	1	0	0	0	Cy	$-S_y$	0
	0	0	1	0	-Sp	0	C_p	0	0	Sy	Cy	0
	(O	0	0	リ	Co	0	0	リ	(O	0	0	レ
	_										_	_
	C	$_{r} C_{p}$		$C_r S_p$	$S_y - S_r$	Cy	C _r	$S_p C_y$	+ S _r S _y		0	
=	S	$_{r} C_{p}$		$S_r S_p$	$S_y + C_r$	Cy	S _r	$S_p C_y$	- C _r S _y		0	
	-	-S _p			C _p S _y			$C_p C$	C _y		0	
		0			0			0			1)
		Hov	weve	r、S _y	= sin (<u>y</u>	yaw),		C _y =	cos	(yaw))	
				Sp	= sin (p	oitch)	,	C _p =	cos	(pitcł	(ו	
				S _r	= sin (ı	roll),		C _r =	cos	(roll)		

Memo						
Conversions responding t	o the rotati	on angle	heta arou	nd X, Y	and Z-axis are:	
Rot (x, θ)	=	1 0 0 0 0	0 cos θ sin θ 0	0 -sin θ cos θ 0	0 0 0 1	
Rot (y, $ heta$)	=	$\begin{bmatrix} \cos \theta \\ 0 \\ -\sin \theta \\ 0 \end{bmatrix}$	0 1 0 0	sin θ 0 cos θ 0	0 0 0 1	
Rot (z, θ)	=	$\begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \\ 0 \end{bmatrix}$	−sin θ cos θ 0 0	0 0 1 0	0 0 0 1	

_

Chapter 3. CONTROL MODE

Looking at the nearest point to H/W in the manipulator control, command values are given to each axis. As the actual operation method, not only makes each axis move, but also needs complex movements controlling orientation or the tip position to be straight.

3. 1 ACTUATING CONTROL MODE

Actuating control methods for PA, are provided as follows: Also data interpolation will be performed when it operates for all modes.

- •Axis angle control
- Axis speed control
- ·6 direction deviation control for the RMRC base coordinate system
- •6 direction velocity control for the RMRC base coordinate system
- •Tip coordinate matrix control for the RMRC base coordinate system
- •6 direction deviation control for the RMRC mechanical interface coordinate system
- •6 direction velocity control for the RMRC mechanical interface coordinate system
- •Redundant axis control for RMRC control
- •Teach data acquisition control
- Playback (axis / linear / circle / arc interpolation) control
- Coordinate conversion control for playback
- redundant axis control for playback
- •Direct control ... optional function
- •Axis angle real-time control
- •RMRC real-time control
- $\mbox{ }\mbox{ Absolute target position }/$ orientation designation control
- others

Direct teaching is optional.

7-axis arm function

(1) Axis angle Control

Operation method ordering each axis target angle or previously defined each axis value, through the operation controller.

Reference 🗋

Programming is explained in Section 6-3.

(2) Tip Position / Tip Orientation Control

Method to shift the tip straight or rotate the tip direction by inputting the tip position/orientation deviation for the defined coordinate axis by the operation controller.

The Motion controller calculates the linear interpolation for each tip position/orientation and control position/orientation feedback.

In PA10, tip position/orientation control is called RMRC control.

Reference

Programming for the 6 axis arm is explained in section 6-4 and for the axis arm, in section 6-5.

(3) Velocity Control

Operation method to select the axis for velocity control and input command value. Input to each axis or to the coordinate system axis is accessible.

Reference

Programming is explained in section 6-6.

(4)Redundant Axis Control

7-axis arm function

For the 7-axis arm, the same as PA, there are several axis values at the same tip position/orientation. The arm, with these characteristics, is called "Redundant axis arm".

By controlling this redundant axis, complex movements can be achieved.

For instance, even if the elbow encounters obstacles, this elbow position can be shifted, without changing the tip position/orientation.

The redundant axis control is the mode restricting each axis of the 7-arm axis to any direction.

There are two types of redundant axis control, as follows:

•The control restricts the redundant axis altering the tip position/ orientation.

•The control shifts, only, the redundant axis (elbow) position not altering the tip position/orientation.

Reference

Programming is explained in section 6-5.

6.11 Play	/back Control	6-84
6. 11. 1	PTP linear interpolation data and playback control	6-85
6. 11. 2	PTP arc interpolation data and playback control	6-86
6. 11. 3	PTP circle interpolation data and playback control	6-88
6. 11. 4	PTP axis interpolation data and playback control	6-89
6. 11. 5	Teach data playback control mixed with various data	6-91
6. 11. 6	Differences between current point operation and playback control	6-92
6. 11. 7	JUMP rules	6-94
6. 12 Tip 6. 12. 1 6. 12. 2	Offset Control Coordinate conversion matrix control Tip position offset control	6-95 6-96 6-104
6.13 Cub	e interference	6-110
6.14 Par	ameter setting	6-112
6. 15 Erro	or Information	6-114
6. 15. 1	status transition summary for error occurrence	6-114

7-26
7–34

Chapter 8 PA Library Compilation	8-1
----------------------------------	-----

Appendix 1	PA library issuable status table
Appendix 2	On PA library return value (error code)
Appendix 3	On restart control function after momentary stop during playback control
Appendix 4	Sample program instruction

(7) Real-Time Control

This mode controls the arm in position/orientation or each axis angle, at actual time, inputting tip position/ orientation or each axis angle every control cyclic time.

The command (tip position/orientation Matrix or each axis angle every control cyclic time) has to be issued every time-out.

Reference

Programming is explained in the section 6.8.

(5) Direct Control (Optional function)

After switching on the torque control and releasing the brake, this direct control is for the manually arm operation mode.

This control mode memorizes each axis data as the teach (PTP) data when an arm is operated manually. It revives the movements through the playback control.

•Simple weight compensation control

^					
1	n -	£.			
1	ка	ТС	ro	nce	•
	110				

Programming is explained in section 6-7.

(6) Playback Control

This playback control is managed by continuous teach data (each axis value or NOAP) Between a non continuous teach data the playback control will be interpolated adjusting the data types.

```
Teach data 1 ( \theta_{S11}, \theta_{S21}, \cdots \theta_{W21} )
Teach data 2 ( \theta_{S12}, \theta_{S22}, \cdots \theta_{W22} )
:
Teach data n ( \theta_{S1n}, \theta_{S2n}, \cdots \theta_{W2n} )
```

The teach data is as follows:

•PTP	for	axis interpolation	each axis(θ_{s1} ~	$ heta_{w_2})$ data
•PTP	for	linear interpolation	each axis(θ_{s1} ~	θ_{w_2}) data
•PTP	for	arc interpolation	each axis($\theta_{s1} \sim$	$\theta_{\rm W2}$) data
•PTP	for	circle interpolation	each axis(θ_{s1} ~	$\theta_{\rm W2}$) data

•PTP for linear interpolation	tip(NOAP)data
• PTP for arc interpolation	tip(NOAP)data

•PTP for circle interpolation tip(NOAP)data

Interpolation methods are as follows:

- •Axis angle interpolation
- •Tip linear interpolation
- •Tip arc interpolation
- •Tip circle interpolation

Reference

Interpolation methods are explained in the section 3.2 - 3.5. Programming is explained in the section 6.10 and 6.7.

Memo

The teaching data is the PTP data. The PTP data is the abbreviation for "Point to Point". The trajectory between different data is haphazard. But when the playback control is operated, the interpolation has to be surely performed between different PTP data.

3. 2 Trajectory Control Mode

How to operate each axis or tip position/orientation of a manipulator: In PA10, the interpolation is as follows:

a. Trajectory Interpolations

- •Axis angle interpolation
- •Tip linear interpolation
- •Tip arc interpolation
- •Tip circle interpolation
- Tip orientation interpolation
- **b.** Velocity Control
- Constant velocity interpolation
- •(Acceleration + Constant velocity) Interpolation
- $\boldsymbol{\cdot}(\operatorname{Constant} \operatorname{velocity} + \operatorname{deceleration})$ Interpolation
- \cdot (Acceleration + Constant velocity + deceleration) Interpolation

Control Mode	a. Trajectory interpolation	b. Velocity Control
Each Axis Control	Each Axis Interpolation	
Tip Position Control	Tip Linear Interpolation	
Tip Orientation Control	Tip Orientation Interpolation	
	Each Axis Interpolation	
	Tip Linear Interpolation	
	Tip Orientation Interpolation	
Playback Control	Tip Arc Interpolation	
	Tip Orientation Interpolation	
	Tip Circle Interpolation	

3. 3 Axis Angle Interpolation

Here is the explanation for each axis angle control in the trajectory control mode.

Each axis angle control

<Input value>

target angle (θ r_{S1}, θ r_{S2}, $\cdots \theta$ r_{W2})

<Calculation>

1 Calculate deviation angle and subtract the current value from the target one, at each axis.

$ \left(\begin{array}{c} \Delta \theta_{S1} \\ \Delta \theta_{S2} \end{array}\right) $	=	$ \begin{pmatrix} \theta r_{S1} - \theta c_{S1} \\ \theta r_{S2} - \theta c_{S2} \end{pmatrix} $	
$\left[\Delta \theta_{W^2} \right]$: θ r _{w2} - θ c _{w2}	ر ر

(2) From the calculation, dividing each axis deviation by each axis default velocity, the axis, obtaining the biggest shifting time, is defined as the basic axis of interpolation.

$$\begin{pmatrix} \Delta T_{S1} \\ \Delta T_{S2} \\ \vdots \\ \Delta T_{W2} \end{pmatrix} = \begin{pmatrix} \Delta \theta_{S1} / V_{S1} \\ \Delta \theta_{S2} / V_{S2} \\ \vdots \\ \Delta \theta_{W2} / V_{W2} \end{pmatrix}$$

The axis obtained the biggest $\Delta T_{i^{\circ}}$ is defined as the standard of interpolation.

③ Calculate each axis command angle on the basis of the interpolation basic axis deviation (Δ θ_i). In the interpolation method, calculate the target trajectory (command angle) to control the velocity to form the letter "S" shape.

Reference

For the velocity control, refer to the section 3.5.

3. 4 RMRC Tip Interpolation

The method to shift a manipulator tip position/orientation to the next target position/orientation in the trajectory control mode is explained here.

Tip position/orientation interpolation methods currently provided in PA10 are three as follows:

 Linear Interpolation 	\cdots The tip trajectory is straight. The tip orientation is		
	concurrently interpolated, too.		
•Arc Interpolation ••• The tip trajectory is an arc. The tip orientation is			
	concurrently interpolated, too.		
Circle Interpolation	\cdots The tip trajectory is a circle.		

The target tip position/orientation "Tr_n" is calculated from interpolation every sampling period to shift on the trajectory to the target position/orientation from the current position/orientation.

7-axis arm function

For the 7-axis arm, when the redundant axis control modes – "S3-axis restriction" and "S3-axis interpolation" – are selected and the interpolation above is operated, the S3-axis angle deviation (difference between the current angle and the target angle) is simultaneously interpolated and target "S3-axis" angles are calculated every sampling period.

For trajectory interpolation methods, the target tip position/orientation trajectory (command angle) is calculated for velocity to form the letter "S" shape.

Reference

Refer to the section 3.5 for velocity control.

(1) Linear interpolation

<When the redundant axis control mode is NOT "S3-axis restriction" and "S3-axis interpolation mode in 6-axis and 7-axis arm>

OUTLINE PROCEDURE FOR LINEAR INTERPOLATION

- 1. Calculate the current tip position and the tip orientation (Tc).
- 2. Calculate the target tip position and the tip orientation (Tr).
- 3. Calculate the tip moving distance (L) from the current tip position and the target position.
- 4. Calculate the tip orientation/rotation angle (θ) from the current orientation and the target tip orientation.
- 5. To simultaneously operate the position and the orientation, the standard must be chosen.
- 6. Following the selected velocity control method, interpolate and calculate the target tip position/target orientation (Tr_1 , \cdots , Tr_{n-1} , Tr_n , \cdots Tr) of each sampling.
- 7. If the work coordinate conversion Matrix is designated, multiply "Tr_n" by the coordinate conversion Matrix.

When the redundant axis control mode is "S3-axis restriction" and "S3-axis interpolation mode>

7-axis arm function

OUTLINE PROCEDURE FOR LINEAR INTERPOLATION

- 1. Calculate the current tip position and the tip orientation (Tc).
- 2. Calculate the target tip position and the tip orientation (Tr).
- 3. Calculate the tip moving distance (L) from the current tip position and the target position.
- 4. Calculate the tip orientation/rotation angle (θ) from the current orientation and the target tip orientation.
- 5. Calculate the S3-axis angle/rotation angle(θ_{S3}) from the current S3-axis angle and the target S3-axis angle.
- 6. To operate the position and the orientation, the standard for interpolation must be chosen from the position, the orientation or the S3-axis.
- 7. Following the selected velocity control method, interpolate and calculate the target tip position, the target orientation and the S3-axis of each sampling.
- 8. If the work coordinate conversion Matrix is designated, multiply "Tr_n" by the coordinate conversion Matrix.

< When the redundant axis control mode is NOT "S3-axis restriction" and "S3-axis interpolation mode in 6-axis and 7-axis arm >

OUTLINE PROCEDURE FOR ARK & CIRCL INTERPOLATION

- 1. Calculate the current tip position (P1) and the tip orientation (T1).
- 2. Calculate the tip position and the tip orientation (T2) of the passing point (P2).
- 3. Calculate the tip position and the tip orientation (T3) of the target value (P3). In the case of the circle, P3-point is also the passing point.
- 4. Calculate the center point (O), the semi-diameter (r) and the normal vector (Vec) of the circle trajectory from three points.
- 5. Calculate the angle of the tip accurate motion (θ_1) from the tip position of the current value P1 and P3. For the circle, $\theta_1 = 2\pi$.
- 6. Calculate the rotation angle of the tip orientation (θ_2) from the tip position of the current value P1 and P3. For the circle, $\theta_2 = 0$ (current orientation maintained.)
- 7. To simultaneously operate the position and the orientation, the standard must be chosen.
- 8. Following the selected velocity control method, interpolate and calculate the target tip position/target orientation (Tr_1 , \cdots , Tr_{n-1} , Tr_n , \cdots Tr) of each sampling.
- 9. If the work coordinate conversion Matrix is designated, multiply "Tr_n" by the coordinate conversion Matrix.

<When the redundant axis control mode is "S3-axis restriction" and "S3-axis interpolation mode>

7-axis arm function

OUTLINE PROCEDURE FOR LINEAR INTERPOLATION

- 1. Calculate the current tip position (P1) and the tip orientation (T1).
- 2. Calculate the tip position and the tip orientation (T2) of the passing point (P2).
- 3. Calculate the tip position and the tip orientation (T3) of the target value (P3). In the case of the circle, P3-point is also the passing point.
- 4. Calculate the center point (O), the semi-diameter (r) and the normal vector (Vec) of the circle trajectory from three points.
- 5. Calculate the angle of the tip accurate motion (θ_1) from the tip position of the current value P1 and P3. For the circle, $\theta_1 = 2\pi$.
- 6. Calculate the rotation angle of the tip orientation (θ_2) from the tip position of the current value P1 and P3. For the circle, $\theta_2 = 0$ (current orientation maintained.)

- 7. <u>Calculate rotation angle (θ_{S3}) if S3-axis orientation from the S3-axis angle, of the current value (P1) and the S3-axis angle of the target value (P3). In the case of the circle, it is $(\theta_{S3}) = 0.0$ [rad] (in the case of circle interpolation, S3-axis DOES NOT move and make the same motion as "S3-axis fixed".</u>
- 8. To operate the position and the orientation, the standard for interpolation must be chosen from the position, the orientation or the S3-axis.
- 9. Following the selected velocity control method, interpolate and calculate the target tip position/target orientation/target S3-axis angle of each sampling.
- 10. If the work coordinate conversion Matrix is designated, multiply "Tr $_n$ " by the coordinate conversion Matrix.

3. 5 Velocity Control

When a manipulator plus a machine operator perform, if, command value is given intermittently, it causes undesirable mechanical oscillation. For this reason, the command speed at the start has to be controlled, to gradually accelerate and at stop to gradually decelerate.

On manipulator trajectory, velocity is generally controlled to make a trapezoid wave.

With this trapezoid wave, the acceleration wave becomes non continuous. It causes acceleration shock and mechanical oscillation. In PA10, to create a target trajectory to reduce acceleration shock, interpolation methods are employed to create the letter "S" shaped target trajectory for velocity.

This satisfies conditions to keep each curve continuity and hold the maximum velocity, lower. The most reliable curve, even if used in a situation when the load characteristic is unpredictable, the maximum velocity is lowered

These options below are available for a velocity control type.

Memo

For position change, the trapezoid control is available. Not available for velocity change. When in a continuous movement as: $(ex)p1 \rightarrow p2$ is v1[mm/s], $p2 \rightarrow p3$ is v2[mm/s], velocity command is intermittently changed at p2 point. In this case, velocity command intermittent change has to be lowered and controlled at the servo driver side.

Chapter 4. Motion & Operation Control Section

The PA controller consists of two sections shown below:

- Motion Control Section
- · Operation Control Section (man-machine controller)

4. 1 Motion Control Section

The motion control section – the controller handles the basic control for PA – operates following each control mode explained in chapter 3. The limitation cycle is 2ms.

Regarding the program for this section, as long as PA is employed, even if the operation contents are changed, the program remains the same.

4. 2 Operation Control Section

The operation control section – the controller handles the operation procedures. The program for this section changes depending on the operation: (on each application: weddings, painting, etc)

The standard software for PA: the operation support program (man- machine) and PA Library (the motion and control section and interface section) are provided.

The motion control board is compatible with PCI bus. Employ a PC with PCI bus sold in the market.

Application development

To develop and implement an application a device driver is needed besides PA library. With PCI bus sold in the market, using "WinnRT" (created by bSQUARE Co.).

The PA Library is created through the DLL form. The program will be kinetically linked when it is employed. The standard Windows version "PA library is created by Compiler Visual C ++ Ver. 6.0. Some application samples, created by Visual C++ and Visual BASIC, are attached.

4. 3 Operation & Motion Control Section Interface

The Operation section and the Motion Control section are connected by PCI bus. The memory area is shared at the PCI space.

The operation control section sets the target command (event) to this memory area. The motion control section operates following a event. The arm movement can be observed at actual time.

Using this memory area, the one provided to ease the motion control section from the operation one, is: the "PA library."

Chapter5 Program Development & Processing Conditions

5. 1 Development & Processing Conditions

For processing conditions, if you intend to provide your own operation control section (Personal Computer), you must need the following:

•OS :Windows NT/2000/XP

•Memory : More than 128 MB

Further more, for development, the following are needed.

·Compiler: Visual C++ Compiler Ver.6.0 or

Visual BASIC Compiler Ver.6.0

5. 2 PA Library Status

The PA library stands for:

•A library to develop an application program for the operation control section.

- The interface library to ease the operation of all actuating functions for the motion control section. To access the motion control CPU, besides the PA library, a driver for PCI bus created by the device driver – WinRT – sold in the market, is needed.
- The PA library is the DLL (Dynamic-link library) model created employing Visual C++ ver.6.0.

5. 3 PA library Directory Composition

The PA library is provided by the CD-ROM.

When the CD-ROM is set, installation starts automatically. (For further information, refer to the installation manual.)

Reference

The PA library compositions provided in PA are as follows:			
¥ WinPApci (Default na BIN ··· Execu Passage Wprm.ex INCLUDE ··· He PA.H PAERR. PACMD PACTL. PAMMC PA.BAS	ame of installation de ition file e.exe eader file of PA librar PA library prototype of H PA library error inform .H H File needed fo 2.H	estination) Y declaration (for development employing Visual C++) ation declaration (for development employing Visual C++) r PA library construction	
PAERR.	BAS for developme	nt with Visual BACIS	
	···· Online help file		
		CURE information	
	PA DIR C	Direct control mode	
	PA DPD.C	Real-time T-matrix control	
	PA_EGT.C	Relatedto additional functions (information acquisition)	
	PA_ETC.C	VMEinterface connected to the motion control section	
	PA_EXT.C	Related to additional functions (control)	
	PA_GET.C	Arm information acquisition	
	PA_JMP.C	JUMP data	
	PA_JOU.C	Redundant axis/velocity control	
		Related to teach mode	
		Coordinate conversion matrix cotting	
		Teach/playback.control	
		Parameter alteration	
	PA PRV C	Related to parameter loading/saving	
	PA SET C	Basic orientation registration	
	PA VEL.C	Velocity mode selection	
	—— PCI ···	PA library (for PCI) project file	
	PA_PCI.(c related to PCI-bus access	
	PCI.DEF	Default definition file	
	PCI.DSW	Project work space	
	PCI.DSP	project file	

Additionally, if the operation support software is purchased together, the following files are installed into the system directory.

CMCTLJP.DLL MSSTDFMT.DLL Scrrun.DLL STDFTJP.DLL MSCOMM32.ocx MSCOMCTL.ocx msvcrt.DLL scr MSCMCJP.DLL MS

scrrnjp.DLL MSCOMJP.DLL

Files needed to develop an application program for the operation control section employing Visual C++ (Ver.6.0) are the following, indicated on gray background:
 PA.H
 PAERR.H
 PAPCI.LIB
 PAPCI.DLL (needed for implementation)
 Files needed to develop an application program for the operation control section

• Files needed to develop an application program for the operation control section employing Visual BASIC (Ver.6.0) are the following, indicated on gray background:

PA.BAS PAERR.BAS PAPCI.DLL (needed for implementation)

5. 4 Notes for application development employing Visual C++

(1) Header files are needed to be included.

Using the PA library, if an application program is developed employing Visual C++ ver.6.0, the following header files have to be included. (using MFC, likewise.)

PA.H ···· PA library prototype declaration is described.

PAERR.H ···· PA library error code declaration is described.

<Setting method> Choose "Setting…" inside "Project" of the menu bar, then, choose "the preprocessor" in the category of C/C++, then, set the path (c:\#winpapc\#include) to the header file of the PA library.

(2) Needed library files to be linked.

As far as developing an application employing Visual C++ Ver.6.0, using the PA library, the following import library files have to be linked.

PAPCI.LIB ···· The import library file including the PA library.

<Setting Method> Choose "Setting…" inside "Project" of the menu bar, then, choose "general" in the link category, then, set the PA library intended to be linked.

(3) Structural Member Alignment Alteration

Structural member alignment has to be set for 2 bytes. (default is 8 bytes)

<Setting Method> Choose "Setting…" inside "Project" of the menu bar, then choose "code creation" in the C/C++ category, then, change the structural member alignment for 2 bytes.

ings For: Win32 Release	General Debug	C/C++ Link Resource
ि <mark>विधी</mark> 3dimf	Category: Code Gener	ation 💌 <u>R</u> eset
	Processor:	Use run-time library:
	Blend *	Single-Threaded *
	Calling convention:	····Structmember alignment
	cdecl *	2 Bytes
	Project Options:	3/GX/02/1"/3dimP'/1"./"/1 ▲

(4) Needed DLL file for processing

To process the application program the following DLL is needed to be located in the designated place:

Windows2000/NT: ¥WINNT¥SYSTEM32, Windows XP: ¥WINDOWS¥SYSTEM32. (There is no need to operate any linking or such.)

PAPCI.DLL The file keeping the PA library processing module.

5. 5 Notes for application development employing Visual BASIC

(1) Necessary header files to include

Using the PA library, if develop an application program employing BASIC ver.6.0, add the following header files. (the standard module file) to the "project."

PA.BAS The prototype declaration is described when load the PA library created with C-programming language employing BASIC.

<Setting method> Choose "Add the standard module" inside "Project" of the menu bar, then, add "ps.bas."

	19		
_ook jn: 🔁	include	- 🔁 🖻	* 📰 *
pa.bas Pactl.bas Paerr.bas Pammc.ba	S		
ile <u>n</u> ame:	pa.bas		<u>O</u> pen
ile <u>n</u> ame: iles of <u>type</u> :	pa.bas Basic Files (*.bas)		<u>O</u> pen Cancel

(2) Necessary DLL tile for implementation

To process the application program the following DLL is needed to be located in the designated place:

 Windows2000/NT:
 ¥WINNT¥SYSTEM32

 Windows XP:
 ¥WINDOWS¥SYSTEM32.

(There is no need to operate any linking or such.)

PAPCI.DLL ···· The file keeping the PA library processing module.

Chapter 6 Programming

How to create an application using the PA library.

6. 1 Control Arm

(1)6-axis and 7-axis arm

The PA library for 6-axis and 7-axis is described as the same. Some libraries can only be used for the 7-axis arm, not for the 6-axis one. A processable library inter-lock is checked at the motion control side.

For the 6-axis arm, on command values to each axis, the S3-axis (configuration [2]) value becomes invalid.

(example)	Type Declaration	6−axis arm	7−axis arm
Axis value	ANGLE axis		
	axs.S1	1 st axis:S1	1 st axis:S1
	axs.S2	2 nd axis : S2	2 nd axis : S2
	axs.S3	(not used)	3 rd axis:S3
	axs.E1	3 rd axis:E1	4 th axis:E1
	axs.E2	4 th axis:E2	5 th axis:E2
	axs.W1	5 th axis:W1	6 th axis:W1
	axs.W2	6 th axis:W2	7 th axis:W2
Velocity command Value	float speed[7]		
	speed[0]	1 st axis:S1	1 st axis∶S1
	speed[1]	2 nd axis : S2	2 nd axis : S2
	speed[2]	(not used)	3 rd axis:S3
	speed[3]	3 rd axis:E1	4 th axis:E1
	speed[4]	4 th axis:E2	5 th axis:E2
	speed[5]	5 ^h axis:W1	6 th axis:W1
	speed[6]	6 th axis:W2	7 th axis:W2

(2) Plural Arm Control

For one operation control PC (Personal Computer), plural motion control boards can be inserted. Besides, two arms can be controlled with one motion control board. In the case of plural arms, the controlled arm is classified with its own number.

For the PA library, all arm numbers are needed. pa_opn_arm(ARM armno,.......)

> ARM =ARMO =ARM1 =ARM2 : =ARM16

(Reference)

For arm number settings, refer to "the PROGRAMING MANUAL (ADDITIONAL EDITION)."

6. 2 Common Items

On the control programming using the PA library, there are some that must be known and followed through.

(1) Synchronization between controllers

One command is issued for one PA library from the operation control section to the motion control section. The motion control section performs the motion/processing, responding to this command.

Synchronization between controllers is operated by the control counter. When the motion/processing is completed, the count value of the control counter will be increased one counter value.

During processing, if any error occurs, it stops processing, adds one counter value, then, returns an error code.

If the return value (error code) of the library shows "ERROR-OK." It means the control is normally terminated.

(2) Minimum required programming procedures

If controlling the motion control section using the PA library, the following descriptions are needed:

①PA Library Initialization : pa_ini_sys

Declaration to use the PA library.

②<u>Open Arm (Control Arm Selection)</u> :pa_opn_arm

Plural motion control sections (arm) can be controlled by one operation control section. The control arm and the number of the arm (ARMO \sim ARM15) have to be designated by the motion control section.

Reference

For the arm number setting, refer to the section 4.3 - the operation & motion control interface.

③<u>Control Start (Motion Control Section)</u> : pa_sta_arm or pa_sta_sim

If issuing the "pa_sta_arm" library, the communication with the servo driver will be started. If issuing the "pa_sim_arm" library, the simulation mode starts. In this mode, regarding all commands issued from hereafter, the motion and the program can be confirmed without operating any actual machine.

(4)Control Stop (Motion Control Section) : pa_ext_arm or pa_ext_sim

If issuing the "pa_ext_arm" library, the communication with the servo driver will be terminated. If issuing the "pa_ext_arm" library, the simulation mode will be terminated.

(5)<u>Close the arm</u> : pa_cls_arm

Separates the selected arm from the motion control section.

6 PA library Exit : pa_ter_sys

Explanation on the programming employing samples.

- <u>Example: for Visual C++</u> the one written with the visual C++6.0 programming language is indicated.
- It is the same as other C-programming language (either Windows or not)
- <u>Example: for Visual BASIC</u> the one written with the visual BASIC programming language is indicated.

In the sample, <u>making easier to understand the description method</u>, function return values ARE NOT checked. When you actually make programming, check any error shown by a return value.

Depending on the error type, the motion control section terminates the control automatically.

Reference

Regarding errors, refer to the error table.

Program Description:

Example: for Visual C++

pa_ini_sys();	PA library initialization
pa_opn_arm(ARM0);	1 st arm open
pa_sta_arm(ARM0);	Control Start
:	
Motion Description Section	
:	
pa_ext_arm(ARM0);	Control Stop
pa_cls_arm(ARM0);	1 st arm close
pa_ter_sys();	PA library termination

Example: for Visual BASIC

Dim ret As Long	
:	
ret = pa_ini_sys()	PA library initialization
ret = pa_opn_arm(ARM0)	1 st arm open
ret = pa_sta_arm(ARM0)	Control Start
:	
Motion Description Section	
:	
ret = pa_ext_arm(ARM0)	Control Exit
ret = pa_cls_arm(ARM0)	1 st arm close
ret = pa_ter_sys()	PA library termination

This is the minimum necessary description library.

(3) Processing during a library performance

Explaining processing methods while a library describing motion is performing. func = WM_WAIT : Wait until the arm motion is terminated.

= WM_NOWAIT: No wait until the arm motion is terminated.

func = WM_WAIT : Wait until the arm motion is terminated

<Library Processing Contents>

·Issues command to the motion control section.

•Observes the motion termination.

•If any error occurs, terminates processing. An error number is shown as a return value.

Example: for Visual C++ if(pa_exe_hom(ARM0, WM_NOWAIT) != ERR_OK) Error termination else Normal termination

Example for Visual BASIC

ļ	Dim ret As Long
! i	ret = pa_exe_hom(ARM0, WM_NOWAIT)
į	If ret <> ERR_OK Then
i	Error termination
i	Else
į	Normal termination
i.	End If

<u>func = WM_NOWAIT</u> : No wait until the arm motion is terminated
<library contents="" processing=""></library>
·Issues commands to the motion control section.
·If any error occurs, terminates processing. An error number is shown as a
return value.
$\cdot Confirmation$ and error observation are not performed at the motion
termination.
Example: for Visual C++
long new, old;
long err;
pa_get_cnt(ARM0, &old);Control counter setting before the command issue
pa_exe_hom(ARM0, WM_NOWAIT);
if((err=pa_get_cnt(ARMU,&new))!=ERR_UK){
An error occurrence processing
j break;
jeise it hew :- old /
hrocki
j bican,
Processing during performance (Example: axis indication)
i
Example: for Visual BASIC
Dim new As Long
Dim old As Long
Dim err As Long
err - pa_get_cnt(ARMU, old)Control counter setting before the command issue
Palexe_non(ARMO, WM_NOWAR)
err = pa get cnt(APM0, new)
$\int_{\Omega} = \int_{\Omega} \frac{1}{2} \int_{\Omega} $
An error occurrence processing
If new <> old Then
Motion termination processing
Exit Do
Else
Processing during performance (Example; axis indication)
End If
End If
Loop

6. 3 Axis Angle Control

Method to control from the operation control section providing axis target angle. The motion control section calculates each axis interpolation and controls angle feedback. θ

The method to provide target values is as follows:

<Method to input angles>

Axis angle control ($\theta_{s1}, \theta_{s2}, \cdots, \theta_{w2}$)

<Axis Angle Control> The method to use a orientation previously registered.

•Basic Orientation Control

- Escape orientation control
- Safety Orientation Control

Axis Angle Interpolation Method

This method to control the selected axis to the target angle, calculating axis interpolation.

This method interpolates the velocity command to form a letter "S" shape.

The motion velocity is interpolated adjusting to the default velocity.

6. 3. 1 Axis Angle Control

Designates axes to be controlled and provides target angles.

Program Description::

Example: for Visual C++ To control only S1,S2 and E1 at 90 [deg]

: ANGLE angle; : angle.s1 = 1.57; (= 90.0 * M_PI / (double)180.0) angle.s2 = 1.57; angle.e1 = 1.57; pa_exe_axs(ARM0, S1|S2|E1, & angle, WM_NOWAIT);

Example: for Visual BASIC

: Dim ret As Long Dim axs As Long Dim agl As ANGLE : agl.s1 = 1.57 agl.s2 = 1.57 agl.e1 = 1.57 axs = S1 Or S2 Or E1 ret = pa_exe_axs(ARM0, axs, agl, WM_NOWAIT)

The motion speed is adjusted to the default one and interpolated forming a letter "S" shape.

6. 3. 2 Axis Orientation Control

This control method is the same as the axis control.

•Basic Orientation All Axes :0 [deg]	
•Escape Orientation S2 : 30[deg] E1 : 90[deg] W1 : 60[deg] Others: 0[deg]	
•safety Orientation S2 : 45[deg] E1 : 90[deg] W1 :-45[deg] Others : 0[deg]	
Alteration methods for each orientation angle are: •Method to input the angle. •Method to replace with a current angle. These values are erased when the power is off.	(ex) pa_set_hom (ex) pa_def_hom To change the arm parameter

Program Description:

default value, use the parameter setting program.

```
Example: for Visual C++
                                _._....
    ANGLE angle;
            •
    pa_exe_esc( ARM0, WM_NOWAIT );
                                               to default escape orientation.
            :
                                    [rad]( = 90.0[deg]*M_PI/(double)180.0)
    angle.s1 = 1.57;
    angle.s2 = 1.57;
    angle.e1 = 1.57;
           :
    angle.w2 = 1.57;
    pa_set_esc( ARM0, & angle );
                                               escape orientation alteration
    pa_exe_esc( ARM0, WM_NOWAIT );
                                                all axes to 90[deg]
            :
    angle.s1 = 0.785;
    angle.s2 = 0.785;
    pa_exe_axs( ARM0, S1|S2, & angle ,WM_NOWAIT);
                                                        to S1,S2 = 45[deg]
            :
    pa_def_esc( ARM0 );
                                           loading as escape orientation
```

Example: for Visual BASIC

```
Dim agl As ANGLE
Dim ret As Long
Dim axs As Long
ret = pa_exe_esc( ARM0, WM_NOWAIT ) to the default escape orientation.
agl.s1 = 1.57
agl.s2 = 1.57
agl.e1 = 1.57
        :
agl.w2 = 1.57
ret = pa_set_esc( ARM0, agl )
                                   escape orientation alteration
ret = pa_exe_esc( ARM0, WM_NOWAIT )
                                              all axes to 90[deg]
         :
agl.s1 = 0.785
agl.s2 = 0.785
axs = S1 Or S2
ret = pa_exe_axs( ARM0, axs, agl ,WM_NOWAIT)
ret = pa_def_esc( ARM0 )
                                              loading as escape orientation
```

It would be useful to register angles often used following operation purposes.

(*1) The arm parameter is the file setting data needed for a control, located in the motion control section.

Reference

For further information, refer to "parameter setting" in the section 6.13.

The contents can be seen with the command - pa_get_prm - from the operation control section. They cannot be directly changed in the program.

But, the operation support program (parameter setting) for alteration is provided.

Reference

For the alteration method, refer to the operation support program (parameter setting) instruction.

6. 4 Tip Position/Orientation (RMRC) Control: 6-axis arm

The following explanation about the tip position/orientation control for the 6-axis arm is the summarized one. For the 7-axis arm, it is explained in the section 6.5.

6. 4. 1 Tip Position/Orientation (RMRC) Control

PA10 tip position/orientation (RMRC) control is the method to control arm providing its tip position/orientation as the target value from the operation control section. The motion control section calculates interpolation of each tip position/orientation and controls the position feedback.

As target value, there are input values below:

•Tip Position Deviation (Δ	Χ, ΔΥ, ΔΖ)	
•Tip Orientation Deviation(Δ Yaw, Δ Pitch, Δ Roll)
 Tip Position/Orientation 	(nx ox ax px)	
	ny oy ay py	
	nz oz az pz	

Tip position/orientation (RMRC) control are as follows:

- •Tip position deviation control
- Tip position orientation control
- Absolute position/orientation designation control
- •Tip position/orientation/velocity control
- Current point motion control (Tip linear motion)
- ·Playback control (Except data for PTP axis interpolation)
- •RMRC real-time control mode

Tip Position/Orientation Interpolation Method

This method calculates the tip position/orientation interpolation and controls the tip to the input target position/orientation.

This method interpolates the velocity command to form a letter "S" shape.

The motion velocity, adjusting to the position/orientation default velocity, is interpolated to form a letter "S" shape.

(1) Tip Position Deviation Control

Position deviations (ΔX , ΔY , ΔZ) from the current tip position are provided to each axis in the selected coordinate system.

Base coordinate tip position control: pa_mov_XYZ(ARM0, dX, dY, dZ, WM_WAIT)

•Mechanical interface coordinate tip position control:pa_mov_xyz(ARM0, dx, dy, dz, WM_WAIT)

(Visual BASIC: pa_mov_XYZ0(ARM0,dx,dy, dz, WM_WAIT))

In Visual BASIC, there is no distinction between capital and small letters.

Control Method:

- The target position is defined by adding the current tip position to the input position deviation.
- The tip position is interpolated linearly.
- The arm parameter default tip linear velocity is interpolated to form the letter "S" shape
- The tip orientation does not change.

Program Description:

1 Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of the ways to enter the RMRC control is to shift to the escape orientation.

2 Chooses the coordinate system and provides deviation. : pa_mov_XYZ

It moves 100 (mm) toward X (axis) in the base coordinate.

A coordinate system selection depends on the intended direction to shift. The one to be applied should be chosen.

Example: for Visual C++

pa_exe_esc(ARM0, WM_WAIT);to RMRC controllable orientation pa_mov_XYZ(ARM0, 100.0, 0.0, 0.0,WM_WAIT);Proceed X=100.0 in the base coordinate.

Example: for Visual BASIC

```
Dim ret As Long
:
ret = pa_exe_esc( ARM0, WM_WAIT )
ret = pa_mov_XYZ( ARM0, 100.0, 0.0, 0.0,WM_WAIT )
```

(2) Tip Orientation Deviation Control

Orientation deviations (Δ Yaw, Δ Pitch, Δ Roll) from the current tip orientation are provided to each axis in the selected coordinate system.

•Base coordinate tip orientation control:

pa_mov_YPR(ARM0, dYaw,dPitch,dRoll,WM_WAIT)

•Mechanical interface coordinate tip orientation control:

pa_mov_ypr(ARM0,dyaw,dpitch,droll, WM_WAIT)

(In the case of Visual BASIC: pa_mov_YPRO(ARM0,dyaw,dpitch, droll, WM_WAIT))

Control Method:

- •The tip position does not change.
- •The target orientation is defined by adding the current tip orientation to the input orientation deviation.
- •The rotation angle deviation of the tip orientation is interpolated.
- •The arm parameter default tip rotational velocity the rotational velocity is i nterpolated to form the letter "S" shape

Program Description:

① Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of the ways to enter the RMRC control is to shift to the escape orientation.

2 Chooses the coordinate system and provides deviation.: pa_mov_ypr

It moves around an axis in a mechanical interface coordinate. The tip position does not change. If tool information/offset values are set, it rotates around the tip. A coordinate system selection depends on the intended direction to shift. The one to be applied should be chosen.

Example: for Visual C++

(3) Designated Absolute Position/Orientation Control

The tip matrix (T-matrix) on the base coordinate system and each axis value for restriction data are provided.

	ſ	nx	ох	ax	рх	1
T-matrix	:	ny	оу	ay	ру	
	L	nz	oz	az	pz 🤈	

Target matrixes are as follows:

- Absolute position target matrix: controls only positions and orientation does not change.
- Absolute orientation target matrix: controls only orientation and positions do not change.
- ·Absolute position/orientation matrix: controls positions and orientations.

Control methods:

- •The input tip position/orientation becomes the target position/orientation.
- •The tip position is interpolated linearly.
- •The rotation angle of the tip orientation is interpolated.
- Calculates the motion and the rotational velocity from a default tip motion and rotational velocity of the arm parameter.

Vxyz	: Default tip linear ve	locity
Vypr	: Default tip rotationa	al velocity
∆xyz	: Tip position motion	value
Δ ypr	: Tip orientation rotat	ion angle
Txyz =	∆xyz∕Vxyz :	Time taken for tip motion.
Typr =	∆ypr∕Vypr :	Time taken for rotation.
If Txyz	a≧ Typr, "Vxyz" bea	comes the standard.

If Txyz < Typr. "Vypr" becomes the standard.

Program Description:

1 Adjusts the axis value to the RMRC controllable one.: pa_exe_saf

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of the ways to enter the RMRC control is to shift to the safety orientation.

2 The tip position/orientation matrix described in the base coordinate system is provided.:pa_mov_mat

It moves toward the tip matrix (T-matrix) indicated in the base coordinate. A coordinate system selection depends on the intended direction to shift. The one to be applied should be chosen.

MOVEMODE types are:

MM_XYZ	: Absolute position target matrix
MM_NOA	: Absolute orientation target matrix
MM_XYZNOA	: Absolute position/orientation matrix

```
Example: for Visual C++
```

MATRIX mat; ANGLE an; : pa_exe_saf(ARM0, WM_WAIT); : Tip T-matrix :mat set Set 0.0 for "an" which is not used for 6-axis arm. : pa_mov_mat(ARM0,MM_XYZNOA,mat,&an,WM_WAIT);

From the current position, perform the RMRC interpolation and shift to the tip position/orientation indicated by "mat."

Example: for Visual BASIC

Dim mat As MATRIX Dim an As ANGLE Dim ret As Long : ret = pa_exe_saf(ARM0) : ret = pa_mov_mat(ARM0,MM_XYZNOA,mat,an,WM_WAIT)

(4) Tip Position/Orientation/velocity Control

Method to control providing linear motion velocity (Vx, Vy, Vz) and rotational velocity (Vyaw, Vpitch, Vroll.) on each coordinate axis in the selected coordinate system

Reference

For further information, refer to "Velocity Control" in the section 6.6

(5) Current Point Motion Control (Tip Linear motion)

Shifts, interpolating the tip position/orientation linearly with the RMRC control to the current point.

Reference

For further information, refer to "shift to the current point" in the section 6.10.3

(6) Playback Control

The playback control is performed using teach data acquired in various control situations.

Reference

For further information, refer to "Playback Control" in the section $6.10 \degree 6.11$

(7) RMRC Real-Time Control Mode

The control method providing target axis angles and T-matrix indicating the target tip linear motion and rotation in the maximum 1000msec cycle.

Reference

For further information, refer to "Real-Time Control" in the section 6.8

6. 4. 2 Motion at the singular posture (singularity)

Awareness on RMRC control operation.

In RMRC control, arm is usually actuated by providing commands to the tip position and orientation of the manipulator, calculating joint angle velocity to actualize.

When the tip takes a position/orientation called a <u>singularity</u>, to maintain a consistent tip trajectory and motion velocity, it is needed to instantly increase some joint velocity. THIS OPERATION, IF ACTUALIZED, CAUSES ENORMOUS DANGER, CREATING UNCONTROLABLE POSITION/ORIENTATION.

6. 4. 2. 1 Singularity types

On singularity, there are three inner singularities (wrist, elbow and shoulder singularity) and the outer singularity located out of the arm movable range.

<Inner Singularity>

Inside the arm movable range, the position/orientation cannot be controlled when a joint angle is exceeded, or lowers the control accuracy.

Wrist Singularity ... Rotational axes of E2 and W2-axis are linear. = W1-axis is 0

Shoulder Singularity...the intersecting point of E2,W1 and W2 rotational axis is on the S1 rotational axis. (the tip cannot be moved to left or right.)

Elbow Singularity...the intersecting point of E2,W1 and W2 rotational axis is on the plane including the S2 and E1 rotational axis.

(When the wrist is at foreground position, the arm configuration cannot be performed which side it should be.)

the target position/orientation are designated outside the movable range. It is impossible to actuate the arm. It usually stops motion with an error indication or cuts the target value.

6. 4. 2. 2 Singularity Avoidance Motion

Singularity avoidance algorism in PA10 customized on the basis of the SC (singularity – Consistency) method discoursed by Professor Tsumaki, Tohoku university. Its outline is explained below.

If needed exceeding velocity to any axis during RMRV control, the SC method – the algorism – lowers the tip velocity and maintains its position and posture. During RMRC control, in PA10, the operation is always controlled by the SC method. If any axis exceeds the rated velocity, the tip velocity is decelerated without any alert. It is not good for the operations needed to maintain velocity.

Conditions	Contents
	If the W1-axis passes through around 0 degree, the E2 and the
Wrist Singularity	W2-axis are laid in a straight line. It creates an enormous reverse
W1 axis angle 0	velocity command.
singularity	To previously find this singularity, the W1-axis angle is always
	observed. If entering into the range designated by the parameter, a
	limit velocity defined by the SC method is lowered. The lowering range
	is designated in the separated section "Parameter."
	(As the result of lowering a limited velocity, the arm tip motion velocity
	is affected. But, the position and the posture are maintained.)
	If the W1-axis locates around the S1-axis position, it is needed to
Shoulder Singularity	actuate the S1-axis to alter the posture. The low velocity S1-axis
W1 axis position	becomes the standard for motion velocity.
singularity	To previously find this singularity, W1-axis angle is always observed.
	If entering into the range designated by the parameter, a limit velocity
	defined by the SC method is lowered. The lowering range is designated
	in the separated section "Parameter."
	(As a result of lowering a limit velocity, the arm tip motion velocity is
	affected. But, the position and the posture are maintained.)
	If the E1-axis passes through 0 degree, it creates an enormous
Elbow Singularity	velocity command for the E1-axis.
E1 axis angle 0	By restricting the arm movable range in the RMRC control, this
singularity	singularity can be avoided. It stops in error with "exceeded arm length
	(*1)."

Remark

The singularity avoidance processing acs avoiding an undesirable emergency such as arm hazardous motion. If arm motion is in teach and playback mode, it is most important NOT TO TAKE those positions and posture.

Around a singularity it is not always possible to make all avoidance motions. At a singularity below, arm stops in error.

<Wrist Singularity>

Around the wrist singularity, in unstable areas, the velocity command sends an error signal to the brake to stop.

<Elbow Singularity> Exceeded arm length:

If E1-axis passes through 0[deg] (the length from S2 rotation origin to W1 rotation origin: 930 [mm],) the RMRC control is not allowed to enter.

For RMRC control, when creating the current value and the target one, it is checked whether arm length is exceeded or not.

When acquiring teach data other than PTP axis interpolation data, if arm length is exceeded, data cannot be obtained.

In the error message, LENGTH is indicated as "Arm Length."

- ERR_NOT_ENUGH: The arm length target value is exceeded more than 925 [mm]. In this case, in interpolation calculation, the target values are automatically corrected. The arm does not stop.
- •ERR_OVER900 : During operation, when the arm length becomes 930 [mm], the brake stops it.
- •ERR_CANT_MOVE: If the arm length current value is exceeded more than 925 [mm], the RMRC control is not allowed to enter.

(Example) at the basic orientation, E1 = 0. The RMRC control is not allowed to enter.

6. 4. 2. 3 Control around Angle Limit

Entry protection to the angle limit:

The SC method is the algorism built-in originally for singularity avoidance. In PA10, using this algorism, processing to decelerate the whole motion of a manipulator just before the angle limit.

Conditional analyses are performed to all moving axes. If any of them approaches to the angle limit, it is forcefully decelerated following SC method.

The deceleration range is from 3 degrees before axis angle limit, where starts decelerating linearly, to the angle limit where the velocity is reduced up to 10% (the rated velocity.)

Teach mode motion

In teach mode the velocity limit is lowered by force. As the velocity limit in the SC method is basically lowered.

6. 5 Tip Position/Orientation (RMRC) Control: 7-axis arm

The tip position/orientation control for the 7-axis arm is as follows:

6. 5. 1 Tip Position/Orientation (RMRC) Control

PA10 tip position/orientation (RMRC) control method to control arm providing its tip position/orientation as the target value from the operation control section. The motion control section calculates interpolation of each tip position/orientation and controls the position feedback.

As target value, there are input values below:

•Tip position deviation (Δ	Χ, ΔΥ,	ΔZ)	
•Tip orientation deviation(Δ Yaw,	Δ Pitch,	∆Roll)
 Tip position/orientation 	(nx	ox ax	px)
	ny	oy ay	ру
	L nz	oz az	pz 丿

Axis value for restriction data during a redundant axis control (θ S1, θ S2, \cdots θ W2)

In the 7-axis arm, when the RMRC control, chooses a redundant axis control mode, a redundant axis (elbow) can be controlled.

In 7-axis arm, the tip position/orientation (RMRC) control can be classified in two on a large scale.

- ① Elbow control changing the tip position/orientation.
 - Tip position deviation control
 - Tip orientation deviation control
 - •Designated absolute position/orientation control
 - •Designated position/orientation/velocity control
 - Current point motion control (tip linear motion)
 - •Playback control (except data for PTP axis interpolation)
 - •RMRC real-time control mode
- 2 Elbow control not changing the tip position/orientation.
 - •Redundant axis velocity control
 - •Redundant axis restriction parameter control
 - •Redundant axis motion control

Tip Position/Orientation Interpolation Method:

This method calculates the tip position/orientation interpolation and controls the tip to the input target position/orientation.

This method interpolates the velocity command to form a letter "S" shape.

The motion velocity, adjusting to the position/orientation default velocity, is interpolated to form a letter "S" shape.

6. 5. 2 Elbow Control changing the tip position/posture

(1) Tip Position Deviation Control

Position deviations (ΔX , ΔY , ΔZ) from the current tip position are provided to each axis in the selected coordinate system.

Base coordinate tip position control: pa_mov_XYZ(ARM0, dX, dY, dZ, WM_WAIT)

Mechanical interface coordinate tip position control:pa_mov_xyz(ARM0, dx, dy, dz, WM_WAIT)

(Visual BASIC: pa_mov_XYZ0(ARM0,dx,dy, dz, WM_WAIT))

In Visual BASIC, there is no distinction between capital and small letters.

Control Method:

- The target position is defined by adding the current tip position to the input position deviation.
- •The tip position is interpolated linearly.
- The arm parameter default tip linear velocity is interpolated to form the letter "S" shape
- •The tip orientation does not change.

Program Description:

(1) Adjusts the axis value to the RMRC controllable one.: pa_exe_esc The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of the ways to enter the RMRC control is to shift to the escape orientation.

<u>(2) Chooses the coordinate system and provides deviation.</u> : pa_mov_XYZ

It moves 100 (mm) toward X (axis) in the base coordinate.

A coordinate system selection depends on the intended direction to shift. The one to be applied should be chosen.

Example: for Visual C++

pa_exe_esc(ARM0, WM_WAIT); ····to RMRC controllable orientation pa_mov_XYZ(ARM0, 100.0, 0.0, 0.0,WM_WAIT); . ···Proceed X=100.0 in the base coordinate.

Proceed X-100.0 In the base coordinate.

....

Example: for Visual BASIC

```
Dim ret As Long
```

1

```
ret = pa_exe_esc( ARM0, WM_WAIT )
```

ret = pa_mov_XYZ(ARM0, 100.0, 0.0, 0.0,WM_WAIT)

```
6-26
```

(2) Tip Orientation Deviation Control

Orientation deviations (Δ Yaw, Δ Pitch, Δ Roll) from the current tip orientation are provided to each axis in the selected coordinate system.

Base coordinate tip position control: pa_mov_YPR(ARM0, dYaw,dPitch,dRoll,WM_WAIT)

•Mechanical interface coordinate tip orientation control:

pa_mov_ypr(ARM0,dyaw,dpitch,droll, WM_WAIT)

(In the case of Visual BASIC: pa_mov_YPRO(ARM0,dyaw,dpitch, droll, WM_WAIT))

Control Method:

•The tip position does not change.

- •The target orientation is defined by adding the current tip orientation to the input orientation deviation.
- •The rotation angle deviation of the tip orientation is interpolated.

•The arm parameter default tip rotational velocity – the rotation velocity – is interpolated to form the letter "S" shape

Program Description:

① Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of the ways to enter the RMRC control is to shift to the escape orientation.

2 Chooses the coordinate system and provides deviation.: pa_mov_ypr

It moves around an axis in a mechanical interface coordinate. The tip position does not change. If tool information/offset values are set, it rotates around the tip.

A coordinate system selection depends on the intended direction to shift. The one to be applied should be chosen.

(3) Designated Absolute Position/Orientation Control

The tip matrix (T-matrix) on the base coordinate system and axis value for restriction data is provided for the target tip orientation.

T-matrix : nx ox ax px ny oy ay py nz oz az pz

axis value for restriction data :(θ S1, θ S2, \cdots θ W2)

Target matrixes are as follows:

- Absolute position target matrix: controls only positions. Orientations do not change.
- Absolute orientation target matrix: controls only orientation. Positions do not change.
- •Absolute position/orientation matrix: controls positions and orientations.

Axis value for restriction data

Due to the redundant axis control mode selected before performing the designated absolute position/orientation control, axis value for restriction data will be effective as follows:

Redundant axis control mode (JOUMODE)	Relation between each mode and axis value for restriction data
No restriction (JM_OFF)	Not depending on provided axis values for restriction data at all.
All axes restricted (JM_ON)	All axes are restricted by provided axis values for restriction data
S3-axis restricted (JM_S3ON)	At first, interpolates the S3-axis restriction value, then, the S3-axis is restricted by the interpolated target S3-axis value as the restriction axis value.
S3-axis interpolation (JM_S3DIV)	S3-axis is interpolated to come to the input S3-axis restriction value.
S3−axis fixed (JM_S3HOLD)	Not depending on provided axis values for restriction data at all. Keep the S3-axis angle when the designated absolute position/orientation control is issued. It is controlled by other 6-axes, only.

Reference

For further information, refer to "Redundant axis control."

Control method: •••

<NOT S3-axis Interpolation Mode>

•The input tip position/orientation becomes the target position/orientation

•The tip position trajectory is interpolated linearly.

- •The tip orientation/rotation angle is interpolated.
- Calculates the shifting and rotation velocity from the arm parameter default tip linear/ rotational velocity.

Vxyz	:Default tip linear veloci	ty
Vypr	: Default tip rotational velocity	
∆xyz	:Tip position shifting value	
Δ ypr $:$ Tip orientation/rotation angle		
Txyz = Typr =	= ∆xyz∕Vxyz : Ti = ∆ypr∕Vypr : Ti	me taken for tip shifting. me taken for tip rotation.
If "Txyz \geq Typr", "Vxyz" becomes the standard. If "Txyz < Typr", "Vypr" becomes the standard.		

<S3-axis interpolation mode>

Interpolates, taking into account of S3-axis rotation angle as the interpolation standard.

- •The input tip position/orientation becomes the target position/orientation
- The tip position trajectory is interpolated linearly..
- •The tip orientation/rotation angle is interpolated.
- •The S3-axis rotation angle is interpolated linearly..
- Calculates the shifting and rotation velocity from the arm parameter default tip linear/ rotational velocity.
- •Calculates S3-axis shifting angle from the default S3-axis angle velocity.

Vxyz	:Default tip linear velocity
Vypr	: Default tip rotational velocity
VS3	: Default S3-axis angle velocity
∆xyz	:Tip position shifting value
$\Delta {\sf ypr}$:Tip orientation/rotation angle
Δ s3	:S3-axis rotation angle
Txyz	= $\Delta xyz / Vxyz$: Time taken for tip shifting.
Typr	= Δ ypr/Vypr : Time taken for tip rotation.
Ts3	= \triangle s3 \checkmark Vs3 : Time taken for S3-axis rotation.
If "Txy	z" is the maximum, "Vxyz" becomes the standard.
If "Typr" is the maximum, "Vypr" becomes the standard.	
If "Ts3is" is the maximum, "Vs3" becomes the standard.	

Program Description:

The possible start range for RMRC control is limited.
The entry to the RMRC control is not allowed when $E1=O[deg]$.
The entry to the RMRC control from the basic orientation is not allowed. One
of the ways to enter the RMRC control is to shift to the safety orientation.
② sets the redundant axis control mode: pa_mod_jou
A default is not restricted.
3 The tip position/orientation matrix described in the base coordinate system is

1 Adjusts the axis value to the RMRC controllable one.: pa_exe_saf

provided.:pa_mov_mat

It moves toward the tip matrix (T-matrix) indicated in the base coordinate. A coordinate system selection depends on the intended direction to shift. The one to be applied should be chosen.

.....

MOVEMODE types are:

MM_XYZ	: Absolute position target matrix
MM_NOA	: Absolute orientation target matrix
MM_XYZNOA	: Absolute position/orientation matrix

Example: for Visual C++

MATRIX mat; ANGLE an;

pa_exe_saf(ARM0);

Tip T-matrix : mat set Axis value for restriction data :an set

pa_mod_jou(ARM0,JM_ON);

the redundant axis control mode setting (all axes are restricted) pa_mov_mat(ARM0,MM_XYZNOA,mat,&an,WM_WAIT);

Shifts from the current position to the tip position/orientation indicated in "mat" with RMRC interpolation in the selected redundant axis control mode (all axes are restricted).

Example: for Visual BASIC

```
Dim mat As MATRIX
Dim an As ANGLE
Dim ret As Long
ret = pa_exe_saf(ARM0)
ret = pa_mod_jou(ARM0,JM_ON)
ret = pa_mov_mat(ARM0,MM_XYZNOA,mat,an,WM_WAIT)
```

(4) Tip linear/rotational velocity Control

Method to control linear motion velocity (Vx, Vy and Vz) and rotational velocity (Vyaw, Vpitch and Vroll.) on each coordinate axis in the selected coordinate system

Reference

For further information, refer to "Velocity Control" in the section 6.6

(5) Current Point Motion Control (Tip Linear Motion)

Shifts, interpolating the tip position/orientation linearly with the RMRC control to the current point.

Reference

For further information, refer to "shift to the current point" in the section 6.10.3

(6) Playback Control

The playback control is performed using teach data acquired in various control situations.

Reference

For further information, refer to "Playback Control" in the section 6.10 ~ 6.11

(7) RMRC Real-Time Control Mode

The control method providing target axis angles and T-matrix indicating the target tip linear motion and rotation in the maximum 1000msec cycle.

Reference

For further information, refer to "Real-Time Control" in the section 6.8
6. 5. 3 Elbow Control NOT changing the tip position/orientation

(1) Redundant Axis Velocity Control

One of the methods to control elbow position without changing the tip position/ orientation. In this PA10 link composition, the S3-axis is the KEY axis for elbow control. In this control, the rotation shift velocity (V θ s3) is provided to the S3-axis to actuate the elbow.

Reference

For further information, refer to "Redundant axis Control" in the section 6.6

(2) Redundant Axis Restriction Parameter Control

The control method is as similar as (1).

Reference

For further information, refer to "Redundant axis Control" in the section 6.5.5

(3) Redundant Axis Shifting Control

The control method is as similar as (1).

Reference

For further information, refer to "Redundant axis Control" in the section 6.5.5

6. 5. 4 Notes on RMRC Control

Precautions on the RMRC control are described below.

Exceeded Arm Length:

Regarding the RMRC control in PA, there are uncontrollable areas. When the current and target value exist out of the motion area, if the E1-axis passes through the 0[deg] point (the length from S2 rotation origin to W1 rotation origin: 930 [mm]), called a singularity, the RMRC control is not allowed to enter.

In the case of RMRC control, when creating the current value and the target one, the RMRC checks whether arm length is exceeded or not.

When acquiring teach data other than PTP axis interpolation data, if arm length exceeds, data cannot be obtained.

In the error message, LENGTH is indicated as "Arm Length."

•ERR_NOT_ENUGH: The arm length target value exceeds more than 925 [mm]. In this case, in interpolation calculation, the target values are automatically corrected. The arm does not stop.

•ERR_OVER900: During operation, when the arm length becomes 930 [mm], the brake stops.

•ERR_CANT_MOVE: If the arm length current value exceeds more than 925 [mm], the RMRC control is not allowed to enter.

(Example) at the basic orientation, E1 = 0. The RMRC control is not allowed to enter.

6. 5. 5 Redundant Axis Control

The redundant axis control is the restriction mode to control each 7-axis value to a certain direction in the RMRC and playback control.

There are two meanings in these redundant controls below.

The mode to choose how much restriction should be made or not make it at all for a redundant axis (elbow) while in operation.

Control to actuate the redundant axis (elbow) without changing the tip position and posture.

6. 5. 5. 1 redundant Axis Control Mode

The redundant axis control mode is available for the controls below:

- •When in the RMRC position/orientation control
- •When in the designated absolute position/orientation control
- •when in the playback control (except data for PTP axis interpolation)

Redundant axis control mode restriction is as follows:

Restriction	None	Low 🔶		→ High	Fixation
Redundant axis	No	All axes	S3-axis	S3-axis	S3-axis
control mode	restriction	Restriction	Restriction	Interpolation	Fixed

The following are advantages and disadvantages of each mode.

(a) Redundant Axis Control - No Restriction

This control creates the most stable angles for all 7 axes (reliable orientation for the arm)

Advantages: On account of no axis restriction, it has a more tip position/orientation motion ability than other redundant axis control mode.

Disadvantages: If this mode is chosen even though the target axis angle or axis value for restriction data is input, the target axis angle and axis value for restriction data are ignored.

(b) Redundant Axis Control - All Axes Restriction Mode

This controls for all 7 axes to approach the target axis angle as much as possible.

Advantages: Restriction is not strict. It has a tip position/orientation motion ability.

Disadvantages: As this control restricts the 7 axes, all axes usually do not move to the target axis angle. (especially when the target orientation shows arm malfunction.)

(c) Redundant Axis Control - S3-axis Restriction Mode

This control has some strong restrictions for the S3-axis to move to the target angle.

- Advantages: As this control has some strong restrictions, the axis has much possibility to approach the target orientation. This is most balanced control method among these five modes.
- Disadvantages: The arm might be shifted faster toward the target angle. If the S3-axis angle deviation is large, the tip position/orientation and the S3-axis are interpolated with the interpolation value calculated by "S3-axis deviation divided by S3-axis default velocity." The tip position/orientation/velocity becomes invalid.

(d) Redundant Axis Control - S3-axis Interpolation Mode

Interpolating the S3-axis deviation (difference between the current and the target angle), when the tip position/orientation is reached the target value, the S3-axis is controlled to reach the target angle at the same time. This restriction is stricter than (c).

- Advantages: The S3-axis surely arrives to the target angle. This gives much possibility for all seven axes to get to the target angle. To summarize, arm can obtain the target posture and can be controlled holding its posture following exactly the teach data.
- Disadvantages: As this mode has rather strict restriction, the tip position/orientation motion capability is low. If the S3-axis angle deviation is significant, the tip position/orientation and the S3-axis are interpolated with the interpolation <u>quantity</u> calculated by "S3-axis deviation divided by S3-axis default velocity." The tip position/orientation/velocity becomes invalid.

(e) Redundant Axis Control - fixed S3-axis Restriction Mode

Fixing the S3-axis angle is controlled by the axes, except the S3-axis, as a 6 axes manipulator. Choosing the fixed mode, keeps the S3-axis at the angle of the RMRC control starting.

- Advantages: It is available when chosen to control the elbow without changing its position
- Disadvantages: One (S3-axis) of the 7 axes is fixed to use as the 6 axes manipulator. It loses the advantages of the 7 axes manipulator.

(1) Redundant axis control mode as of RMRC position/orientation/deviation control

Selects to restrict the input axis value for restriction data or not when in the RMRC position control. In the S3-axis fixed mode, regardless of input axis value for restriction data, fix the S3-axis at the angle of the RMRC position/orientation deviation control start. The arm is controlled as the 6 axes manipulator.

In other redundant axis control mode, axis value at the RMRC position/orientation deviation control starting is defined as a value for restriction data. Therefore, the S3-axis interpolation mode used only the restricted S3-axis value and the S3-axis fixed mode make the same motion.

(2)Redundant axis control mode as of designated absolute position/orientation/ deviation control

Selects to restrict the input axis value for restriction data or not, when in the designated absolute position/orientation control. In the S3-axis fixing mode, however, regardless of input axis value for restriction data, fixes the S3-axis at the angle of the designated absolute position/orientation control starting, the arm is controlled as the 6 axes manipulator.

The S3-axis restriction mode and the S3-axis interpolation mode are controlled using only axis value for restriction data. Other axis value for restriction data becomes invalid.

(3) Redundant axis control mode as of playback control

Selects whether or not to restrict teach data axis value when in playback control. In S3-axis fixing mode, however, regardless of input axis value for teach data, fix the S3-axis at the angle of the playback control start or when axis angle control changed to the RMRC control during playback. The arm is controlled as the 6 axes manipulator, not using the S3-axis.

The S3-axis interpolation mode controls, using only each S3-axis value for restriction data. Other axis values for restriction data become invalid.

Program Description:

① Choose the redundant axis control mode : pa_mod_jou

JOUMODE of pa_mod_jou uses the macro-definitions below:

JM_OFF	No restriction
JM_ON	All axes restriction
JM_S3ON	S3-axis restriction
JM_S3DIV	S3-axis interpolation
JM_S3HOLD	S3-axis fixation

The default is JM_OFF (no restriction)

In any mode, each tip trajectory is the same. However, each elbow makes a different motion.

2 Shifts to the current point with axis angle control.: pa_axs_pnt

3 Performs the playback control.: pa_ply_pnt

Example: for Visual C++			
pa_mod_jou(ARM0, JM_S3ON); redundant axis control mode setting (S3-axis restriction			
pa_axs_pnt(ARM0, WM_WAIT); Shifts to the cu	rrent point with axis angle control.		
pa_ply_pnt(ARM0, PB_FORE, WM_WAIT);	Starting forward playback		

Example: for Visual BASIC

```
Dim ret As Long
```

ret = pa_mod_jou(ARM0, JM_S3ON)

ret = pa_axs_pnt(ARM0, WM_WAIT)

ret = pa_ply_pnt(ARM0, PB_FORE, WM_WAIT)

When to alter the redundant axis control mode during the playback control:

During the playback control, makes the temporary stop (pa_sus_arm), then, sets the redundant axis control mode with pa_mod_jou. It can be altered.

Except the case explained below, after mode alteration, if a temporary stop is put in motion (pa_rsm_arm), the control is restarted.

The reason why a temporary-stop-release does not work after a mode alteration is on account of altering the redundant axis control mode to the "S3-axis restriction mode" or the "S3-axis interpolation mode" during performing playback in RMRC feedback control, After the mode alternation, the playback control is terminated.

Why the playback control stops when changes to "S3-axis restriction/interpolation mode" during playback performance in RMRC feedback control? There are two:

First of all, the redundant axis control mode can be employed for RMRV feedback control. During a playback performance of axis feedback control, any redundant axis control mode is invalid. Next, for example, as explained in the section 6.5.5, if the "S3-axis interpolation mode" is chosen, not only the tip position/orientation target value, but also the S3-axis target value at every controlling cycle are provided. So that this mode is more strict than others. If changes suddenly to the "S3-axis interpolation mode," the playback cannot be performed as the current and target S3-axis value are not equivalent.

To perform the playback control again, alter the current point (if needed), shift (pa_mov_pnt) to the current point, then, start (pa_ply_pnt) the playback.

6. 5. 5. 2 Redundant Axis Operation Control

The redundant axis control has the advantage of a 7-axis manipulator. It controls elbow position, only, without changing the tip position/orientation.

To shift the redundant axis control, choose JMMODE in "pa_mod_jouin," use the macro-definition as follows:

JM_VSET	Redundant axis velocity control
JM_SET	Redundant axis parameter alteration
JM_RESET	Redundant axis parameter resetting

(1) Redundant axis velocity control

The parameter of the redundant axis control is operated at a constant velocity The parameter operation method uses "pa_odr_vel."

Reference

For further information, refer to "velocity Control" in the section 6.6

In this control, redundant axis control mode is automatically shifted to the S3-axis interpolation mode.

Example: for Visual C++ float spd[7];	
pa_mod_jou(ARM0, JM_VSE	T); Shifts to the redundant axis velocity control
spd[0] = 20.0 * M_PI / (dou In the ca used.	ible)180.0; …Unit [rad/sec] se of the redundant axis velocity control, "spd[0]" can be Control the redundant axis at 20 [deg/sec] velocity.
pa_odr_vel(ARM0, spd);	Velocity alteration

```
Example: for Visual BASIC
Dim spd(6) As Single
Dim ret As Long
ret = pa_mod_jou(ARM0, JM_VSET)
spd(0) = 20.0 * PAI / 180.0
ret = pa_odr_vel(ARM0, spd(0))
```

In this control, after "pa_mod_jou" is issued, "pa_odr_vel" has to be issued every 1000msec. at maximum.

Reference

For further information, refer to "velocity control" in the section 6.6 and "(4) Redundant axis velocity control.)

(2) redundant axis parameter alteration

Here, operates the redundant axis control parameter.

(Axis value needed to be restricted is operated. In the case here, the S3-axis value for restriction data is operated.)

In this control, redundant axis control mode is automatically shifted to the S3-axis interpolation mode.

Example: for Visual C++

pa_mod_jou(ARM0, JM_SET); Shifts to the redundant axis parameter alteration pa_odr_jou(ARM0, JM_RIGHT); Swings the redundant axis to the right : pa_odr_jou(ARM0, JM_HOLD); maintains the redundant axis position

.....

Example: for Visual BASIC

```
Dim ret As Long
ret = pa_mod_jou(ARM0, JM_SET)
ret = pa_odr_jou(ARM0, JM_RIGHT)
:
:
ret = pa_odr_jou(ARM0, JM_HOLD)
```

(3) Redundant axis parameter reset

If resets, parameter value in the redundant axis control returns to the default value. When the elbow position is strongly restricted, if resets, the elbow position get stable and might happen to slowly approach the arm moving range center.

If issues parameter reset, the redundant axis control mode is automatically shifted to the non restriction mode.

(4)S3-axis angle control

Method to shift the elbow without changing the tip position/orientation commanding S3-axis absolute angle [rad] - the "KEY" of the redundant axis (elbow) control.) It is interpolated with the provided angle command and S3-axis angle deviation using the S3-axis default velocity, and controlled.

In this S3-axis angle control, the redundant axis control mode is automatically shifted to the S3-axis interpolation mode.

```
Example: for Visual C++

float S3;

S3 = 80.0 * M_PI / (double)180.0;

pa_mov_jou(ARM0, S3, WM_WAIT); Move the elbow until 80[deg]

:

:

pa_mov_xyz(ARM0, 0.0, 100.0, 0.0 WM_WAIT);

S3-axis moves maintaining 80 [deg] angles in the S3-axis interpolation mode without

changing modes.
```

Example: for Visual BASIC

Dim axsS3 As Single Dim ret As Long axsS3 = 80.0 * PAI / 180.0 ret = pa_mov_jou(ARM0, axsS3, WM_WAIT) : : ret = pa_mov_XYZ0(ARM0, 0.0, 100.0, 0.0 WM_WAIT)

6. 6 Velocity Control

Velocity controls are as follows:

- •Axis velocity control(VS1, VS2, ··· VW2)
- •Tip linear velocity(Vx, Vy, Vz)
- •Tip rotational velocity(Vyaw, Vpitch, Vroll)
- •Tip position/orientation velocity(Vx, Vy, Vz),(Vyaw, Vpitch, Vroll)
- •Redundant axis velocity control(VS3)

Pay attention to initialize the velocity command value before entering the velocity control mode.

During the velocity control, from the entry to the end of the mode, the velocity command library (pa_odr_vel) has to be issued every time-out (set with "pa_set_tim".) The default value of the time-out is 1000 msec.

6. 6. 1 Axis Velocity Control

Choosing the control axis from S1 to W2, the velocity command (v) is provided.

Program Description:

1 Sets time-out :pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs to be altered.

2 Initializes velocity command: pa_odr_vel

All has to be set "0" using "spd[0]~spd[6]" located in "float spd[7]" inside "pa_odr_vel."

(3) Chooses "motion axis = S1, W2" in the axis velocity control mode. : pa_mod_vel "VELMODE" in "pa_mod_vel" has to be set in "VM_ONE" (the axis velocity control mode). Plural axes can be controlled simultaneously.

Remark

If this PA library is issued, only the control mode is changed. The arm does not move. ATTENTION! Within a set time-out, if the velocity command ("pa_odr_vel" and "pa_chk_cnt" can be used) is not issued until the velocity control termination, after issuing Pa library. It causes a brake-stop, responding as if an accident occurred during control.

(4) Input velocity command: pa_odr_vel

"spd[0]~spd[6]" located in "float spd[7]" inside "pa_odr_vel" is used.

S1 axis - rotates at 5[deg/sec]velocity. W2 axis -rotates at 10[deg/sec]velocity.

The velocity command value has to be designated with [rad/sec].

COVERS1	-1070	S1axis Velocity Control Angle exceeded
COVERS2	-1071	S2 axis Velocity Control Angle exceeded
COVERE1	-1073	E1 axis Velocity Control Angle exceeded
COVERE2	-1074	E2 axis Velocity Control Angle exceeded
COVERW1	-1075	W1 axis Velocity Control Angle exceeded
COVERW2	-1076	W2 axis Velocity Control Angle exceeded

5 Input velocity command: pa_odr_vel

S1 axis - rotates at 10[deg/sec]velocity. W2 axis -rotates at 5[deg/sec]velocity.

6 Terminates velocity control: pa_sus_arm

This command terminates velocity control with a brake-stop (pa_stp_arm) or temporary-stop (pa_sus_arm).

```
Example: for Visual C++
      float
              spd[7];
                :
      pa_set_tim(ARM0, 20);
                                              Time-out setting(200msec)
                :
      for(i=0;i<7;i++) spd[i] = 0.0;
      pa_odr_vel(ARM0, spd);
                                              Velocity command initialization
      pa_mod_vel(ARM0, VM_ONE, S1 | W2); M motion axis selection (S1 & W2-axis)
      From here to "pa_sus_arm," "pa_odr_vel" or "pa_chk_cnt" has to be issued within 200
                                                                            msec cycle.
                :
      spd[0] = -5.0 * M_PI / (double) 180.0;
      spd[6] = -10.0 * M_PI / (double) 180.0;
      pa_odr_vel(ARM0, spd);
                                              Velocity command input
      spd[0] = 10 * M_PI / (double)180.0;
      spd[6] = 5 * M_PI / (double)180.0;
      pa_odr_vel(ARM0, spd(0));
                                              Velocity command input
      pa_sus_arm(ARM0, WM_WAIT);
                                              Velocity control termination
```

```
Example: for Visual BASIC
```

```
Dim spd(6) As Single
Dim ret As Long
ret = pa_set_tim(ARM0, 20)
For i=0 To 6 Step 1
    spd(i) = 0.0
Next i
ret = pa_odr_vel(ARM0, spd(0))
                                      Velocity command initialization
ret = pa_mod_vel(ARM0, VM_ONE, S1+W2)
       1
spd(0) = -5 * PAI / 180.0
spd(6) = -10 * PAI / 180.0
ret = pa_odr_vel(ARM0, spd(0))
spd(0) = 10 * PAI / 180.0
spd(6) = 5 * PAI / 180.0
ret = pa_odr_vel(ARM0, spd(0))
ret = pa sus arm(ARM0, WM WAIT)
```

6. 6. 2 Tip linear velocity Control:

In this control, tip linear motion velocity (Vx, Vy, Vz) on each coordinate axis, in the selected coordinates, is provided. The tip posture does not change.

For Visual C++

Base coordinates tip linear velocity control: pa_mod_vel(ARM0, VM_XYZ, 0)
 Mechanical Interface coordinate tip linear velocity control

:pa_mod_vel(ARM0, VM_xyz, 0)

For Visual BASIC

Base coordinates tip linear velocity control: pa_mod_vel(ARM0, VM_XYZ1, 0)
 Mechanical Interface coordinate tip linear velocity control

:pa_mod_vel(ARM0, VM_XYZ2, 0)

Program description:

(1) Sets time-out :pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs to be altered.

② Initializes velocity command: pa_odr_vel

All has to be set "0" using "spd[0] \sim spd[3]" located in "float spd[7]" inside "pa_odr_vel."

3 Chooses the base coordinate linear velocity control mode.: pa_mod_vel

"VELMODE" in "pa_mod_vel" has to be set in "VM_XYZ*" (the base coordinate linear velocity).

Remark

If this PA library is issued, only the control mode is changed. The arm does not move. ATTENTION! Within a set time-out, if the velocity command ("pa_odr_vel" and "pa_chk_cnt" can be used) is not issued until the velocity control termination, after issuing Pa library. It causes a brake-stop, responding as if an accident occurred during control.

 $\%\,$ For Visual Basic, "VM_XYZ1" it has to be set.

Input command orders: pa_odr_vel

"spd[0]~spd[2]" located in "float spd[7]" inside "pa_odr_vel" Is used. This order controls the tip position moving linearly at the velocity of X=10.0[mm/s], Y=-20.0[mm/s], Z=30.0[mm/s]. Velocity command values have to be set with [mm/sec].

(5)Input velocity command orders.: pa_odr_vel

This order controls the tip position moving linearly at the velocity of Y=-20.0[mm/s]. Velocity command values have to be set with [mm/sec].

6 Terminates a velocity control.: pa_sys_arm

This command terminates the velocity control with a brake-stop (pa_stp_arm) or temporary-stop (pa_sus_arm).

Reference

As this method is the RMRC control, regarding errors, refer to "RMRC control (6-axis arm)" in the section 6.4 and "RMRC control (7-axis arm)" in the section 6.5.

Example: for Visual C++

float spd[7];	
pa_set_tim(ARM0, 20);	Time-out setting(200msec)
for(i=0;i<7;i++) spd[i] = 0.0; pa_odr_vel(ARM0, spd);	Velocity command initialization
pa_mod_vel(ARM0,VM_XYZ,0);	Velocity mode Base position selection
: From here to "pa_sus_arm," "pa_odr_vel" or "pa_ch :	k_cnt" has to be issued within 200 msec. cycle.
spd[0] = 10.0;	
spd[1] = -20.0;	
spd[2] = 30.0;	
pa_odr_vel(ARM0, spd);	Velocity command input
:	
spd[0] = 0.0;	
spd[1] = 20.0;	
spd[2] = 0.0;	
pa_odr_vel(ARM0, spd);	Velocity command input
: pa_sus_arm(ARM0, WM_WAIT);	Velocity control termination
Example: for Visual BASIC	

```
Dim spd(6) As Single
Dim ret As Long
ret = pa_set_tim(ARM0, 20)
For i=0 To 6 Step 1
    spd(i) = 0.0
Next i
ret = pa_odr_vel(ARM0, spd(0))
                                              Velocity command initialization
ret = pa_mod_vel(ARM0,VM_XYZ1,0)
                  :
spd(0) = 10.0
spd(1) = -20.0
spd(2) = 30.0
ret = pa_odr_vel(ARM0, spd(0))
                  :
spd(0) =
         0.0
spd(1) = 20.0
spd(2) =
         0.0
ret = pa_odr_vel(ARM0, spd(0))
                  :
ret = pa_sus_arm(ARM0, WM_WAIT)
```

6. 6. 3 Tip rotational velocity control:

In this control, the tip linear motion velocity (Vyaw, Vpitch, Vroll) on each coordinate axis in the selected coordinates, is provided. The tip position does not change.

For Visual C++

- ·Base coordinates tip rotational velocity control:pa_mod_vel(ARM0, VM_YPR, 0)
- •Mechanical Interface coordinate tip rotational velocity control

:pa_mod_vel(ARM0, VM_ypr, 0)

For Visual BASIC

Base coordinates tip rotational velocity control: pa_mod_vel(ARM0, VM_YPR1, 0)
 Mechanical Interface coordinate tip rotational velocity control

:pa_mod_vel(ARM0, VM_YPR2, 0)

Program description:

<u>① Sets time-out</u> :pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs to be altered.

2 Initializes velocity command: pa_odr_vel

All has to be set "0" using "spd[0]~spd[3]" located in "float spd[7]" inside "pa_odr_vel."

3 Chooses the base coordinate rotational velocity control mode.: pa_mod_vel

"VELMODE" in "pa_mod_vel" has to be set in "VM_XPR*" (the base coordinate rotational velocity control mode).

Remark

If this PA library is issued, only the control mode is changed. The arm does not move. ATTENTION! Within a set time-out, if the velocity command ("pa_odr_vel" and "pa_chk_cnt" can be used) is not issued until the velocity control, termination, after issuing Pa library. It causes a brake-stop, responding as if an accident occurred during control.

* For Visual Basic, "VM_YPR1" it has to be set.

<u>4</u> Input command orders: pa_odr_vel

"spd[0]~spd[2]" located in "float spd[7]" inside "pa_odr_vel" is used. The tip position is, for instance, controlled to rotate on the Y-axis at the velocity of pitch=0.5[rad/s]. Velocity command values have to be set with [rad/sec].

5 Input velocity command orders.: pa_odr_vel

The tip position is, for instance, controlled to rotate on the Y-axis at the velocity of pitch=1.0 [rad/s]. Velocity command values have to be set with [rad/sec].

6 Terminates a velocity control.: pa_sus_arm

This command terminates the velocity control with a brake-stop (pa_stp_arm) or temporary-stop (pa_sus_arm).

Reference

As this method is the RMRC control, regarding errors, refer to "RMRC control (6-axis arm)" in the section 6.4 and "RMRC control (7-axis arm)" in the section 6.5.

Example: for Visual C++ spd[7]; float pa_set_tim(ARM0, 20); Time-out setting(200msec) for(i=0;i<7;i++) spd[i] = 0.0; pa_odr_vel(ARM0, spd); Velocity command initialization pa_mod_vel(ARM0,VM_YPR,0); Velocity mode Base position/orientation selection From here to "pa_sus_arm," "pa_odr_vel" or "pa_chk_cnt" has to be issued within 200 msec. cycle. spd[0] = 0.0;spd[1] = 0.5;spd[2] = 0.0;pa_odr_vel(ARM0, spd); Velocity command input spd[0] = 0.0;spd[1] = 1.0; spd[2] = 0.0;pa_odr_vel(ARM0, spd); Velocity command input pa_sus_arm(ARM0, WM_WAIT); Velocity control termination

Example: for Visual BASIC

```
Dim spd(6) As Single
Dim ret As Long
ret = pa_set_tim(ARM0, 20)
For i=0 To 6 Step 1
    spd(i) = 0.0
Next i
ret = pa_odr_vel(ARM0, spd(0))
                                               Velocity command initialization
ret = pa_mod_vel(ARM0,VM_YPR1,0)
spd(0) = 0.0
spd(1) = 0.5
spd(2) = 0.0
ret = pa_odr_vel(ARM0, spd(0))
spd(0) = 0.0
spd(1) = 1.0
spd(2) = 0.0
ret = pa_odr_vel(ARM0, spd(0))
                   :
ret = pa_sus_arm(ARM0, WM_WAIT)
```

6. 6. 4 Tip linear/rotational velocity control

In this control, tip linear motion velocity (Vx, Vy and Vz) and rotational velocity (Vyaw, Vpitch and Vroll) on each coordinate axis in the selected coordinates system are simultaneously provided.

for Visual C++

•Base coordinate system tip linear velocity control:

pa_mod_vel(ARM0, VM_XYZYPR, 0)

 Mechanical Interface coordinate tip linear/rotational velocity control: pa_mod_vel(ARM0, VM_xyzypr, 0)

for Visual BASIC

•Base coordinate system tip linear velocity control:

pa_mod_vel(ARM0, VM_XYZYPR1, 0)

•Mechanical Interface coordinate tip linear/rotational velocity control:

pa_mod_vel(ARM0, VM_XYZYPR2, 0)

Program description:

① Sets time-out :pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs to be altered.

② Initializes velocity command: pa_odr_vel

All has to be set " 0 " using "spd[0] \sim spd[5]" located in "float spd[7]" inside "pa_odr_vel."

3 Chooses the base coordinate linear motion/rotational velocity control mode.:

pa_mod_vel

"VELMODE" in "pa_mod_vel" has to be set in "VM_XYZYPRI*" (the base coordinate linear motion/rotational velocity control mode).

Remark

If this PA library is issued, only the control mode is changed. The arm does not move. ATTENTION! Within a set time-out, if the velocity command ("pa_odr_vel" and "pa_chk_cnt" can be used) is not issued until the velocity control termination, after issuing Pa library. It causes a brake-stop, responding as if an accident occurred during control.

For Visual Basic, "VM_XYZYPRI" it has to be set.

(4) Input a velocity command orders.: pa_odr_vel

"spd[0]~spd[5]" located in "float spd[7]" inside "pa_odr_vel" Is used. The tip is controlled at the linear motion velocity: X=100.0[mm/s], Z=50.0[mm/s] and the rotation velocity: pitch=0.5[rad/s]. Velocity command values have to be set with [rad/sec].

5 Terminates a velocity control.: pa_sus_arm

This command terminates the velocity control with a brake-stop (pa_stp_arm) or temporary-stop (pa_sus_arm).

Reference

As this method is the RMRC control, regarding errors, refer to "RMRC control (6-axis arm)" in the section 6.4 and "RMRC control (7-axis arm)" in the section 6.5.

```
Example: for Visual C++
      float
              spd[7];
      pa_set_tim(ARM0, 20);
                                 Time-out setting(200msec)
      for(i=0;i<7;i++)
                       spd[i] = 0.0;
      pa_odr_vel(ARM0, spd);
                                  Velocity command initialization
      pa_mod_vel(ARM0,VM_XYZYPR,0);Velocity mode Base position/orientation selection
From here to "pa_sus_arm," "pa_odr_vel" or "pa_chk_cnt" has to be issued within 200 msec. cycle.
      spd[0] = 100.0;
                                  Base coordinate system toward X [mm/s]
      spd[2] =
               50.0;
                                          11
                                                         toward Z [mm/s]
      spd[4] =
                 0.5;
                                          11
                                                         toward Pitch [rad/s]
      pa_odr_vel(ARM0, spd);
                                            Velocity command input
             1
      pa_sus_arm(ARM0, WM_WAIT);
                                      Velocity control termination
         _._...
                           _._...
```

Example: for Visual BASIC

.....

```
Dim spd(6) As Single
ret = pa_set_tim(ARM0, 20)
For i=0 To 6 Step 1
    spd(i) = 0.0
Next i
ret = pa_odr_vel(ARM0, spd(0))
                                              Velocity command initialization
ret = pa_mod_vel(ARM0,VM_XYZYPR1,0)
        :
spd(0) = 100.0
spd(2) =
           50.0
spd(4) =
          0.5
ret = pa_odr_vel(ARM0, spd(0))
         :
ret = pa_sus_arm(ARM0, WM_WAIT)
```

6. 6. 5 Redundant axis velocity control

7-axis arm function

The S3-axis rotation velocity (Vs3) is provided for the S3-axis. At this moment, the tip position/orientation does not change.

Program description:

① Sets time-out :pa_set_tim

The default time-out is 1000msec. This time can be issued only when it needs to be altered.

2 Initializes velocity command: pa_odr_vel

In the case of the redundant axis velocity control, only "spd[0]" in "float spd[7]" can be used and has to be set " 0. "

3 Chooses the control axis in the redundant axis velocity control mode.:

pa_mod_jou

"VELMODE" in "pa_mod_vel" has to be set in "VM_XPR*"

Remark

If this PA library is issued, only the control mode is changed. The arm does not move. ATTENTION! Within a set time-out, if the velocity command ("pa_odr_vel" and "pa_chk_cnt" can be used) is not issued until the velocity control termination, after issuing Pa library. It causes a brake-stop, responding as if an accident occurred during control.

(4) Input command orders : pa_odr_vel

For the redundant axis velocity control, only "spd[0]" in "float spd[7]" can be used. Without changing the tip position/orientation, the redundant axis is controlled at -5 [deg/sec] (S3-axis motion velocity).

Velocity command values have to be set with [rad/sec].

5 Input velocity command orders. : pa_odr_vel

Without changing the tip position/orientation, the redundant axis is controlled at 30 [deg/sec] (S3-axis motion velocity).

6 Terminates a velocity control. : pa_sus_arm

This command terminates the velocity control with a brake-stop (pa_stp_arm) or temporary-stop (pa_sus_arm).

```
Example: for Visual C++
    float
             spd[7];
               :
    pa_set_tim(ARM0, 20);
                                             Time-out setting(200msec)
    for(i=0;i<7;i++)
                       spd[i] = 0.0;
    pa_odr_vel(ARM0, spd);
                                             Velocity command initialization
    pa_mod_jou(ARM0, JM_VSET); Redundant axis velocity control mode selection
        From here to "pa_sus_arm," "pa_odr_vel" or "pa_chk_cnt" has to be issued within 200
        msec. cycle.
                .
     spd[0] = -5.0 * M_PI / (double)180.0;
    pa_odr_vel(ARM0, spd);
                                                        Velocity command input
              :
     spd[0] = 30.0 * M_PI / (double)180.0;
     pa_odr_vel(ARM0, spd);
                                                        Velocity command input
     pa_sus_arm(ARM0, WM_WAIT);
                                                       Velocity command termination
                                   _ . _ . _ . _ . _ . _ . _ . _ .
```

Example: for Visual BASIC

Dim ret As Long Dim spd(6) As Single ret = pa_set_tim(ARM0, 20) For i=0 To 6 Step 1 spd(i) = 0.0Next i $ret = pa_odr_vel(ARM0, spd(0))$ Velocity command initialization ret = pa_mod_jou(ARM0, JM_VSET) : spd(0) = -5.0 * PAI / 180.0 ret = pa_odr_vel(ARM0, spd(0)) : spd(0) = 30.0 * PAI / 180.0 ret = pa_odr_vel(ARM0, spd(0)) ret = pa_sus_arm(ARM0, WM_WAIT)

6. 7 Direct ControlOptional function

This mode is to control playback performance reviving memorized each axis data, as teach data, when in a manual operation. If "pa_chk_cnt" is not issued every 1000 msec. (time-out) during direct control, it is recognized as malfunction. The brake stops the operation.

Program Description:

- ① Sets time-out. : pa_set_tim The default time-out is 1000 msec. This time can be issued only when itneeds to be altered.
- ② Switchs to the direct control. : pa_mod_dir DM_START : It becomes at servo-stop status

③ Chooses the axis to be controlled, starts the self weight compensated control : pa_wet_ded

For the control axis selection, choose the axis of pa_wet_ded, then, use macro-definitions below:

For the 6-axis, it is: "LOCKAXIS_S3 : S1 | S2 | E1 | E2 | W1 | W2."

In the case of Visual BASIC: LOCKAXIS_S3 : S1+S2+E1+E2+W1+W2

The default is: LOCKAXIS_S3.

Remark

After issuing this library, if "pa_chk_cnt" is not issued every 1000 msec. (time-out), it is recognized as malfunction. The brake stops the operation.

If axis angle limit is exceeded during direct control, the following errors occur and the brake stops the operation. The direct control is automatically terminated.

DOVERS1	-2030	Direct control S1 axis angle exceeded
DOVERS2	-2031	Direct control S2 axis angle exceeded
DOVERS3	-2032	Direct control S3 axis angle exceeded
DOVERE1	-2033	Direct control E1 axis angle exceeded
DOVERE2	-2034	Direct control E2 axis angle exceeded
DOVERW1	-2035	Direct control W1 axis angle exceeded
DOVERW2	-2036	Direct control W2 axis angle exceeded

<u>(4) Terminate the direct control.</u> : pa_mod_dir

DM_STOP: It terminates the direct control.

Example: for Visual C++

: pa_set_tim(ARM0, 20);	Time-out setting(200msec)
pa_mod_dir(ARM0, DM_START); pa_wet_ded(ARM0, LOCKAXIS_S3);	Direct control mode selection Control axis selection
: (The arm, except S3-axis, is operated with a The arm is manually operated. Acquires F In the meantime, "pa_chk_cnt" has to be	a self weight compensated control. PTP data. issued less than every 200msec.
: pa_mod_dir(ARM0, DM_STOP);	terminates the direct control.
Example: for Visual C++	

Dim ret As Long ret = pa_set_tim(ARM0, 20) ret = pa_mod_dir(ARM0, DM_START) ret = pa_wet_ded(ARM0, LOCKAXIS_S3) : : ret = pa_mod_dir(ARM0, DM_STOP)

6. 8 Real-time Control

This control is for complex applications. As it is explained below, if the tip position/ orientation and each axis angle in every control cycle are provided, the arm performs exactly as it is mentioned. With this method, interpolation and coordinate conversion, not used in the motion control section, can be freely employed in the operation control section.

Remark

In a real-time control, if PA library (pa_odr_axs or pa_odr_dpd), providing command value every 1000msec (time-out) maximum, is not issued, the brake stops the operation as if an accident occurred during control. The default time-out is 1000 msec. This time can be set with "pa_set_tim" when it is needed.

There are two real control modes as follows:

- •Axis real-time control mode ••• controls arm providing axis target angle more than 2msec cycle without interpolation.
- •RMRC real-time control mode···controls arm providing T-matrix indicating the target tip position/orientation in every cycle (more than 2msec.) and axis value for restriction data without interpolation.

Taking into account the limit value to, to maintain motion, the providing value cannot exceed the control cycle (2msec) of the motion control CPU.

	Limit value	Maximum command value
Tip position	1000 mm/sec	2 mm/ 2 msec
Tip orientation	0.785 rad/sec	0.00157 rad/ 2 msec
Axis velocity (eac	ch axis has a different value)	
S1 axis S2 axis	1.0 rad/sec	0.002 rad/ 2msec
S3 axis W1 axis	2.0 rad/sec	0.004 rad/ 2msec
E2 axis W1 axis W2 axis	6.28 rad/sec	0.01256 rad/ 2msec

6. 8. 1 Axis Real-time Control Mode

If the target axis value is issued as the command, every 2msec or more cycles, the axis angle (feedback) control is performed without interpolation.

Axis Real-time Control Mode

Program description:

① Sets the time-out. : pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs to be altered.

(2) Designates the current angle to the target angle. : pa_odr_axs

Sets the target angle acquiring current target angle or current angle.

If the target angle is beyond the limit, errors below occur and the brake automatically stops the arm.

<u>③ Sets the axis real-time control mode.</u> :pa_mod_axs

It shifts to the real axis control mode. After this PA library is issued, until terminating axis real-time control mode, the command (pa_odr_axs or pa_chk_cnt) has to be issued within time-out.

If it is longer than time-out, an error occurs and the brake stops the operation as if an accident happened during control.

(4) Designates the target axis angle. : pa_odr_axs

As it becomes the 2msec cycle target value, the command should be taken into account the axis limit angle. If the target axis angle is beyond the limit, the following errors occur and the brake might, automatically, stop the arm.

 ERR_SYNC_S1
 S1-axis sychronization error in axis control

 ERR_SYNC_S2
 S2

 :
 :

 ERR_SYNC_W2
 W2

<u>(4)</u> terminates the axis real-time control mode.

The axis real-time control mode is terminated by the brake-stop (pa_stp_arm) or the temporary stop (pa_sus_arm).

```
Example: for Visual C++
    ANGLE an;
    pa_set_tim(ARM0, 20);
                                Time-out setting (200msec)
    pa_get_agl(ARM0,&an);
                                           Current angle acquisition
    pa_odr_axs(ARM0, &an);
                                 Target initial axis angle setting
    pa_mod_axs(ARM0);
                                           Axis real-time control mode selection
        From here to "pa_sus_arm," "pa_odr_axs" or "pa_chk_cnt" has to be issued within
        200 msec. cycle.
    while (Conditional text){
        an.s1 = ...
        an.s2 = ...
        an.s3 = ...
                                 Creates a target axis angle here.
        an.e1 = ...
        an.e2 = ...
        an.w1 = ...
        an.w2 = ...
         pa_odr_axs(ARM0, &an);
                                           Target axis angle setting
     }
    pa_sus_arm(ARM0, WM_WAIT); Axis angle real-time control mode termination
```

Example: for Visual BASIC

```
Dim ret As Long
Dim an As ANGLE
ret = pa_set_tim(ARM0, 20)
ret = pa_get_agl(ARM0, an)
                                Current angle acquisition
ret = pa_odr_axs(ARM0, an)
                                Target initial axis angle setting
ret = pa_mod_axs(ARM0)
        :
Do While Conditional text
        1
  an.s1 = ...
  an.s2 = ...
  an.s3 = ...
  an.e1 = ...
  an.e2 = ...
  an.w1 = ...
  an.w2 = ...
  ret = pa_odr_axs(ARM0, an)
Loop
ret = pa_sus_arm(ARM0, WM_WAIT)
           _._.
                          _._...
```

6. 8. 2 RMRC Real-time Control Mode

Providing each axis value for restriction data and T-matrix indicating the target position/ orientation every 2msec or more cycles, the axis angle (feedback) control is performed without interpolation.

RMRC Axis Real-time Control Mode:

Remark

The advantage of this real-time control mode is to receive a 2 msec command. To send this command every 2 msec, it is needed to take into account the timing when the PA library (pa_odr_axs, pa_odr_dpd) is issued and when the motion control section should obtain the PA library.

Current timings are as follows:

① When PA library is issued just before the calculation in motion control section is completed.

▲ : PA library issuing

: Release from issued PA library

With this processing, the motion control section acquires the target value. When "count-up" is on time in the final processing (count-up data is reflected on the memory in the final processing.), with this " \bullet " timing PA library is released from "count-up-wait." The target value ① acquired at this moment is reflected on the control in the period 2.

2 When PA library is issued just after the calculation in motion control section is completed.

: Release from PA library issuing

As target value (1) acquisition is completed at this \bullet timing in the period 2 and reflected on the control, count-up can be confirmed in the PA library, only after final processing is completed.in the cycle 2.

Program Description:

for 6-axis arm

① Sets the time-out. :pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs to be altered.

2 Controls to the RMRC controllable position/orientation (each axis angl).: pa_exe_saf

<u>③ Initializes the target position/orientation.</u>: pa_odr_dpd

If there is not a current target position/orientation, loads and sets the current ones.

4 Sets the RMRC real-time control mode.: pa_mod_dpd

Here comes the RMRC real-time control mode.

After issuing this PA library, until the RMRC real-time control mode is completed, the command (pa_odr_dpd or pa_chk_cnt) has to be issued.

5 Designates the target tip position/orientation: pa_odr_dpd

For the target value is 2msec cycle, commands should be taken into account the RMRC limit velocity (both position and orientation).

ERR_RMRC_X X-axis synchronization error in RMRC control

ERR_RMRC_Y Y-axis synchronization error in RMRC control

ERR_RMRC_Z Z-axis synchronization error in RMRC control

6 Terminates the RMRC real-time control mode.

The RMRC real-time control mode is terminated by the brake-stop (pa_stp_arm) or the temporary stop (pa_sus_arm).

```
Example: for Visual C++
    MATRIX mat;
    ANGLE an;
    pa_set_tim(ARM0, 20);
                                          Time-out setting (200msec)
    pa_exe_saf(ARM0, WM_WAIT);
                                          Moves to safe orientation
                                          Restricted axis value intialization
    an.s1=0.0;
                                     (Initialize "an" to "0" in the case of the 6-axis)
    pa_get_noa(ARM0, mat);
                                          Current position/orientation loading
    pa_odr_dpd(ARM0, mat, &an);
                                          Target position/orientation initialization
    pa_mod_dpd(ARM0);
                                          RMRC real-time control mode selection
       From here to "pa_sus_arm," "pa_odr_axs" or "pa_chk_cnt" has to be issued within
       200 msec. cycle.
    while (Conditional text){
       Target position/orientation T-matrix creation
                                                          :mat
        "0" initialization or
       creation of axis value for the redundant axis restriction data : an
       pa_odr_dpd(ARM0, mat, &an);
              Setting for Target position/orientation T-matrix and axis value for the
              restriction data
     }
     pa_sus_arm(ARM0, WM_WAIT);
                                        RMRC real-time control mode termination
Example: for Visual BASIC
    Dim mat(3,2) As Single
    Dim an As ANGLE
    Dim ret As Long
    ret = pa_set_tim(ARM0, 20)
    ret = pa_exe_saf(ARM0, WM_WAIT)
    ret = pa_get_noa(ARM0, mat(0,0))
    ret = pa_odr_dpd(ARM0, mat(0,0), an) Target position/orientation initialization
                                 (Initialize "an" to "0" in the case of the 6-axis)
               :
    ret = pa_mod_dpd(ARM0)
    Do While (Conditional text){
       ret = pa_odr_dpd(ARM0, mat(0,0), an)
    Loop
    ret = pa_sus_arm(ARM0, WM_WAIT)
```

7- axis arm function

The redundant axis control mode can be chosen on account of RMRC control. But, depending on a redundant axis control mode to choose, each axis value for the restriction data

- a parameter of "pa_odr_dpd" - has a different significance.

<Redundant axis control mode>

[No restriction] : For all axes restrictively controlled by 0.0[deg], a provided axis value for the restriction data is ignored.

[All axes restriction] : All axes are restrictively controlled by a provided axis values for the restriction data.

[S3-axis restriction]: In this mode, axis value means the one for the restriction data when "pa_odr_dpd" is issued. The S3-axis is controlled by a S3 restriction axis value inside the axis values for restriction data. For this reason, a movable angle issued within a cycle has to be taken into account. Other axis values (except S3 axis value) for restriction data are ignored and restricted to 0.0[deg].

[S3-axis interpolation]: In this mode, axis value means the target angle of S3-axis when "pa_odr_dpd" is issued. The S3-axis is controlled by a S3 restriction axis value inside the axis values for restriction data. For this reason, a movable angle issued within a cycle has to be taken into account. Other axis values (except S3 axis value) for restriction data are ignored.

[S3-axis fixation]: S3 axis angle is maintained as it is when RMRC real-time control was started. For this reason, provided axis value for the restriction data is ignored.

Program Description: For 7-axis arm

① Sets the time-out. : pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs to be altered.

2 Controls to the RMRC controllable position/orientation (each axis angl).: pa_exe_saf

<u>③ Initializes the target position/orientation.</u>: pa_odr_dpd

If there is not a current target position/orientation, loads and sets the current ones.

(4) Chooses the redundant axis control mode.: pa_mod_jou

If not setting this mode, the prior set redundant axis control mode becomes available.

<u>(5) Sets the RMRC real-time control mode.</u>: pa_mod_dpd

Here comes the RMRC real-time control mode.

After issuing this PA library, until the RMRC real-time control mode is completed, the command (pa_odr_dpd or pa_chk_cnt) has to be issued within time-out.

6 Designates the target tip position/orientation.: pa_odr_dpd

As the target value becomes 2msec cycle, commands should be taken into account RMRC limit velocity (both Linear and rotational velocity). If the target axis angle comes off- limits, following errors occur and the brake, might automatically stop arm.

ERR_RMRC_X X-axis synchronization error in RMRC control ERR_RMRC_Y Y-axis synchronization error in RMRC control ERR_RMRC_Z Z-axis synchronization error in RMRC control

\bigcirc Terminates the axis real-time control mode.

The axis real-time control mode is terminated by the brake-stop (pa_stp_arm) or a temporary stop (pa_sus_arm).

Example: for visual C++		
MATRIX mat;		
ANGLE an;		
pa_set_tim(ARM0, 20); Time-out setting (200msec)		
pa_exe_saf(ARM0, WM_WAIT); Move to safe orientation		
pa_get_agl(ARM0,&an); Current angle loading		
pa_get_noa(ARM0, mat); Current position/orientation loading		
pa_odr_dpd(ARM0, mat, &an); Target position/orientation initialization		
pa mod jou(ARM0, JM ON):Redundant axis control mode setting (all axes restriction)		
pa mod dpd(ARM0): RMRC real-time control mode selection		
From here to "paisus arm" "paiodriaxs" or "paichk ont" one has to be issued		
within 200 msec cycle		
while (Conditional text)		
Target position/orientation T-matrix creation		
Creation of avia value for the redundant avia restriction data use		
pa_odr_opd(ARMU, mat, &an);		
Setting for Target position/orientation T-matrix and		
axis value for the restriction data		
pa_sus_arm(AKMU, WM_WAIT); KMRC real-time control mode termination		

• • W: 1 0 . .

```
Example: for Visual BASIC
```

```
Dim mat(3,2) As Single
Dim an As ANGLE
Dim ret As Long
ret = pa_set_tim(ARM0, 20)
ret = pa_exe_saf(ARM0, WM_WAIT)
ret = pa_get_noa(ARM0, mat(0,0))
ret = pa_get_agl(ARM0, an)
ret = pa_odr_dpd(ARM0, mat(0,0), an) Target position/orientation initialization
         :
ret = pa_mod_jou(ARM0, JM_ON)
ret = pa_mod_dpd(ARM0)
         :
Do While Conditional sentence
         1
  ret = pa_odr_dpd(ARM0, mat(0,0), an)
Loop
ret = pa_sus_arm(ARM0, WM_WAIT)
```

6. 9 DIO control

The Digital Input/Output (DI/O) board is equipped as the standard system for PA. The PA library is provided only for the DI/O control of this board. Channel numbers are as follows:

The Digital Input/Output (DI/O) board is directly controlled by the motion control section. Its input/output control can be performed by setting data in the designated area, from the operation control section.

Port No.	channel No.	
DP_PORT1	DC_CH1	
	DC_CH2	
	DC_CH3	
	DC_CH4	System Peservetion
	DC_CH5	System Reservation
	DC_CH6	
	DC_CH7	
	DC_CH8	
DP_PORT2	DC_CH1	
	DC_CH2	
	DC_CH3	
	DC_CH4	Tool 1
	DC_CH5	10011
	DC_CH6	
	DC_CH7	
	DC_CH8	
DP_PORT3	DC_CH1	
	DC_CH2	
	DC_CH3	
	DC_CH4	Tool 2
	DC_CH5	10012
	DC_CH6	
	DC_CH7	
	DC_CH8	
DP_PORT4	DC_CH1	
	DC_CH2	
	DC_CH3	
	DC_CH4	Tool 3
	DC_CH5	
	DC_CH6	
	DC_CH7	
	DC_CH8	

Input/output libraries are as follows:

pa_inp_dio	Digital input (Input with 32 ch.units)
pa_oup_dio	Digital output (Output with 32 ch.units)
pa_get_dio	Digital input (Input with 1 ch.unit)
pa_set_dio	Digital output (Sets with 1 ch.unit)
pa_rst_dio	Digital output (Resets with 1 ch.unit)

Program description:

```
Example: for Visual C++

The output channel 4 of tool1 (port 1) has to be switched ON.

When the input channel 3 turns ON, channel 4 has to be OFF.

UBYTE io;

pa_set_dio(ARM0, DP_PORT1, DC_CH4);

while(1){

    pa_get_dio(ARM0, DP_PORT1, DC_CH3, &io);

    if(io<>0) break;

}

pa_rst_dio(ARM0, DP_PORT1, DC_CH4);
```

Example: for Visual BASIC

```
Dim io As Byte

Dim ret As Long

io = 0

ret = pa_set_dio(ARM0, DP_PORT1, DC_CH4)

Do While io = 0

ret = pa_get_dio(ARM0, DP_PORT1, DC_CH3, io)

Loop

ret = pa_rst_dio(ARM0, DP_PORT1, DC_CH4);
```
《Playback control teach point "DO" status selection》

Setting "DO" data attribution at the teaching point, this can be performed by choosing its DO information (valid/invalid) or (stop/non-stop) when the arm is stopped.

Setting & acquisition of teach point "DO" output – valid/invalid – while in playback control.

pa_swt_dio(ARM armno, long sw)
pa_get_pdo(ARM armno, long* stat)

Choose to make valid (output) or invalid (no output) for DO data attribution set at teach point, while in playback control.

Setting & acquisition of teach point "DO" output - valid/invalid - when the arm is stopped while in playback control.

pa_set_dlc(ARM armno, long data)
pa_get_dlc(ARM armno, long* stat)

The pre-condition is: the teach point DO output in the playback control, has to be set to be valid. When DO information is output while in playback control, if the arm is temporarily stopped or brake-stop, choose to stop output DO information or continue.

Program description:

Example: for Visual C++

While in playback control, make teach point DO information valid. When an arm is not in motion, stop DO output.

DIOSTATUS dis, dio;

pa_swt_dio(ARM0, 1);
pa_set_dlc(ARM0, 1);

Teach point DO information available When in arm-stop, DO-stop available.

Example: for Visual BASIC

Dim dis As DIOSTATUS Dim dio As DIOSTATUS Dim ret As Long ret = pa_swt_dio(ARM0, 1) ret = pa_set_dlc(ARM0, 1)

6. 10 Teach/Playback Motion

Playback motion is performed using teach data acquired in various control conditions. To perform playback motion it usually needs the following four step procedures.

• <u>1st….Teach</u> data creation

Acquires teach points and creates a set.

• 2nd•••.Current teach point shifting

The moment when teach point is acquired, it instantly becomes the current point. For this reason, the teach point where intended to start the motion, has to be shifted to the current teach point.

· <u>3rd···.Shiftin g to the current point</u>

Actuates arm to the position (angle) indicated at the current point.

•<u>4th···.Playback starts</u>

Starts the playback motion.

To acquire teach data and actualize playback motion (replay), all data and information are managed by the motion control program.

Before starting the control method, see important terms below:

Т	ech	nical	l Terms	S
				-

Terms	Explanation
Teach point	Minimum data unit retaining arm angles and motion data, etc.
Teach data	Work unit to set to work one operation linking plural teach data.
Teach data Key	Integer that never overlaps, provided to distinguish plural teach
	data.
Active teach data	Teach data to operate playback and edition (addition, insertion,
	deletion and data alteration).
Teach point attribute	Significant data in teach point.
JUMP	Method to actuate arm through plural data as if the motion
	were created through one teach data.
JUMP data	Teach data attribution information to perform JUMP motion
	between teach data.
JUMP data number	Integer that never overlaps, set to control plural JUMP data.
	It is also set as attribute in the teach point to be referred
	when in playback.
JUMP condition	Command group to be set to actualize JUMP.

6. 10. 1 Teach Point & Teach Data Control

How to manage teach data in the teach data structure and the motion control program:

(1) Teach point attribute

The teach point is the minimum unit of arm data needed to perform playback processing. Its attributes are shown below. Teach point data is initialized with appropriate value when teach points. are created. Then, it is processed and corrected by users.

Structure	Model	Name	Contents	
	float	S1 angle	S1 axis angle [rad]	
	float S2 angle		S2 axis angle [rad]	
	float	S3 angle	S3 axis angle [rad]	
	float	E1 angle	E1 axis angle [rad]	
	float	E2 angle	E2 axis angle [rad]	
PLAY	float	W1 angle	W1 axis angle [rad]	
	float	W2 angle	W2 axis angle [rad]	
	float	Linear motion velocity	Linear motion velocity [mm/sec]	
	float	Orientation, angle	Angular motion velocity when in axis	
		Motion velocity	control, orientation velocity when in	
			RMRC control [rad/sec]	
	long	Data type	PTP:1,PTP(with NOA):2	
	long	Interpolation method	Axis, linear, circle, arc	
	long	Velocity type	Rated velocity, acceleration,	
			deceleration, acceleration/deceleration	
	long	Waiting hour	Motion-start delay time [msec]	
	long	Serial numbers	Serial numbers setting the primary teach point as	
			1.	
	long	ID number	User setting discrimination number	
	long	JUMP data Number	Numbers specified JUMP conditions	
	long	DO output	Digital output for outer operation	
	long	Accuracy	Arm-stop accuracy ^{*2}	
	long	Start-up time	Acceleration time designation * ³	
	long	Shutdown time	Deceleration time designation * ³	
	long	Spare	Not yet used	
	char*32	comment	Comment with muximum 32 letters	
NOAP	float*3	Position * 1	Arm XYZcoordinate system [mm]	
	float*3*3	Orientation * 1	Arm NOA	

Teach point attribute : Structure PNTDAT

*¹ Position and orientation data are created, only, when data type is PTP (with NOA).

 *2 On arm-stop accuracy, lower 16bit for axis motion attribution teach point and for upper_16bit motion attribution teach point, are used.

 *3 If velocity type is acceleration & deceleration/acceleration/deceleration, each type refers to a necessary start-up and shut-down time attributions. If this attribute is "0", start-up time and shut-down time in parameter are used.

Teach data types are as follows:

•Each axis ($\theta_{s1} \sim \theta_{w2}$) data

•Tip position/orientation (NOAP) data

(2) JUMP Data

JUMP data is the annexed information related to the teach point. It has attributes such as JUMP condition and JUMP destination, etc.

JUMP information numbers in the teach point attribute are referred when in playback. If its value is more than 1, JUMP condition search is performed. If the JUMP condition can be found, then, condition check will be performed.

When the condition is established, JUMP destination (teach data "Key" and teach point ID) indicated in JUMP condition is searched. If its destination is found, the interval from the current teach point to the discovered one is interpolated and motion starts. This status is called motion between teach points (RMRC) or motion between teach points (each axis).)

If motion between teach points is completed, the active teach data is replaced by the arrived teach data "Key." Hereafter, motion is controlled by its teach data.

JUMP condition data composition is as follows:

Structure	Туре	Designations	Details	
	long	JUMP condition Number	Numbers designating JUMP conditions	
	long	JUMP condition	JUMPcondition (refer to the next	
			page (5))	
	long	Spare	Not used	
JUDGE	long	DI data	DI data for condition appraisal	
	long	Time-out	Time-out when in wait	
			No time-out with 0	
	long	Teach data Key	JUMP destination teach data Key	
	long	Teach point ID	JUMP destination teach point ID	
	long	Reservation	Employed by a system	
	Omitted. (There are 8 (eight) data from JUMP condition			
	reservatio	n.)		
	long	JUMP condition	JUMPcondition (refer to the next	
			page (5))	
	long	Spare	Not yet used	
	long	DI data	DI data for condition appraisal	
JUDGE	long	Time-out	Time-out when in wait	
			No time-out with 0	
	long	Teach data "Key"	JUMP destination teach data "Key"	
	long	Teach point ID	JUMP destination teach point ID	
	long	Reservation	Employed by a system	

JUMP conditional data composition

(3) JUMP Condition

JUMP condition divides 32bit positive numbers into four and gives them significance.

MSB							
LSB							
31		24	23 16	15		8	7 0
	Valid flag		JUMP command		Logic		Reference destination DI

JUMP condition consists of four: valid flag, JUMP command, logic and reference destination DI. See below: these instructions are not automatically set at the motion control side. All are performed by setting orders from the upper point.

VALID FLAG : JUMPENABLEDISABLE

Designation	Value	Function	
JMP_ON	0x01000000	Condition check performance (valid)	
JMP_OFF	0x00000000	No condition check performance (invalid)	

JUMP COMMAND : JUMPORDER

Designation Value		Function
NO_JUMP	0x00010000	JUMP to the designated teach data and ID
	0,00020000	If DI condition is checked and established, JUMP.
DI_JUMP	0x00020000	If not, playback has to be continued.
	0,000,0000	If DI condition is checked and established, JUMP.
DI_WAITJUWP	0x00030000	If not, waits and rechecks at the next cycle.
		Waits until DI condition is checked and
	0,00040000	established. (ATTENTION! This function does
DI_WAIT	0x00040000	not perform the motion between teach points
		JUMP.)

LOGIC : JUMPDILOGIC

Designation	Value	Function
LEVEL_ON	0x00000100	DI condition is established when designated bit input is 1.
LEVEL_OFF	0x00000200	DI condition is established when designated bit input is 0.
	0×00000400	DI condition is established when designated bit
EDGE_ON		input is changed from 0 to 1.
	000000000	DI condition is established when designated bit
EDGE_OFF	000000000000000000000000000000000000000	input is changed from 1 to 0.

REFFERENCE DI : DIOKIND

Designation	Value	Function
DIO_INTERNAL	0x00000000	DI condition test is performed in the system DI.
DIO_EXTERNAL	0x00000001	DI condition test is performed in the extension DI.

One teach data can obtain plural JUMP conditions. But, one JUMP condition cannot be obtained by plural teach data. For this reason, the same JUMP condition number 1 of two different teach data "Key" is recognized as a completely different one.

(4) Teach Point Control

How to control teach data in the motion control program:

One teach data consists of plural teach points. Here it is shown how each point composes teach data.

•Teach data consists of six teach points.

•Three of these points have circle or arc attribute.

Remark

Teach data control provides address data of before/after teach point to create smooth motion between points. On this address data, for top teach point, the prior point address is 0. For the last teach point, the next point address is 0.

On circle and arc, to pass through the second and third teach point, these are linked adjacent to the first point.

The current teach point can be set at the top and the last teach point, or at the place indicated with \Box

(For this reason, the circle and arc second and third point cannot be the current point.)

(5) Teach Data Control

Plural teach data is controlled by "teach data control list" as follows:

If there is no next list, "0" is set.

Teach data control data	
Next list address	

Teach data numbers, able to be controlled by teach data control list, are not particularly defined. As far as memory space allows, plural teach data can be created.

List control data:

DATA	DETAILS
Numbers of teach data	Indicates how many teach data (not teach point) is controlled
Active teach data (ARM 0)	Teach data related to ARM 0 motion.*
Active teach data (ARM 1)	Teach data related to ARM 1 motion.*

*In active teach data, the same teach data can be obtained by ARM 0 and ARM 1.

Teach data control data:

DATA	DETAILS
Teach data "Key"	The control number for teach data manages not to let
	each teach data overlap.
Numbers of teach data	Numbers of teach point retained by this teach data.
Top teach point	Teach point indicating the top position in the teach data.
Last teach point	Teach point indicating the last position in the teach data.
Current teach point	Teach point indicated currently by the program in the
	teach data.
Temporary teach point	Supplemental area used for teach data research, etc.
JUMP data control address	It is the top in JUMP data list and is incidental to teach
	data.

To control each teach data, it is needed to have some information to not let each teach data overlap. This non-overlap data is called "teach data Key." Teach data "Key" is 32 bit integer. But, for practical use, only a positive value can be used.

6. 10. 2 Teach Data Operation

Some libraries for teach data operation are as follows:

Teach data operation library:

Pointer operation	
Active teach data "Key" alteration	pa_chg_key
Current point alteration at the teach point	pa_chg_pnt

Addition

Active teach data "Key" addition	pa_act_pnt
Teach point addition	pa_add_pnt

Deletion

Active teach data deletion	
Current teach point deletion	pa_del_pnt
Project deletion	
JUMP data deletion	pa_del_jmp

Replacement

Current teach data replacement	pa_rpl_pnt

Active teach data "Key" point:

Among plural teach data, the one indicated by the active teach data "Key" point is the active teach data one.

All teach data operation (acquisition, deletion and replacement) and playback control are performed for active teach data.

Teach point:

A teach point indicated by teach point pointer is called a current point.

All teach data operation (acquisition, deletion and replacement) and playback control are performed for teach point data indicated by this teach pointer.

Teach pointer is automatically renewed when:

- •After acquiring teach data.
- •when in playback control.
- •After deleting teach data (deleting current point.)

6. 10. 2. 1 Current Point Alteration

(1) Active teach data alteration

Among plural teach data, to choose the teach data intended to work, the active teach data has to be altered as follows:

Active teach data alterat	ion :	pa_chg_key
---------------------------	-------	------------

De	signation		Instructions
Active	teach	data	The teach data retaining the designated teach data "Key"
alteration			is defined as the active teach data.
			Important exception:
			Teach data is usually created from 1. If teach data is
			newly created, active teach data has to be set 0. Later
			on, if teach data is acquired, the motion control creates
			teach data "Key" which does not overlap with this
			acquired one (one point teach data). Then, it is added to
			the teach data control list.

(2) Current teach data alteration

If each teach point attribution is altered or intending to designate playback starting point, its operation has to be performed after altering the current teach point. Methods to alter the cuurent teach point are as follows:

(With the current teach point alteration, the real machine cannot be actualized. Also, this teach point cannot be changed during playback performance.)

On the current point shifting, for parameter: "PNTMOVE" of "pa_chg_pnt", there are the following types:

Designations	Details
PM_TOP	Teach point placed at the top of teach data is defined as the
(Top teach point)	current teach point.
PM_BTM	Teach point placed at the bottom of teach data is defined as
(Last teach point)	the current teach point.
PM_NEXT	Teach point placed next to the current teach point is defined
(Next teach point)	as the current teach point.
PM_PRIV	Teach point placed prior to the current teach point is defined
(Prior teach point)	as the current teach point.
PM_JMP	Teach point retaining the designated teach point ID is defined
(Designated ID)	as the current teach point.
(Designated	Teach point retaining the designated comment is defined as the
comment)	current teach point.

Current teach point alteration : pa_chg_pnt(, PNTMOVE,)

<<Current Teach Point Alteration>>

Now, the teach point is at <2>. Here, if the command is issued in the next parameter, the current pointis moved to \rightarrow < >.

(a) PM_TOP	: to Top Data	→ <1>
(b) PM_NEXT	: to the next data of the current point.	→<3>
(c) PM_PRIV	: to the prior data of the current point	→<1>
(d) PM_BTM	: to the last data	→ <n></n>
(e) PM_JMP	: to the designated number by .jmp jmp=4	→<4>
(f) PM_CIR	: the circle teach data first placed from the curre	ent
	point in forward direction	→<9>
(g) PM_ARC	: the arc teach data first placed from the current	
	point in forward direction	$\rightarrow \langle 5 \rangle$

6. 10. 2. 2 Teach Point Addition

For teach point acquisition one of following methods has to be employed:

Teach point addition	:	pa_add_pnt(,PNTTYPE)
----------------------	---	-------------	-----------

Designation	Details
PTP- axis attribute addition	Adds teach data with each axis attribute in PTP.
PTP- axis attribute insertion	Inserts teach data with each axis attribute in PTP.
PTP-RMRC attribute addition	Adds teach data with RMRC straight-line attribute
	in PTP.
PTP-RMRC attribute insertion	Inserts teach data with RMRC straight-line
	attribute in PTP
PTP- Circle 1 st point addition	Adds teach data with RMRC circle attribute in
	РТР
PTP- Circle 2 nd point addition	If the current teach point has circle attribute,
	creates the second point in the circle /arc link
	area of its teach point.
PTP- Circle 3 rd point addition	If the current teach point has circle attribute,
	creates the third point in the circle /arc link area
	of its teach point.
PTP- Arc 1 st point addition	Adds teach data with RMRC arc attribute in PTP.
PTP- Arc 2 nd point addition	If the current teach point has arc attribute,
	creates the second point in the circle /arc link
	area of its teach point.
PTP- Arc 3 rd point addition	If the current teach point has arc attribute,
	creates the third point in the circle /arc link area
	of its teach point.
PTP-RMRC attribute addition (with NOA)	Acquires also NOAP data, when adding PTP -
	RMRC attribute.
PTP-RMRC attribute insertion (with NOA)	Acquires also NOAP data, when inserting PTP -
	RMRC attribute.
PTP- Circle 1 st point addition (with NOA)	Acquires also NOAP data, when adding PTP - circle 1 st point.
PTP- Circle 2 nd point addition (with NOA)	Acquires also NOAP data, when adding PTP – circle 2 nd point.
PTP- Circle 3 rd point addition (with NOA)	Acquires also NOAP data, when adding PTP – circle 3 rd point.
PTP- Arc 1^{st} point addition (with NOA)	Acquires also NOAP data, when adding PTP – arc 1^{st} point.
PTP- Arc 2 nd point addition (with NOA)	Acquires also NOAP data, when adding PTP – arc 2 nd point.
PTP- Arc 3^{rd} point addition (with NOA)	Acquires also NOAP data, when adding PTP – arc 3^{rd} point.

*"addition" and "insertion" meanings in the chart:

Addition - creates new teach point after the current teach point.

Insertion - creates new teach point before the current teach point.

If a current teach point does not exist, only, a new teach point is created.

6. 10. 2. 3 Teach point (Teach data) Deletion

(1) Teach point (teach data) Deletion

Teach point and teach data deletion are provided.

Teach point	(teach data)	Deletion	:	padelpnt(PNTDEL)
r caon poinc		Dolocion		pa_aoi_pric (

Designations	Instructions
PD_CUR	Deletes the current teach point.
(Teach point deletion)	
PD_ALL	Deletes the active teach data. If the active teach data is deleted,
(Teach data deletion)	active teach data number becomes the top point in the first
	discovered teach data. To activate other remaining teach data,
	the active teach data has to be altered.
PD_ALLDATA	Deletes all teach data (project.)
(Project deletion)	

(2) JUMP data delition

JUMP data deletion has two ways: the teach data and JUMP data deletions. Each is performed to the active teach data.

JL	JMP	data	delition	:	pa_del_jmp
----	-----	------	----------	---	------------

Designations	Instructions			
Teach data deletion	Delets the active teach data. Therefore, all JUMP data			
	incidental to the active teach data are deleted.			
JUMP data deletion	Designates JUMP condition number (JUMP data) incidental to			
	the active teach data, then, deletes it.			

6. 10. 3 Moving to the current point (teach point)

Before starting playback, it is needed to adjust the current point and the arm position. This is called the "current teach point shifting motion." Current teach point shifting motions are as follows:

Current teach point shifting motions

Designations	Instructions		
Axis shifting motion	Current teach point and arm position are adjusted through		
:pa_axs_pnt	interpolation processing using current ideal target angle and angle attribute inside teach data. For PTP data (with NOA), this method cannot be employed to operate. (Angle data is not reliable as the data is automatically created at the upper point.)		
RMRCshifting motion	Current teach point and arm position are adjusted through		
:pa_mov_pnt	interpolation processing using the position/orientation		
	calculated from current ideal target angle and angle attribute		
	inside teach data.		

RMRC shifting motion is controlled by RMRC. If the current position out of moving range or E1 axis angle is 0, RMRC control cannot be performed. First, move to RMRC control area, then, issue.

6. 10. 4 Playback motion (step operation) start

Four methods for a playback control (check-up operation) start are as follows:

Designations	Instructions		
PB_FORES	Motion is created using teach point attributes (velocity,		
(Forward step operation)	velocity pattern etc.) of the current teach point, from the		
	current teach point to the next one.		
	When this motion is completed, the current teach point is		
	changed to the next one.		
PB_BACKS	Motion is created using teach point attributes (velocity,		
(Reverse step	velocity pattern etc.) of the prior teach point from the current		
operation)	teach point to the prior one.		
	When this motion starts, the current teach point is changed to		
	the previous one.		
PB_FORE	Motion is created backwards from the current teach point.		
(Forward consecutive	This motion continues until returning again to the top teach		
operation)	point after passing through at certain designated times. The		
	current teach point is changed every time when the teach		
	point is passed through while in motion.		
	For example, if teach points are (1) , (2) and (3) , the current		
	point is (1) , the designated time is once:		
	(1-2-3-1)		
	if the designated times are twice:		
	(1-2-3-(1-2-3-(1-2)-3))		
	if the current teach point is (2) and the designated times are		
	twice:		
	2 - 3 - 1 - 2 - 3 - 1		
	(ATTENTION! The top (1) point is passed through only once.)		
	Teach data playback is always completed at the top teach		
	point. For more, refer to "JUMP rule" in the section 8.8.		
PB_BACK	Playback is performed with forward consecutive operation		
(Forward check-up	from the current teach point to the last teach point. If		
operation)	JUMP condition is established, not only JUMP performs, but		
	also this operation is completed at the last teach point of		
	each teach data.		

Playback starting methods : pa_ply_pnt(,PLAYBACK,,)

6. 11 Playback Control

Playback controls according to teach points are as follows:

- •Playback straight line interpolation control employing PTP straight line interpolation data
- ·Playback arc interpolation control employing PTP arc interpolation data
- •Playback circle interpolation control employing PTP circle interpolation data
- •Playback axis interpolation control employing PTP axis interpolation data

6. 11. 1 PTP straight line interpolation data and playback control

When teach data is acquired, if PTP straight line interpolation data is chosen, teach data is memorized as PTP straight line interpolation data.

Playback control of PTP straight line interpolation data is RMRC feedback control. Between two PTP straight line interpolation data, the tip is interpolated linearly.

Example: for Visual C++

Example: for Visual BASIC

Dim ret As Long
 :
ret = pa_add_pnt(ARM0,PT_PTP)
 :
ret = pa_add_pnt(ARM0,PT_PTP)
 :
ret = pa_chg_pnt(ARM0,PM_TOP,0)
ret = pa_mov_pnt(ARM0,WM_WAIT)
ret = pa_ply_pnt(ARM0,PB_FORE,WM_WAIT)

6. 11. 2 PTP arc interpolation data & playback control

When in acquisition, if teach data type arc is designated, it is memorized as PTP arc data.

PTP arc data:

PTP arc 1st point data :<P1> PTP arc 2nd point data:<P2> PTP arc 3rd point data:<P3> These three constitute one block.

In playback control, the tip is interpolated to create the arc trajectory passing through three points. The motion direction is from $\langle P1 \rangle$ to $\langle P2 \rangle$, then, $\langle P3 \rangle$. From $\langle P1 \rangle$ to $\langle P3 \rangle$, this interval is interpolated equally for orientation.

Example: for Visual C++

Example: for Visual BASIC
Dim ret As Long
ret = pa_add_pnt(ARM0,PT_ARC1)
ret = pa_add_pnt(ARM0,PT_ARC2)
ret = pa_add_pnt(ARM0,PT_ARC3)
:
ret = pa_chg_pnt(ARM0,PM_TOP,0)
ret = pa_mov_pnt(ARM0,WM_WAIT)
ret = pa_ply_pnt(ARM0,PB_FORE,WM_WAIT)

6. 11. 3 PTP circle interpolation data & playback control

When in acquisition, if circle is designated for teach data type, it is memorized as PTP circle data.

PTP arc data:

PTP circle 1st point data :<P1> PTP circle 2nd point data:<P2> PTP circle 3rd point data:<P3>

These three constitute one block.

In playback control, the tip is interpolated to create the circle trajectory passing through three points. The motion direction is from $\langle P1 \rangle$ to $\langle P2 \rangle$, then, $\langle P3 \rangle$. Posture is fixed at $\langle P1 \rangle$ orientation.

6. 11. 4 PTP axis interpolation data & playback control

When teach data is acquired, if PTP axis interpolation data is chosen, teach data is memorized as PTP axis interpolation data. Playback control of PTP axis interpolation data is axis angle feedback control. Between adjacent PTP axis interpolation data, each axis angle is interpolated.

NOTE:

As an example, if teach data consisting of PTP axis interpolation data for two points is acquired:

 1^{st} point target axis angle : T1[7] 2^{nd} point target axis angle : T2[7]

When moving to the 1^{st} point, if RMRC control is employed, the tip position/orientation matches the 1^{st} point target tip position/orientation. But, The possibility for each axis angle to match is low. (This is the difficulty of the 7-axis manipulator control.)

To summarize, when arm arrived at 1^{st} point, each axis angle cannot match T1[7]. Taking into account of such case, interpolation in axis angle feedback control calculates the target angle every sampling moment interpolating the current axis angle and the next target axis angle (T2[7]).

Interpolation processing with axis angle feedback control in the playback control, has a slight difference from the method explained in the section 3.3.

In the section 3.3, the maximum interpolation number is obtained as the result of dividing each axis angle deviation by each axis default velocity (θ i) of 7 axes. Then, interpolation processing is performed.

Regarding the axis angle control in playback control, only one axis default velocity can be memorized as teach data. For this reason, all 7 axes are interpolated using one axis default velocity (default = 2π [rad/sec]).

6. 11. 5 Playback control with teach data and other types.

As described before, there are four teach data types.

The following explains t playback control type to be performed If these four data are put together to employ:

1 If PTP straight line and PTP axis interpolation data are put together to employ:

When PTP straight line and PTP axis interpolation data are adjacent, here is how to know which is RMRC feedback control or axis angle feedback control:

Teach data

O:PTP straight line interpolation data

• : PTP axis interpolation data

Trajectory

:RMRC (feedback) control [includes position/orientation interpolation] :Axis (feedback) control [includes axis interpolation]

Data to stop arm motion with step transmission (forward step, reverse step).
Feedback control system depends on an early number data type as follows:

In this system, forward and reverse obtain the same result.

(2) If circle and arc are together to employ:

Here, how the arm stops if step transmission (pa_ply_pnt(ARM0, PB_FORES or PB_BACKS, WMWAIT) is performed when PTP circle and arc interpolation data are together to employ:

 \mathbb{H}^2 : Data to stop arm motion with step transmission

6. 11. 6 Differences between current point operation and playback control

Here are the differences when the current point is operated with pa_chg_pnt - without moving arm - and when the current point is operated with pa_ply_pnt - moving arm-.

If the current point is operated with •pa_chg_pnt:

As described before, the only number (closed with $\langle \rangle$) being able to be the current point can be changed. To summarize, after changing the current point with pa_chg_pnt, motion control (pa_mov_pnt, pa_axs_pnt) is performed to the current point. Data to stop arm are the only ones where flags are located below.

If the current poimt is operated with forward and reverse step of •pa_ply_pnt.

Playback step control

pa_ply_pnt(ARM0, PB_FORES, WM_WAIT) :forward
pa_ply_pnt(ARM0, PB_BACKS, WM_WAIT) :reverse
Arm motion can be stopped only by data where flags are located.

Difference whether the circle and arc can be stopped at the last data or not. With this difference the following happens:

The arc is stopped at teach data 3.Current point <3>Issuing "pa_ply_pnt(ARM0, PB_FORES, WM_WAIT" three times.Arm is moved toteach data 7.Current point <7>

•After issuing "pa_chg_pnt(ARM0, PM_PRIV, 0)" (the current point is returned to the prior teach data.) or "pa_chg_pnt(ARM0, PM_JMP, 4)" (the current point is changed to the teach data 4), if arm is moved to the current point with "pa_mov_pnt, pa_axs_pnt":

Arm is stopped at the teach data 4. (arc 1^{st} point)

•If "pa_ply_pnt(ARM0, PB_BACKS, WM_WAIT)" (reverse step) is issued:

Arm is stopped at the teach data 6. (arc 3^{rd} point)

Remark

For circle, the same result is obtained.

6. 11. 7 JUMP rule

When playback is performed, the method to make the arm move between two data not directly linked as teach data, is called "JUMP rule." JUMP rule can be broadly divided in two. "Tacit JUMP": the one not needing JUMP condition. "Conditional JUMP": the one needing JUMP condition.

1 Tacit JUMP

"Tacit JUMP" interpolates an interval between the last and the top teach point only in forward motion and actuates the arm. (The last and the top teach point described here are located inside the same teach data "Key".) Teach data is never automatically changed by teach data "Key." This means: the end of playback performance always comes to the top teach point when in playback forward motion (Designated times are performed.)

For this case, the control method, motion velocity and velocity pattern employ the last teach data.

2 Conditional JUMP

With JUMP condition inside teach data, teach data route is altered by force. This method interpolates teach data commanded from the current teach point, or interval between two teach points with ID designating Key. A playback route can be controlled by inputting DI on account of employing this conditional JUMP.

Remark

If "tacit JUMP" and conditional JUMP are employed together, the following set-back occurs:

Creating JUMP condition for the teach data "Key 2" (designated ID), inside the teach data "Key 1," if no JUMP condition is set inside the teach data "Kwy 2," motion is as follows:

Playback forward consecutive motion starts from teach data "Key1". ↓ JUMP to teach data "Key 2" (designated ID) with JUMP condition ↓ (Conditional JUMP processing) Playback teach data "Key 2". ↓ Arrival to the last teach point of teach data "Key 2". ↓ (Tacit JUMP) Playback from the top of teach data "Key 2".

As long as JUMP condition is not clearly designated, JUMP processing is not reversed from teach data "Key 2" to teach data "Key 1".

6. 12 Tip offset control

Method control to input offset value to the original playback trajectory when in RMRC control during playback control.

Tip offset control can be divided broadly in two as follows:

· Coordinate conversion matrix control Parallel motiom conversion matrix control Rotational motiom conversion matrix control Work coordinate system conversion matrix control • Tip position offset control Mechanical interface coordinate system Absolute deviation offset control Mechanical interface coordinate system Relative deviation offset control Base coordinate system Absolute deviation offset control Base coordinate system Relative deviation offset control Trajectory coordinate system Absolute deviation offset control Trajectory coordinate system Relative deviation offset control Memo

Trajectory coordinate system means the one on the playback tip trajectory.

6. 12. 1 Coordinate conversion matrix control

There are three coordinate conversions as follows:

(a) parallel motion:Add offset ($\Delta X, \ \Delta Y \ \text{and} \ \Delta Z)$ to teach data.

: Parallel motion conversion matrix

- (b) Rotational motion : Add offset (Δ Yaw, Δ Pitch and Δ Roll) to teach data. : Rotational motion conversion matrix
- (c)Coordinate conversion:Replace data of teach data coordinate system on the work coordinate system.

:Work coordination conversion matrix

Memo

(a) and (b) are respectively explained here. If T-matrix including offset of both parallel and rotational motion is changed to conversion matrix, parallel and rotational motion can be performed simultaneously.

(a) Parallel motion conversion control

Parallel motion is performed through multiplying tip position/orientation (T-matrix) of playblack trajectory created from teach data by the conversion matrix including offset value (toward V, Y and Z) of the base coordinate system.

Program description:

2 Sets parallel motion conversion matrix. : pa_set_mtx

Creates T-matrix adding offset (ΔX , ΔY , ΔZ) toward X, Y and Z in the base coordinate system. Unit is [mm].

$$T = \left(\begin{array}{c} 1 & 0 & 0 & \Delta X \\ 0 & 1 & 0 & \Delta Y \\ 0 & 0 & 1 & \Delta Z \end{array} \right)$$

(4) Starts playback control. : pa_ply_pnt

```
Example: for Visual C++
```

..

```
MATRIX
               mat;
int
             ij;
       ÷
pa_add_pnt(ARM0, PT_PTP);
                                      PTP linear interpolation data acquisition
       :
pa_add_pnt(ARM0, PT_PTP);
                                      PTP linear interpolation data acquisition
for(i=0;i<3;i++){
      for(j=0;j<3;j++){
            if(i==j)
                      mat[i][j] = 1.0;
                       mat[i][j] = 0.0;
            else
      }
}
mat[0][3] = 250.0;
                                               \Delta X = 250.0
mat[1][3] = -100.0;
                                                \Delta Y = -100.0
mat[2][3] =
               0.0;
                                               \Delta Z = 0.0
pa_set_mtx(ARM0, mat);
                                               Conversion matrix setting
pa_chg_pnt(ARM0, PM_TOP, 0);
                                               Current point alternation
pa_mov_pnt(ARM0, WM_WAIT);
                                      Moves to the current point.
pa_ply_pnt(ARM0, PB_FORE, WM_WAIT);
                       Playback control starts
         (Parallel motion conversion matrix control is performed.)
```

```
Example: for Visual BASIC
```

```
Dim ret As Long
Dim i As Integer
Dim j As Integer
Dim mat(3,2) As Single
         1
ret = pa_add_pnt(ARM0, PT_PTP)
         1
ret = pa_add_pnt(ARM0, PT_PTP)
For i=0 To 2 Step 1
      For j=0 To 2 Step 1
         If i = j Then
                  mat(ij) = 1.0
         Else
                  mat(i,j) = 0.0
         End If
      Next j
Next i
mat(3,0) = 250.0
mat(3,1) = -100.0
mat(3,2) =
             0.0
ret = pa_set_mtx(ARM0, mat(0,0))
ret = pa_chg_pnt(ARM0, PM_TOP, 0)
ret = pa_mov_pnt(ARM0, WM_WAIT)
ret = pa_ply_pnt(ARM0, PB_FORE, WM_WAIT)
```

(b)Rotational motion conversion matrix control

Rotational motion is performed through multiplying tip position/orientation (T-matrix) of playblack trajectory created from teach data by conversion matrix including rotation offset value (on V, Y and Z axis) of the base coordinate system.

Program description:

2 Sets rotational motion conversion matrix. : pa_set_mtx

Creates conversion matrix (T-matrix) adding rotation offset (Δ Yaw, Δ Pitch and Δ Roll) on X, Y and Z axis in the base coordinate system.

3 Moves the current point to the top teach da	t <u>a.</u> :	pa_chg_pnt
		pa_mov_pnt (or pa_axs_pnt)

(4) Starts playback control. : pa_ply_pnt

```
Example: for Visual C++
```

```
MATRIX
           mat;
int
             i;
           2
pa_add_pnt(ARM0, PT_PTP);
                                PTP linear interpolation data acquisition
pa_add_pnt(ARM0, PT_PTP);
                                PTP linear interpolation data acquisition
for(i=0;i<3;i++) mat[i][3] = 0.0;
       T-matrix (noa section) creation
            1
         pa_set_mtx(ARM0, mat);
                                         Conversion matrix setting
pa_chg_pnt(ARM0, PM_TOP, 0); Current point alternation
pa_mov_pnt(ARM0, WM_WAIT);
                                 Moves to the current point.
pa_ply_pnt(ARM0, PB_FORE, WM_WAIT);
            Playback control satrts
          (Rotational motion conversion matrix control is performed.)
```

Example: for Visual BASIC

```
Dim mat(3,2) As Single
Dim i As Integer
Dim ret As Long
:
ret = pa_add_pnt(ARM0, PT_PTP)
:
ret = pa_add_pnt(ARM0, PT_PTP)
For i=0 to 2 Step 1
mat(3,I) = 0.0
Next i
ret = pa_set_mtx(ARM0, mat(0,0))
ret = pa_chg_pnt(ARM0, PM_TOP, 0)
ret = pa_mov_pnt(ARM0, PM_TOP, 0)
ret = pa_ply_pnt(ARM0, PB_FORE, WM_WAIT)
```

(c)Coordinate conversion matrix control

Providing two matrixes: work coordinate and teach data coordinate matrix, the trajectory in the teach data coordinate system is converted to the one in the work coordinate system.

Teach data coordinate system $[N_dO_dA_dP_d]$: Teach data acquisition coordinate system Work coordinate system $[N_cO_cA_cP_c]$: Actual work coordinate system

Teach data coordinate system

Base coordinate system

To convert the tip position/orientation [NOAP] of playback trajectory created from teach data, into the work coordinate position/orientation [NOAP'], the deviation in teach data coordinate is replaced to the one in the work coordinate.

A set value is indicated with absolute position matrix [P] and orientation matrix [NOA]. Only P is designated with a unit [mm]. As [NOA] is vector, it does not have a unit. For a set value, the current set conversion matrix is indicated as a default value. For resetting, a unit matrix has to be set for both absolute position matrix [P] and

	1	0	0	0
[]]=	0	1	0	0
[1]	0	0	1	0
				_

orientation matrix [NOA]..

For a set [NOA] matrix, the following checks are performed:

•Each N, O and A vector have to be a unit vector.

 $\boldsymbol{\cdot} A$ vector has to be a cross product of N and O vector.

(N, O and A have to be a vector crossing each other at the right angle.)

Program description:

1 Acquires playback teach data. :pa_add_pnt

② Sets T-matrix (=mat1) of teach data coordination system and T-matrix (=mat0) of work coordination system.

: pa_set_mat

Creates T-matrix (=mat1) of teach data coordination system and T-matrix (=mat0) of work coordination system.

3 Moves the current point to the top teach data. : pa_chg_pnt

pa_mov_pnt

(or pa_axs_pnt)

(4) Starts playback control. : pa_ply_pnt

Example: for Visual C++ MATRIX mat0, mat1; pa_add_pnt(ARM0, PT_PTP); PTP linear interpolation data acquisition pa_add_pnt(ARM0, PT_PTP); PTP linear interpolation data acquisition (Work coordinate matrix creation :mat0) (teach data coordinate matrix creation: mat1) pa_set_mat(ARM0, mat0, mat1); Conversion matrix setting pa_chg_pnt(ARM0, PM_TOP, 0); Current point alternation pa_mov_pnt(ARM0, WM_WAIT); Moves to the current point. pa_ply_pnt(ARM0, PB_FORE, WM_WAIT); Playback control starts (Coordinate conversion matrix control is performed.)

Example: for Visual BASIC

6. 12. 2 Tip position offset control

Method to control arm providing offset value in actual time in RMRC feedback control. If brake-stop or feedback control is performed, offset cannot be added.

What is in RMRC feedback control:

- •RMRC feedback control servo lock status
- •When in playback control.(except PTP axis interpolation data)
- •When in RMRC control motion to the current point.
- •Waiting status for playback start

There are three coordinate systems able to input offset value. For each of them, absolute addition and relative addition are provided.

Memo Trajectory coordinate system means the one on the playback tip trajectory. Further, more is explained later.
Absolute deviation

If offset is issued, offset value is added on the basis of playback trajectory.

Relative deviation

If offset is issued, offset value is added to the trajectory having previously added some offset value.

Offset Pool method:

Either absolute or relative deviation offset, offset value has a limit to be added, if needed, in every cycle. Therefore, the method adopted is: to set the offset limit value added in every cycle, creating offset pool, add the provided offset value little by little in several cycle.

For example, setting a limit value (5.0 mm) when in offset addition with absolute

deviation offset control (the base coordinate system), offset value (toward X +100.0mm) is provided.

Adding offset (5.0mm toward X in every cycle), at the twentieth cycle, it reachs 100.0 mm toward X.

«On absolute and relative deviation offset control in the trajectory coordinate system»

Method to control adding offset value for playback trajectory coordinate system. The playback trajectory coordinate system is changeable depending on data. Therefore, the method adopted here is the provided offset value, using trajectory coordinate, when in adding offset, converts to non changeable base coordinate, then, makes an addition to the base coordinate system.

How to create playback trajectory coordinate system:

Three teach points of PTP linear interpolation data are defined as P1, P2 and P3

- <Trajectory coordinate system 1 (x_{w1}, y_{w1}, z_{w1}) from the 1st point P1 to the 2nd point P2> The direction created by linking linearly from the 1st point P1 to the 2nd point P2 is the direction of trajectory coordinate system 1 (x_{w1}, y_{w1}, z_{w1}). Solve the direction of trajectory coordinate y_{w1} through calculating the direction of mechanical interface coordinate 1 and vector product of x_{w1} direction. Finally, Solve trajectory coordinatez_{w1} from calculatedx_{w1} and y_{w1} direction.
- <Trajectory coordinate system 2 (x_{w2}, y_{w2}, z_{w2}) from the 2nd point P2 to the 3rd point P3> Likewise, the direction created by linking linearly from the 2nd point P2 to the 3rd point P3 is the direction of trajectory coordinate system 2 (x_{w2}, y_{w2}, z_{w2}). Solve the direction of trajectory coordinate y_{w2} through calculating the direction of mechanical interface coordinate 1 and vector product of x_{w2} direction. Finally, Solve trajectory coordinatez_{w2} from calculatedx_{w2} and y_{w2} direction.

Program description:

① Starts playback control. :pa_ply_pnt

The tip position offset control is available only for the teach data able to control RMRC feedback.

2 Sets a limit value when in offset value addition. :pa_lmt_xyz

Sets offset limit value being added in every cycle, with a [mm] unit. The upper limit value is 1/100 (one hundredth) of linear limit velocity [mm/sec]. Its unit is [mm/10msec]. If this value is exceeded, the following warnings occur. The limit value is replaced with the upper one.

 $\ensuremath{\mathsf{ERR_MIS_PARAM}}$ –1051 the designated parameter value exceeds the setting range.

3 Sets offset value and coordinate adding tip position offset. : pa_odr_xyz

With "trans.Enable" of TRNSMAT structure (TRANSMAT trans) of "pa_odr_xyz", sets the designated coordinate and mode (absolute and relative deviation).

For this example, with the base coordinate system absolute deviation offset control, offset 10 mm toward X and 25 mm toward Z are added.

for Visual C++ trans.Enable = MODE_XYZ; trans._XYZ[0] = 100.0; trans._XYZ[1] = 0.0; trans._XYZ[2] = 25.0;

Example: for Visual C++

```
TRANSMAT trans;
long
             data;
                1
pa_ply_pnt(ARM0, PB_FORE, WM_NOWAIT);Playback control starts
data = 5.0;
                           Limit value when in offset addition = 5.0[mm]
                           Limit value setting when in offset addition
pa_lmt_xyz(ARM0, data);
trans.Enable = MODE_XYZ; Base coordinate system absolute deviation selection
trans._XYZ[0] = 100.0;
                                    Offset value toward X = 10.0[mm]
trans._XYZ[1] = 0.0;
                                    Offset value toward Y = 0.0[mm]
trans._XYZ[2] = 25.0;
                                    Offset value toward Z = 5.0[mm]
pa_odr_xyz(ARM0, &trans);
                                    Offset value setting
                :
```

_ . _ . _ . _ . _ . _ . _ . _ .

Example: for Visual BASIC

```
Dim trans As TRANSMAT

Dim dat As Long

Dim ret As Long

:

ret = pa_ply_pnt(ARM0, PB_FORE, WM_NOWAIT)

dat = 5.0

ret = pa_lmt_xyz(ARM0, dat)

trans.Enable = MODE_XYZ3

trans.xyz21(0) = 100.0

trans.xyz21(1) = 0.0

trans.xyz21(2) = 25.0

ret = pa_odr_xyz(ARM0, trans)

:
```

«Offset trajectory if PTP axis interpolation data is included in teach data»

As described before, offset control is available when in playback during RMRC feedback control. At brake-stop status, when in playback during axis feedback control, offset control is not available. Therefore, if PTP axis interpolation data is together with teach data, be aware: the trajectory after offset addition will be as follows:

If PTP axis interpolation data is included in teach data, between forward playback and reverse control, playback trajectory may be different after offset addition. With teach data including only PTP axis interpolation data, offset cannot be added.

	Forward playback	Reverse playback
Example 1	x x x o o o o o o o o o o	x x x o o o o o o o o o o o o o o o o o
Example 2		
Example 3		
Example 4		

- \times ... Teach data after offset value addition
 - ··· Teach data (PTP linear interpolation data)
 - ··· Teach data (PTP axis interpolation data)
 - ·· Playback trajectory + offset value (RMRC feedback control)
 - Playback trajectory

0

•

- ··· Playback trajectory + offset value (axis feedback control)
- Playback trajectory

6. 13 Cube Interference

(1)Cube interference area

Cube interference area is the function to prevent interference from surrounding machines and tools.

24 (twenty four) cube interference area can be set at maximum.

Cube interference area is set parallel to the base coordinate system.

If the arm interferes with the cube, this arm happens to be automatically in a brake-stop status. An error is indicated.

(2) Setting methods:

There are three ways to set cube interference area as follows:

① Input numerically the maximum/minimum value of cube coordinate.

② Move the manipulator to the cube maximum/minimum value position with the axis operation.

③ After numerically inputting the cube three side length (axis length), move the manipulator to the center poimt.

6. 14 Parameter setting

In the motion control section, arm parameter information is as follows:

The details can be seen from the operation control section with "pa_get_prm". But, It cannot be altered directly by a program. For alteration, use the operation support program (parameter setting).

Reference

This method can be referred to the operation support program (parameter setting) instructions.

WARNING If the parameter is altered except the marked ones, control cannot be guaranteed.

A	rm parar	neter out	line	
	Designations	Types	Config.	Details
• 1	PUL	float	[0-6]	S1 \sim W2 axis upper angle limit [rad]
* 1	PDL	float	[0-6]	S1 ~W2 axis lower angle limit [rad]
	VEL	float	[0-6]	S1~W2 axis velocity limit [rad/sec]
			[7]	Linear motion velocity limit [mm/sec]
			[8]	Rotational motion velocity limit [rad/sec]
\bullet	DEV	float	[0-6]	S1~W2 axis standard motion velocity [rad/sec]
\bullet			[7]	Standard Linear motion velocity [mm/sec]
\bullet			[8]	Standard rotational motion velocity [rad/sec]
	LIM	float	[0-6]	Teach modeS1~W2 axis velocity limit [rad/sec]
			[7]	Teach mode Linear motion velocity limit [mm/sec]
			[8]	Teach mode Rotational motion velocity limit [rad/sec]
\bullet	CEH	float	[0-6]	Teach mode S1~W2 axis fast motion velocity [rad/sec]
\bullet			[7]	Teach mode fast linear motion velocity [mm/sec]
\bullet			[8]	Teach mode fast rotational motion velocity [rad/sec]
\bullet	CEM	float	[0-6]	Teach mode S1~W2 axis mid motion velocity [rad/sec]
\bullet			[7]	Teach mode linear mid motion velocity [mm/sec]
\bullet			[8]	Teach mode rotational mid motion velocity [rad/sec]
\bullet	CEL	float	[0]	Teach mode S1~W2 axis slow motion velocity [rad/sec]
\bullet			[7]	Teach mode linear slow motion velocity [mm/sec]
\bullet			[8]	Teach mode rotational slow motion velocity [rad/sec]
	PG1	float	[0-2]	Robot coordinate RMRC control X, Y and Z direction gain
			[3-5]	Robot coordinate RMRC control X, Y and Z rotational
				direction gain
			[6]	Position control integral calculus gain
	PG2	float	[6]	S1~W2 axis control gain
	VG1	float	[0-2]	Tip coordinate RMRC control X, Y and Z direction gain (not
				used)
			[3-5]	Tip coordinate RMRC control X, Y and Z rotational
				direction gain (not used)
			[6]	Orientation control integral calculus gain
	TG1	float	[0-6]	Not used
	PCM	float	[0]	Angle control large size (S1, S2) motor angle deviation
				anomalous threshold value [rad]

[1]	Angle control mid size (S3, E1) motor angle deviation anomalous threshold value [rad]
[2]	Angle control small size (E2, W1, W2) motor angle deviation anomalous threshold value [rad]
[3]	RMR control position deviation anomalous threshold value [mm]
[4]	RMR control orientation deviation anomalous threshold value [mm]
[5]	SC method linear/rotational velocity limit coefficient (threshold value creation)
[6]	SC method axis velocity limit coefficient (threshold value creation)
	creation)

Arm parameter outlin	e
----------------------	---

	Designations	Types	Config.	Details		
•	FCM	float	[0]	RMRC control start-up time [sec]		
•			[1]	RMRC control shut-down time [sec]		
•			[2]	Axis control start-up time [sec]		
•			[3]	Axis control shut-down time [sec]		
			[4]	Direct control parameter (deceleration ratio)		
			[5]	Singularity caution W1 axis position		
			[6]	Singularity caution W1 axis position		
	ARL	float	[0-6]	Arm length (S1-S2) \sim (W2-Tool installment position) [mm]		
	ARG	float	[0-6]	Arm gravity center (S1-S2) ~ (W2-Tool installment position) [mm]		
	ARW	float	[0-6]	Arm weight $(S1-S2) \sim (W2-TOOL)[[kg]]$		
•	НОМ	float	[0-6]	Home position S1~W2 angle [rad]		
•	SAF	float	[0-6]	Safety position S1~W2 angle [rad]		
•	ESC	float	[0-6]	Escape position S1 \sim W2 angle [rad]		
•	TOL	float	[0-2]	Tool length X, Y and Z direction [mm]		
			[3-5]	Not used		
•			[6]	Tool offset [mm]		
	FVL	float	[0]	Position integral calculus element limit		
			[1]	Orientation integral calculus element limit		
			[2]	Taper rate when in singularity escape		
			[3-6]	Not used		
	DMY	long	[0-6]	Not used		
	SPA	long	[0]	Servo driver type * ²		
			[1]	Arm controller numbers ^{* 3}		
			[2]	Arm axis numbers ^{*4}		
			[3,4]	Not used		
			[5]	RETRAC parameter valid flag *5		
			[6]	RETRAC parameter adjustment mode flag ^{*6}		

^{*1} Within ranges shown in axis charts below, upper and lower angle limit can be set.

6−axis arm	S1	S2	S 3	E1	E2	W1	W2
Linn on Kinsit [do n]	177	124	Not	158	255	165	255
Opper minit [deg]			used				
Lower limit [doc]	-177	-64	Not	-107	-255	-165	-255
Lower limit [deg]			used				

7−axis arm	S1	S2	S3	E1	E2	W1	W2
Upper limit [deg]	177	94	174	137	255	165	255
Lower limit [deg]	-177	-94	-174	-137	-255	-165	-255

*² Servo driver type : New type servo =0, Old type 7-axis servo = 7, 8-axis servo = 8

 $^{\ast\,3}$ Possible arm controller numbers : usually 2 controllers

*⁴ Arm axis numbers :6-axis arm = 6, 7-axis arm = 7 (except 6)

 *5 RETRAC parameter valid/invalid:not used =0

(Only one arm can be used. When in valid, RETRAC initialization is processed.)

*6 RETRACadjustment mode : not used =0
 (It is needed for motion to create ROB and TOL file.)

6. 15 Error Information

Error information is broadly divided in two, as follows:

- \cdot Errors recognized by a PA library and a driver of the operation control section.
- •Errors recognized by the motion control section

If motion control recognizes an error, control status might be converted. More explanation, next page.

•PA library recognition errors;

Error No.	Details
-1	The specified file does not exist
-2	File read failure
-3	File write failure
-4	Failed to Interrupt into 486
-5	pa_opn_arm() not executed
-6	Memory allocation failure
-7	Parameters are not allowed to be modified while control
-8	A specified degree of Teaching data is out of range
-20	Designated arm not exist
-21	Designated axis not exist
-22	Designated driver not exist
-23	Incorrect mode of playback motion
-24	Wrong Teaching point deletion type
-25	Wrong modification type for Teaching point attribution
-26	Wrong attribution of registered point velocity profile
-27	Wrong data type for Teaching point
-28	Wrong Teaching point operation type
-29	Incorrect mode of default velocity change
-30	Wrong control mode type for velocity
-31	Wrong control mode type for redundant axis
-32	Wrong operation type for redundant axis
-33	Wrong control mode type for target tip matrix
-34	Wrong direct control type
-35	Wrong digital input/output port designation
-36	Wrong digital input/output channel designation
-37	The error code is not defined
-38	Wrong digital input/output board designation
-39	Wrong digital input/output DI or DO designation
-40	Project is not loaded

•WinRT (driver) recognition errors;

Error No.	Details
-100	Error occurred in WinRTUnMapMemory
-101	Error occurred in WinRTUnMapMemory2
-200	Error occurred in WinRTOpenNamedDevice
-201	Error occurred in WinRTGetFullConfiguration
-300	Error occurred in WinRTMapMemory
-301	Error occurred in WinRTMapMemory2

6. 15. 1 Status conversion outline when error occurs

For control section recognition error or control status conversion by warning, depending on a controller (motion control/servo driver) occurring (recognizing) error, the difference is as follows:

warning information →Control status continuing

Among errors recognized by the motion control section, one identified as "warning," can be controlled. The motion control might automatically change command value depending on the error, but, control continues.

•Error information (level 1) →Brake-stop (Communication status continuing)

Among errors recognized by the motion control section, one identified as "error (level 1)," cannot be controlled. The motion control sets the command (brake-on) to the servo driver, its control status shifts to a brake-stop. As the servo driver status is in control continuing communication, control commands can be issued at the remaining status.

•Error information (level 2) →Brake-stop (Communication-stop)

With an error recognized by a servo driver, the servo driver status shifts to "waiting." The motion control status shifts to brake-stop (communication-stop.) Before issuing control command, communication-start with a servo driver is needed.

Memo

Receiving communication-start command, the servo driver clears errors, then shifts to be in control.

(1) Warning information \rightarrow Control Status continuing

Warnings occurring in arm motion controller, are as follows:

Control status is not converted.

Error No.	Details
-1000	You are not allowed to access the controller
-1001	Format do not match with command
-1002	Unavailable command under the current mode
-1003	Command invalid
-1004	The specified arm No. does not exist
-1005	Download New ROB File
-1006	Download New TOL File
-1010	S1 axis exceeding speed limit
-1011	S2 axis exceeding speed limit
-1012	S3 axis exceeding speed limit
-1013	E1 axis exceeding speed limit
-1014	E2 axis exceeding speed limit
-1015	W1 axis exceeding speed limit
-1016	W2 axis exceeding speed limit
-1018	Exceeding tip position velocity limit
-1019	Exceeding tip orientation velocity limit
-1020	S1 axis exceeding safety angle
-1021	S2 axis exceeding safety angle
-1022	S3 axis exceeding safety angle
-1023	E1 axis exceeding safety angle
-1024	E2 axis exceeding safety angle
-1025	W1 axis exceeding safety angle
-1026	W2 axis exceeding safety angle
-1030	S1 axis exceeding the motion limit of the target angle
-1031	S2 axis exceeding the motion limit of the target angle
-1032	S3 axis exceeding the motion limit of the target angle
-1033	E1 axis exceeding the motion limit of the target angle
-1034	E2 axis exceeding the motion limit of the target angle
-1035	W1 axis exceeding the motion limit of the target angle
-1036	W2 axis exceeding the motion limit of the target angle
-1038	NOA calculation cannot be executed
-1039	Generation not allowed for keeping Teaching data sequence
-1040	Memory allocation failure
-1041	Prior procedure needed to issue this command
-1042	Wrong designation for circle or arc
-1043	Next pointer not exist
-1044	Previous pointer not exists
-1045	End of Playback Data
-1046	Playback data not existed
-1047	Failed to find playback data
-1048	Accepted as replace command
-1049	Accident of pointer management
-1050	Target value is out of control area. (Arm length is not enough.)

Error No.	details
-1051	Designated parameter exceeded available setting range
-1060	Designated NOA is not appropriate
-1061	End of CP Data is Retrieved as Each Axis Attribution
-1062	Exceeding RMRC controllable range
-1063	Not Available while retrieving CP Data
-1064	Exceeded max No. of interpolation
-1065	Can not generate circle or arc
-1070	S1 axis exceeding angle limit in velocity control
-1071	S2 axis exceeding angle limit in velocity control
-1072	S3 axis exceeding angle limit in velocity control
-1073	E1 axis exceeding angle limit in velocity control
-1074	E2 axis exceeding angle limit in velocity control
-1075	W1 axis exceeding angle limit in velocity control
-1076	W2 axis exceeding angle limit in velocity control
-1080	Too large or too small designated value
-1081	Can not approached by each axis control
-1098	Continuous operation not allowed in teaching mode
-1099	Changed into teaching mode by external operation
-1100	Teach lock can not be turned on except in teaching mode
-1101	Teaching data for specified key not exist
-1103	Cannot change the key of Teaching data
-1200	Interfere range specified No. error
-1201	Having another cube attribution, side length can not be set to this cube
-1202	Having another cube attribution, upper limit teach can not be given to this cube
-1203	Having another cube attribution, lower limit teach can not be given to this cube
-1205	Having another cube attribution, center value teach can not be given to this cube
-1206	Unknown cube parameter settings
-1207	Having another cube attribution, can not set the information to this cube
-1249	Wrong designating number of key acquisition
-1250	The Teaching data specified by Key doesn't have the specified ID attribute
-1251	Designated teaching point doesn't have JUMP data
-1252	The Teaching data specified by Key doesn't have the number's JUMP data
-1253	The Teaching point specified by ID attribute doesn't have JUMP data
-1254	JUMP data set in teaching point attribute not found
-1255	Wrong parameter for retrieving and setting JUMP data
-1256	Wrong parameter for retrieving and setting JUMP data
-1300	Socket generation failure
-1311	Failed to bind socket and address
-1312	Listen failure
-1313	Accept failure
-1314	Socket sending failure
-1315	Not used
-1316	Too many connected clients
-1350	The motion velocity of the parameter is exceeding the velocity limit. Invalid parameter

(2) Error Information (Level 1) \rightarrow Brake is active (Communication status continuing)

Errors occurring when in arm motion controller operation.

With an uncontrollable error, control status changes into a brake-stop status.

Error No.	Details
-2017	Exceeding RMRC controllable arm length during the motion
-2020	S1 axis exceeding axis limit angle
-2021	S2 axis exceeding axis limit angle
-2022	S3 axis exceeding axis limit angle
-2023	E1 axis exceeding axis limit angle
-2024	E2 axis exceeding axis limit angle
-2025	W1 axis exceeding axis limit angle
-2026	W2 axis exceeding axis limit angle
-2030	S1 axis exceeding angle limit in direct control
-2031	S2 axis exceeding angle limit in direct control
-2032	S3 axis exceeding angle limit in direct control
-2033	E1 axis exceeding angle limit in direct control
-2034	E2 axis exceeding angle limit in direct control
-2035	W1 axis exceeding angle limit in direct control
-2036	W2 axis exceeding angle limit in direct control
-2051	Can not turn into RMRC control from the current position
-2060	S1 resolver deviation error
-2061	S2 resolver deviation error
-2062	S3 resolver deviation error
-2063	E1 resolver deviation error
-2064	E2 resolver deviation error
-2065	W1 resolver deviation error
-2066	W2 resolver deviation error
-2070	Stopped automatically by exceeding checking time
-2071	Did not reach target value
-2080	S1 Axis Sync. Error (Exceeding deviation limit)
-2081	S2 Axis Sync. Error (Exceeding deviation limit)
-2082	S3 Axis Sync. Error (Exceeding deviation limit)
-2083	E1 Axis Sync. Error (Exceeding deviation limit)
-2084	E2 Axis Sync. Error (Exceeding deviation limit)
-2085	W1 Axis Sync. Error (Exceeding deviation limit)
-2086	W2 Axis Sync. Error (Exceeding deviation limit)
-2087	X axis synchronization error in RMRC control
-2088	Y axis synchronization error in RMRC control
-2089	Z axis synchronization error in RMRC control
-2090	Velocity deviation error
-2091	Tip orientation deviation error in RMRC control
-2100	Interfering to cube
-2200	Motion can not be continued or started at the arm singular point
-2201	Motion can not be continued or started at the arm singular point
-2202	Motion can not be continued or started at the arm singular point

(3) Error Information (Level 2) \rightarrow Brake is active (Communication terminated)

Errors occurring in arm servo driver. Control status changes into a brake-stop status.

Error No.	Details
-3000	Control not started
-3001	Emergency stop has been pressed
-3002	Arc net communication error
-3003	S1 limit switch error
-3005	Servo driver type doesn't match designated parameter
-3070	Communication integral servo (master) status error
-3071	Servo driver (S1) status error
-3072	Servo driver (S2) status error
-3073	Servo driver (S3) status error
-3074	Servo driver (E1) status error
-3075	Servo driver (E2) status error
-3076	Servo driver (W1) status error
-3077	Servo driver (W2) status error
-3091	Error at issuing communication/control start command
-3092	Error at issuing communication/ control terminate command
-3093	Error at issuing initializing command
-4000	Mode management error

Anomalous servo status is shown when occurring alarm is not 00H.

Reference

Refer to each servo status.

Communication control (master) CPU status:

bit		Movement when	
		in anomalous	
			status
15			
14	Control	1 : Non control mode	
14	Mode	O:Control mode	
10	Limit switch	1 : limit switch off	
13	status	O:limit switch on	
10	Switch status	1 : Switch on during teaching	
12	during teaching	O:Switch off during teaching	
		0x00 Normal	
		0x01	
		0x02 Anomalous EEPROM	Do not convert to
		0x03 Anomalous ARCNET initialization	control mode (*1)
11		0x04 Anomalous CPU	
	Occurring alarm	0x05 Anomalous upper controller	Converts to
		communication cycle	adjustment/ stop
4		0x06 Anomalous power supply temperature	mode. (*1)
		0x07 Anomalous 100V output	
		:	
		0x10 Anomalous other CPU	Converto to
		0x11 Emergency stop switch on	adjustment / step
		0x12 Dead man switch off	mode
		0x13 Limit switch on	
		:	
3	Emergency stop	1 : Emergency stop switch off	
0	switch status	O:Emergency stop switch on	
2	100V	1 : Generating 100V power	
2	generating status	O:Stop generating 100V power	
	power supply	1 : Anomalous power supply temperature	
1	temperature	O:Normal	
	status		
0	Dead man switch	1 : Dead man switch on	
	status	O:Dead man switch off	

(*1) If alarm at $0x02 \sim 0x07$ occurs in communication control CPU, it is different from any other CPU anomaly. Servo CPU instantly stops arm motion with "brake on/servo off."

bit	bit		
4.5	Servo	1:Servo OFF(Brake ON)	
15	ON/OFF	0:Servo ON(Brake OFF)	
	Control	1 : Non control mode	
14	Mode	0:Control mode	
13			
12			
		0x00 Normal	
		0x01 Anomalous shared memory	<u> </u>
		· · · · · · · · · · · · · · · · · · ·	Do not convert to
			control mode
		0x02 Anomalous EEPROM	
			Do not convert to
			control mode
		0x03	
		0x04 Anomalous CPU	
		0x05 Anomalous communication CPU	
		transmission cycle	
11	Occurring	0x06 Anomalous velocity deviation	
	alarm	0x07 Anomalous resolver deviation	Brake on∕servo off
4		0x08 Anomalous position limit exceeded	Brake on/servo off
		0x09 Anomalous motor torque	
		0x0A Anomalous IPM	
		0x0B Anomalous brake	
		severance/short-circuit	
		0x0C Anomalous resolver (motor side)	
		severance/short-circuit	
		0x0D Anomalous resolver (gear side)	
		severance/short-circuit	
		0x0E Anomalous overcurrent	
		0x0F Anomalous overvelocity	
		0x10 Anomalous different CPU	
		0x11 Emergency stop switch on	Servo lock when in
			anomaly occurrence,
		0x12 Dead man switch off	After a certain time,
			brake-on.
		0x13 Limit switch on	After a certain time,
			servo-off.
		0xFF Anomalous communication cycle (*1)	
3			
2			
	Forbidden	1 : Angle – side limit operation	forbidden
1	status		– side drive
	– side drive	O:Normal	
	Forbidden	1 : Angle + side limit operation	forbidden
0	status		+ side drive
	+ side drive	O:Normal	

Servo	driver	(S1	\sim	W2)	status:
-------	--------	-----	--------	-----	---------

(*1) Anomalous communication cycle: servo CPU always provides CPU information in constant cycle to communication control CPU. If this information transmission stops for a certain time, communication control CPU recognizes its servo CPU as anomalous communication cycle.

(Example) For OxC060

Оx	<u>C 06 0</u>	
	C: (Control mode)	\rightarrow Servo OFF + Non control mode
	06:(Current alarm)	→Anomalous velocity deviation
	O: (Drive forbidden)	→Normal

Chapter 7 Library Reference

Chapter 7 & 8 are for PA library reference.

Regarding a header file, two types below are explained to be included following an application development language.

.....

- •Visual C++ (Windows)
- Visual BASIC (Windows)

For function reference, it is explained as C programming language.

<Header file for Visual C++ (Windows)>

•Data types with specific significance:

typedef	float	MATRIX[3][4]; 3×4	matrix indicating the tip position/orientation, etc
		(nx ox	ax px
		ny oy	ау ру
		L nz oz	az pz)
typedef	float	NOAMAT[3][3];	3×3 matrix indicating the tip orientation,
		(nx ox	ax
		ny oy	ау
		L nz oz	az)
typedef	float	VECTOR[3]; (px, py, p	Tip position vector, etc.

.....

•Data types when in processing end:

#define	WM_WAIT0	Returns	from function after processing ends.
#define	WM_NOWAIT	1	Returns from function before processing ends.

PA library Data Structure(for Windows Visual C++)

•Axis data structure: 6-axis/7-axis angle storing structure:

typedef struct {

• •	
float s1;	S1 axis value [rad]
float s2;	S2 axis value [rad]
float s3;	S3 axis value [rad]
float e1;	E2 axis value [rad]
float e2;	E3 axis value [rad]
float w1;	W1 axis value [rad]
float w2;	W2 axis value [rad]
ANGLE, *ANGLEP;	

•Arm Status Structure : Structure set by the motion controller:

typedef struct {		
long	max;	Board controllable arm numbers 1or2
long	arm;	Arm identification number 0or1
long	axis;	Arm axis numbers
long	typ;	Arm type
long	drv;	Servo driver classification
long	dio;	Extension DIO board exist / not exist
long	remote;	operation mode (valid / invalid)
long	count;	Control counter value
long	error;	Error code
ANGLE	angle;	Current axis value
MATRIX	noap;	Current tip orientation matrix
float	ypr[3];	Current orientation
}ARMSTATUS, *AF	RMSTATUSP;	

-

.....

PA library Data Structure (for Windows Visual C++)

Parameter Structure:

typedef struct{		
float	rezl;	Resolver resolution
long	pul[7];	Position limiter(+)
long	pdl[7];	Position limiter $(-)$
long	vel[7+2];	Velocity limiter
long	dev[7+2];	Default velocity
float	lim[7 + 2];	
float	ceh[7 + 2];	
float	cem[7 + 2];	
float	cel[7 + 2];	
float	pg1[7];	Position control gain1
float	pg2[7];	Position control gain2
float	vg1[7];	Velocity control gain
float	tg1[7];	Force control gain
float	pcm[7];	position control selection matrix
float	fcm[7];	Force control selection matrix
float	arl[7];	Arm length
float	arg[7];	Axis gravity center position
float	arw[7];	Axis weight
float	hom[7];	Home position recovery target value
float	saf[7];	Safety position recovery target value
float	esc[7];	Escape position recovery target value
float	tol[7];	Tool parameter
float	f∨l[7];	
long	dmy[7];	
long	spa[7];	Spare

}PARAM, *PARAMP;

•Digital I/O Sstructure:

typedef struct{				
	unsigned char	io1;		
	unsigned char	io2;		
	unsigned char	io3;		
	unsigned char	io4;		
}DIOSTATUS, *DIOSTATUSP;				

.

PA library Data Structure	(for Wind	ows Visua	l C++)
•Teach data st	tructure:		
typedef	struct {		
	float	agl[7];	S1 axis value
			S2 axis value
			S3 axis value
			E1 axis value
			E2 axis value
			W1 axis value
			W2 axis value
	float	vel[2];	Tip linear motion velocity[mm/sec]
			Axis /Tip rotational motion velocity [rad/sec]
	long	atr[12];	Teach data type:PTP/PTP(NOAP)
			Interpolation method: Axis/Straight line/Circle/Arc
			Axis control arm stop accuracy
			RMRC control arm stop accuracy []
			Velocity interpolation pattern: Constant
			velocity/start up/shutdown/start up +
			Start up time : Acceleration time designation[msec]
			Shudown time : Deceleration time designation [insec]
			condition
			Waiting time : Motion start delay time[msec]
PNTPN		JTP.	
ji 1 4 11 1 4	, •• • • ••	N 11,	
typedef	struct {		
.,,	PLYPNT	pnt:	
	char	cmt[32]:	Comment
} PLAY, *	*PLAYP;	2 1/	
- ,	,		
	_		
typedef	struct {	F - 7	
	float	xyz[3];	Position : Arm XYZ coordinate [mm]
	float	noa[3][3]	; Position : Arm NOA
} NOAP,	*NOAPP;		

PA library Data Structure (for Windows Visual C++)

•JUMP Data Structure:

typedef st	truct {		
	long	cnd[2];	JUMP conditional number
			Spare
	long	xdi;	DI condition for Conditional appraisal
	long	tim;	Time out
	long	key;	JUMP destination teach data Key
	long	pid;	JUMP destination teach point ID
	long	cnt;	
}JUDGE, *	⊧JUDGEF);	

typedef struct { long cid; JUDGE jdg[8]; }JUMP, *JUMPP;

typedef struct { Teach data structure PLAY ply; NOAP noa; JUMP jmp; }PNTDAT, *PNTDATP;

PA library Data Structure (for Windows Visual C++)

Sensor correction data structure:

typedef struct {		
long	Enable;	Designation bit
float	_xyz[3];	Mechanical interface coordinate absolute
		deviation correction value
float	Ixyz[3];	Mechanical interface coordinate relative
		deviation correction value
float	_XYZ[3];	Base coordinate absolute deviation
		correction value
float	IXYZ[3];	Base coordinate relative deviation correction
		value
float	_wave[3];	Trajectory coordinate absolute deviation
		correction value
float	Iwave[3];	Trajectory coordinate relative deviation
		correction value

} TRANSMAT, *TRANSMATP;

•Arm target value structure:

typedef struct {		
ANGLE	angle;	Target value
MATRIX	noap;	Tip position/orientation matrix
float	ypr[3];	Tip position
} ARMTARGET, *ARMTA	ARGETP;	

•Structure to send commands from the motion control to the servo driver:

typedef struct {				
	long	sig;		
	long	trq;		
	long	vel;		
} O8DRI	VE;			

•Structure to send commands from the servo driver to the motion control:

typedef	struct {	
	long	sts;
	long	agl;
	long	vel;
	long	trq;
} I8DRIV	Έ;	

PA library Data Structure (for Windows Visual C++)

•CUBE information structure

typedef struct{

long	ena;	Cube information Valid/Invalid
long	mod;	Mode when in cube creation
float	max[3];	Maximum value∕Side length
float	min[3];	Minimum value∕Center
char	cmt[32];	Comment
} CUBE, *CUBEP;		

Debug structure:

typedef struct {	
long	ldbg[16];
float	fdbg[32];
} DEBG, *DEBGP;	

.....

PA library characteristic type definition (for Windows Visual C++)

•Data transmission format numbers:

#define	COM_FMT00	0
#define	COM_FMT01	1
#define	COM_FMT02	2
#define	COM_FMT03	3
#define	COM_FMT04	4
#define	COM_FMT05	5
#define	COM_FMT06	6
#define	COM_FMT07	7
#define	COM_FMT08	8
#define	COM_FMT09	9
#define	COM_FMT10	10
#define	COM_FMT11	11

Arm classification: Control arm number selection:

typedef ı	unsigned	long	ARM;	
#define	ARM0	(ARM)0		Arm No. 0 selection
#define	ARM1	(ARM)1		Arm No. 1 selection
#define	ARM2	(ARM)2		Arm No. 2 selection
#define	ARM3	(ARM)3		Arm No. 3 selection
#define	ARM4	(ARM)4		Arm No. 4 selection
#define	ARM5	(ARM)5		Arm No. 5 selection
#define	ARM6	(ARM)6		Arm No. 6 selection
#define	ARM7	(ARM)7		Arm No. 7 selection
#define	ARM8	(ARM)8		Arm No. 8 selection
#define	ARM9	(ARM)9		Arm No. 9 selection
#define	ARM10	(ARM)10		Arm No. 10 selection
#define	ARM11	(ARM)11		Arm No. 11 election
#define	ARM12	(ARM)12		Arm No. 12 selection
#define	ARM13	(ARM)13		Arm No. 13 selection
#define	ARM14	(ARM)14		Arm No. 14 selection
#define	ARM15	(ARM)15		Arm No. 15 selection

.....

PA library characteristic type definition (for Windows Visual C++)

•Axis classification: Control axis number selection:

typedef	unsigned	long	AXIS;	
#define	S1	(AXIS)0x	01	S1 axis designation
#define	S2	(AXIS)0x	02	S2 axis designation
#define	S3	(AXIS)0x	04	S3 axis designation
#define	E1	(AXIS)0x	08	E2 axis designation
#define	E2	(AXIS)0x	10	E3 axis designation
#define	W1	(AXIS)0x	20	W1 axis designation
#define	W2	(AXIS)0x	40	W2 axis designation
#define	AXISALL		(S1 S2 S	3 E1 E2 W1 W2)
#define	ALLAXIS	i	(S1 S2 S	3 E1 E2 W1 W2)
#define	LOCKAX	IS_S1	(S2 S3 E	1 E2 W1 W2)
#define	LOCKAX	IS_S3	(S1 S2 E	1 E2 W1 W2)

•Servo driver classification: Control servo driver number selection:

typedef	unsigned	long	DRIVER;			
#define	DRV1	(DRIVER)	0(Servo	driver	I (S1, S2)
#define	DRV2	(DRIVER))1	Servo	driver 2	2 (S3, E1)
#define	DRV3	(DRIVER))2	Servo	driver 3	B (E2, W1)
#define	DRV4	(DRIVER))3	Servo	driver 4	4 (W2)

.....

T layback moti	on classification.		
typedef	unsigned long	PLAYBACK;	
#define	PB_FORES	(PLAYBACK)0	Forward playback step motion
#define	PB_FOREB	(PLAYBACK)1	Not available
#define	PB_FORE	(PLAYBACK)2	Forward playback consecutive
			motion
#define	PB_BACK	(PLAYBACK)3	Reverse playback consecutive
			motion
•Teach data de	eletion operation cla	ssification:	
typedef	unsigned long	PNTDEL;	
#define	PD_CUR	(PNTDEL)0x7500	Current point teach data deletion
#define	PD_FORE	(PNTDEL)0x7501	Previous current point teach data
			deletion
#define	PD_ALL	(PNTDEL)0x7502	All active teach data deletion
#define	PD_ALLDATA	(PNTDEL)0	All teach data deletion
•Teach data at	tribution alteration	classification:	
typedef	unsigned long	PNTATTR;	
#define	PA_CHGVEL	(PNTATTR)0x7300) Linear velocity alteration
#define	PA_CHGWAIT	(PNTATTR)0x7301	Wait time alteration
#define	PA_VELPTN	(PNTATTR)0x7302	2 Velocity interpolation
#define	PA_ROTVEL	(PNTATTR)0x7303	8 Rotational velocity alteration
#define	PA_AXSACC	(PNTATTR)0x7304	Each axis precision
#define	PA_RMRCACC	(PNTATTR)0x7305	Straight line precision
#define	PA_JUMPID	(PNTATTR)0x7306	JUMP conditional number
•Teach data ty	pe classification:		
typedef	unsigned long	PNTTYPE;	
#define	PT_CP (PNTTY	/PE)0x710 Not av	vailable
#define	PT_PTP (PNTTY	/PE)0x7101 Loadir	ng axis value for linear interpolation
#define	PT_BCP (PNTTY	'PE)0x7102 Not av	vailable
#define	PT_BPTP (PNTTY	PE)0x7103 Linear	interpolation axis value insertion
#define	PT_ARC1 (PNTTY	'PE)0x7104 Arc 1	st point axis value loading
#define	PT_ARC2 (PNTTY	/PE)0x7105 Arc 2	nd point axis value loading
#define	PT_ARC3 (PNTTY	/PE)0x7106 Arc 3	rd point axis value loading
#define	PT_CIR1 (PNTTY	PE)0x7107 Circle	e 1 st point axis value loading
#define	PT_CIR2 (PNTTY	PE)0x7108 Circle	e 2 nd point axis value loading
#define	PT_CIR3 (PNTTY	PE)0x7109 Circle	3 rd point axis value loading
#define	PT AXS (PNTTY	PE)0x710a Loadin	g axis value for axis interpolation
#define	PT BAXS (PNTTY	PE)0x710b Inserts	axis value for axis interpolation
#define	PT_POS (PNTTY	/PE)0x710c Loadin	g NOAP for linear interpolation
#define	PT BPOP (PNTTY	PE)0x710d Inserts	NOAP for linear interpolation
#define	PT_ARC4 (PNTT	YPE)0x710e Arc 1 ^s	st point NOAP loading
#define	PT_ARC5 (PNTTY	PE)0x710f Arc 2 ^r	^d point NOAP loading
#define	PT_ARC6 (PNTTY	/PE)0x7110 Arc 3	rd point axis value loading
#define	PT CIR4 (PNTTY	PE)0x7111 Circle	1 st point NOAP loading
#define	PT CIR5 (PNTTYF	PE)0x7112 Circle 2	nd point NOAP loading
#define	PT CIR6 (PNTTYF	PE)0x7113 Circle 3	rd point NOAP loading
		_,	

PA library characteristic type definition (for Windows Visual C++) Playback motion classification:

PA library characteristic type definition (for Windows Visual C++)

•Teach data pointer operation classification:

typedef	unsigned	long	PNTMOVE;	
#define	PM_TOP	(PNTMO)	VE)0x7100	Moves pointer to top.
#define	PM_NEXT	(PNTMC	VE)0x7101	Pointer forward, once.
#define	PM_PRIV	(PNTMO)	VE)0x7102	Pointer backward, once.
#define	PM_BTM	(PNTMO)	VE)0x7103	Moves pointer to bottom.
#define	PM_JMP	(PNTMO)	VE)0x7104	Moves pointer to designated
				number.
#define	PM_CIR	(PNTMO)	VE)0x7105	Circle teach point searched,
				moving pointer to teach point
				found first.
#define	PM_ARC	(PNTMO)	VE)0x7106	Arc teach point searched, moving
				pointer to teach point found first.

.....

•Default velocity alteration classification:

typedef	unsigned long	VELTYPE;	
#define	VT_ONEVEL	(VELTYPE)0	Each axis default velocity
			alteration
#define	VT_XYZVEL	(VELTYPE)1	Tip position default velocity
			alteration
#define	VT_YPRVEL	(VELTYPE)2	Tip orientation default velocity
			alteration

•Velocity control mode classification:

typedef	unsigned	long	VELMOD	DE;
#define	VM_XYZ	(VELMO	DE)0x200	Base coordinate linear velocity control
#define	VM_YPR	(VELMO	DE)0x201	Base coordinate rotational velocity control
#define	VM_xyz	(VELMO	DE)0x202	Mechanical interface coordinate linear
				velocity control
#define	VM_ypr	(VELMO	DE)0x203	Mechanical interface coordinate rotational
				velocity control
#define	VM_ONE	(VELMC	DE)0x204	Each axis velocity control
#define	VM_XYZY	′PR (VEL	.MODE)0x2	205 Base coordinate linear/rotational
				velocity control
#define	VM_xyzyp	or (VEL	MODE)0x2	206 Mechanical interface coordinate
				linear/rotational velocity control

PA library characteristic type definition(for Windows Visual C++)

-

.....

•Redundant ax	is control mode cla	assification:	7-axis arm function
typedef	unsigned long	JOUMODE;	
#define	JM_SET	(JOUMODE)0x345	Redundant axis control parameter operation start
#define	JM_RESET	(JOUMODE)0x346	Redundant axis control parameter reset
#define	JM_VSET	(JOUMODE)0x347	Redundant axis velocity control mode
#define	JM_ON	(JOUMODE)0x348	Redundant axis control all axes restriction mode
#define	JM_OFF	(JOUMODE)0x349	Redundant axis control restriction release
#define	JM_S3ON	(JOUMODE)0x34a	Redundant axis control only S3 axis restriction mode
#define	JM_S3DIV	(JOUMODE)0x34b	Redundant axis control S3 axis interpolation restriction mode
#define	JM_S3HOLD	(JOUMODE)0x34c	Redundant axis control S3 axis fixation restriction mode
typedef	unsigned long	JOUTYPE;	
#define	JT_RIGHT	(JOUTYPE)1	Moves redundant axis restriction parameter to the right.
#define	JT_HOLD	(JOUTYPE)0	Holds redundant axis restriction parameter.
#define	JT_LEFT	(JOUTYPE)-1	Moves redundant axis restriction parameter to the left.

• Target tip matrix control mode classification:

typedef	unsigned long	MOVEMODE;	
#define	MM_XYZ	(MOVEMODE)0x5680	Tip position control
#define	MM_NOA	(MOVEMODE)0x5681	Tip orientation control
#define	MM_XYZNOA	(MOVEMODE)0x5682	Tip position/orientation
			control

PA library characteristic type definition (for Windows Visual C++)

Direct control classification: (Optional function)

typedef	unsigned long	DIRECTMODE;	
#define	DM_STOP	(DIRECTMODE)0	Direct control stop
#define	DM_START	(DIRECTMODE)1	Direct control start
#define	ARM_STANDING	1	Floor mounted
#define	ARM_HANGING	-1	Suspending from ceiling

.....

•DIO port numbers:

typedef	unsigned long	DIOPORT;	
#define	DP_PORT1	(DIOPORT)0	DIO 1 port selection
#define	DP_PORT2	(DIOPORT)1	DIO 2 port selection
#define	DP_PORT3	(DIOPORT)2	DIO 3 port selection
#define	DP_PORT4	(DIOPORT)3	DIO 4 port selection
#define	DPO_PORT1	(DIOPORT)4	DO 1 port selection
#define	DPO_PORT2	(DIOPORT)5	DO 2 port selection
#define	DPO_PORT3	(DIOPORT)6	DO 3 port selection
#define	DPO_PORT4	(DIOPORT)7	DO 4 port selection
#define	DPX_PORT1	(DIOPORT)8	DO 1 port selection
#define	DPX_PORT2	(DIOPORT)9	DO 2 port selection
#define	DPX_PORT3	(DIOPORT)10	DO 3 port selection
#define	DPX_PORT4	(DIOPORT)11	DO 4 port selection
#define	DPX_PORT4	(DIOPORT)11	DO 4 port selection

Memo

DPO_XXXXX is used when acquiring contents set to be outputted by PA library. DPX_XXXXX is used when acquiring current output value (related to information in PA library or playback data).

•DIO channel numbers:

typedef	unsigned	long	DIOCH;	
#define	DC_CH1	(DIOCH))	Channel 1 selection
#define	DC_CH2	(DIOCH)	l	Channel 2 selection
#define	DC_CH3	(DIOCH)	2	Channel 3 selection
#define	DC_CH4	(DIOCH)	3	Channel 4 selection
#define	DC_CH5	(DIOCH)4	1	Channel 5 selection
#define	DC_CH6	(DIOCH)	5	Channel 6 selection
#define	DC_CH7	(DIOCH)	6	Channel 7 selection
#define	DC_CH8	(DIOCH)	7	Channel 8 selection

_

typedef	unsigned long	TRANSMODE;			
#define	MODE_xyz	(TRANSMODE)0x01		Adds abs	olute correction
				value in t	he mechanical
				interface	coordinate
		/ .		system	
#define	MODEIxyz	(TRANSMODE)0x02	2	Adds rela	tive correction
				value in t	the mechanical
				Interface	coordinate
#define			1		olute correctio
#define	WODE_XTZ		r	value in t	he hase
				coordinat	te svstem
#define	MODEIXYZ	(TRANSMODE)0x08	3	Adds rela	tive correction
				value in t	he base
				coordinat	te system
#define	MODE_wave	(TRANSMODE)0x10)	Adds abs	olute correction
				value in t	he trajectory
				coordinat	te system
#define	MODEIwave	(TRANSMODE)0x20)	Adds rela	tive correction
				value in t	he trajectory
				coordinat	te system
Teach point a	ttribute designatio	on:			
typedef	unsigned long	PNTID;			
#define	PA_SETID	(PNTID)0x7304			
Circle & arc t	each point numbe	r designation:			
typedef	unsigned long	PNTNO;			
#define	PN_1	(PNTNO)1			
#define	PN_2 DN 2	(PNTNO)2 (PNTNO)2			
#denne	FN_3	(FITINO)3			
JUMP data va	lid∕invalid (in tead	h data)			
typedef	unsigned long	JUMPONOFF;			
#define	JMP_ON (JU	MPONOFF)1	Valid		
#define 、	JMP_OFF (JU	MPONOFF)0	Invalid		
IUMP data va	lid∕invalid (in JUN	IP data)			
typedef	unsigned long	.IIIMPENARI EDISA	BI F.		
#define	JMPENABLE	(JUMPENABLEDISA	ABLE)0×	01000000	Valid

PA library characteristic type definition(for Windows Visual C++)

PA library characteristic type definition (for Windows Visual C++)

JUMP Command

typedef u	unsigned long	JUMPORDER;	
#define	NO_JUMP	(JUMPORDER)0x00010000	Unconditional JUMP
#define	DI_JUMP	(JUMPORDER)0x00020000	DI conditional JUMP
#define	DI_WAITJUMP	(JUMPORDER)0x00030000	DI conditional WAITJUMP
#define	DI_WAIT	(JUMPORDER)0x00040000	DI conditional WAIT

.....

•JUMP Conditional Logic

typedef unsigned long		JUMPDILOGIC;
#define	LEVEL_ON	(JUMPDILOGIC)0x00000100
#define	LEVEL_OFF	(JUMPDILOGIC)0x00000200
#define	EDGE_ON	(JUMPDILOGIC)0x00000400
#define	EDGE_OFF	(JUMPDILOGIC)0x00000800

<u>•JUMP ticket-oriented DI</u>

typedef unsigned long		DIOKIND;	
#define	DIO_INTERNAL	(DIOKIND)0x00000000	System
#define	DIO_EXTERNAL	(DIOKIND)0x0000001	User

•Teaching place when in CUBE creation:

typedef unsigned long	CUBEPNT;
#define MAXPNT	(CUBEPNT)1
#define MINPNT	(CUBEPNT)2
#define CENTERPNT	(CUBEPNT)3

•Mask setting:

typedef unsigned long		DIOMASK;
#define	DIMSK	(DIOMASK)0
#define	DOMSK	(DIOMASK)1

•RETRAC ON/OFF:

typedef unsigned long	RETRAC;
#define RETRACOFF	(RETRAC)0
#define RETRACON	(RETRAC)1
PA library characteristic type definition(for Windows Visual C++)

•CUBE information:

typedef unsigned long	CUBEINFO;
#define NOCUBE	(CUBEINFO)0x0000000
#define CUBEON	(CUBEINFO)0x0000001
#define CUBEMAX	(CUBEINFO)0x0000002
#define CUBEMIN	(CUBEINFO)0x0000004
#define CUBECENTER	(CUBEINFO)0x0000008
#define CUBESIDE	(CUBEINFO)0x00000010

• TEACH MODE

typedef unsigned long		TEACHMODE;
#define	TEACH_OFF	(TEACHMODE)0
#define	TEACH_LOW	(TEACHMODE)1
#define	TEACH_MID	(TEACHMODE)2
#define	TEACH_HIGH	(TEACHMODE)3

•TEACH LOCK

typedef unsigned long	TEACHLOCK;
#define LOCK_OFF	(TEACHLOCK)0
#define LOCK_ON	(TEACHLOCK)1

Communication status with servo driver:

typedef unsigned long	COMSTATUS;
#define STP_STATUS	(COMSTATUS)0
#define MOV_STATUS	(COMSTATUS)1
#define SIM_STATUS	(COMSTATUS)2

•for RETRAC:

#define	MOD_ROBFILE	1
#define	MOD_TOLFILE	2

•for Dead man switch:

#define SET_DDM 3

< Header file for Visual BASIC (Windows)>

•Data type when in processing end:_

Public Const WM_WAIT	As Long = 0	Returns from function after
		processing ends.
Public Const WM_NOWAIT	As Long = 1	Returns from function before
		processing ends.

.....

PA library data structure (for Windows Visual BASIC)

Axis data structure: 6-axis/7-axis angle storing structure

Type ANGLE

S1	As Single	S1 axis value [rad]
S2	As Single	S2 axis value [rad]
S3	As Single	S3 axis value [rad]
E1	As Single	E1 axis value [rad]
E2	As Single	E2 axis value [rad]
W1	As Single	W1 axis value [rad]
W2	As Single	W2 axis value [rad]

End Type

•Arm status structure: Structure set by the motion controller

Type ARMSTATUS

max	As Long	Board controllable arm numbers	1or2
ARM	As Long	Arm identification number	0or1
Axnum	As Long	Arm axis numbers	
typ	As Long	Arm type	
drv	As Long	Servo driver classification	
dio	As Long	Extension DIO board exist / no	t exist
remote	As Long	operation mode (valid / invalid)	
count	As Long	Control counter value	
error	As Long	Error code	
agl	As ANGLE	Current axis value	
NOAP(3	, 2) As Single	Current tip orientation matrix	
ypr(2)	As Single	Current orientation	
End Type			

-

.....

PA library data structure (for Windows Visual BASIC)

•Parameter Structure:

Type PARAM

rezl	As Single	Resolver resolution
pul(6)	As Long	Position limiter (+)
pdl(6)	As Long	Position limiter (-)
vel(8)	As Long	Velocity limiter
dev(8)	As Long	Default velocity
lim(8)	As Single	Teach mode velocity limit
ceh(8)	As Single	Teach mode fast motion velocity
cem(8)	As Single	Teach mode medium motion velocity
cel(8)	As Single	Teach mode slow motion velocity
pg1(6)	As Long	Position control gain1
pg2(6)	As Long	Position control gain2
vg1(6)	As Long	Velocity control gain
tg1(6)	As Long	Force control gain
pcm(6)	As Long	position control selection matrix
fcm(6)	As Long	Force control selection matrix
arl(6)	As Long	Arm length
arg(6)	As Long	Axis gravity center position
arw(6)	As Long	Axis weight
rfp(6)	As Long	Home position recovery target value
rsp(6)	As Long	Escape position recovery target value
rop(6)	As Long	Recovery target value for other points
tol(6)	As Long	Tool parameter
fvl(6)	As Single	Control parameter
dmy(6)	As Long	Not available
spa(6)	As Long	Spare

End Type

•Teach data structure:		
Type PNTPNT		
agl(6) A	s Single	S1 axis value
		S2 axis value
		S3 axis value
		E1 axis value
		E2 axis value
		W1 axis value
		W2 axis value
vel(1) A	s Single	Tip linear motion velocity
		Tip rotational motion velocity
atr(11) A	s Long	Teach data type: PTP/PTP(NOAP)
		Interpolation method: Axis/Straight
		line/Circle/Arc
		Axis control arm stop accuracy []
		RMRC control arm stop accuracy []
		Velocity interpolation pattern:
		Constant velocity/start
		up/shutdown/start up + shutdown
		Start up time: Acceleration time designation
		[msec]
		Shutdown time: Deceleration time
		designation [msec]
		JUMP data number:
		Number specifying JUNP condition
		DO output
		Waiting time : Motion start delay time [msec]
End Type		
Type PLAY		
pnt	As PLYPNT	
cmt	As String * 32	Comment
End Type	Ū.	
vu=(0)	As Single	Position: Arm XV7 coordinate [mm]
xyz(2)	As Single	Position: Arm XYZ coordinate [mm] Position : Arm NOA

PA library data structure (for Windows Visual BASIC)

<u>•JUMP Data Structure:</u>

Type JUDGE

cnd(1) As Long	JUMP conditional number Spare
xdi As Long	DI condition for Conditional appraisal
tim As Long	Time out
key As Long	JUMP destination teach data Key
pid As Long	JUMP destination teach point ID
cnt As Long	

.....

End Type

Type JUMP

cid As Long jdg(7) As JUDGE -

End Type

Type PNTDATA

ply	As	PLAY
noa	As	NOAF
jmp	As	JUMF
End Type		

Digital I/O structure:

Туре 🛛	DIOSTAT	US	
	Io1	As Byte	DIO (tool) 1 value
	Io2	As Byte	DIO (tool) 2 value
	Io3	As Byte	DIO (tool) 3 value
	Io4	As Byte	DIO (tool) 4 value
End Ty	/pe		

PA library data structure (for Windows Visual BASIC)

Sensor correction data structure:

Type TRANSMAT

Enable	As Long Designation bit
xyz11(2)	As Single Mechanical interface coordinate absolute deviation
	correction value
xyz12(2)	As Single Mechanical interface coordinate relative deviation
	correction value
xyz21(2)	As Single Base coordinate absolute deviation correction value
xyz22(2)	As Single Base coordinate relative deviation correction value
wave1(2)	As Single Trajectory coordinate absolute deviation correction
	value
wave2(2)	As Single Trajectory coordinate relative deviation correction
	value
End Type	

.....

•Arm target value structure:

Type ARMTARGET			
agl	As ANGLE	Target angle	
noap(3, 2)	As Single	Target tip position/orientation	
ypr(2)	As Single	Target tip orientation	
End Type			

•Structure to send commands from the motion control to the servo driver:

Type O8DRIVE sig As Long trq As Long vel As Long End Type

•Structure to send commands from the servo driver to the motion control:

Type I8DRIVE sts As Long agl As Long vel As Long trq As Long End Type

PA library data structure (for Windows Visual BASIC)

•CUBE information structure:

Type CUBE

ena	As Long	Cube information valid/invalid
mod	As Long	Mode when in cube creation
max(2)	As Single	Maximum value∕∕Side length
min(2)	As Single	Minimum value∕⁄Center
cmt	As String * 32	Comment

.....

End Type

Debug structure:

Type DEBG		
	ldbg(15)	As Long
	fdbg(31)	As Single
End Type		

PA library characteristic type definition (for Windows Visual BASIC)

•Arm classification : Control arm number selection:

Public Const ARM0	As Long = 0	Arm No. 0 selection
Public Const ARM1	As Long = 1	Arm No. 1 selection
Public Const ARM2	As Long = 2	Arm No. 2 selection
Public Const ARM3	As Long = 3	Arm No. 3 selection
Public Const ARM4	As Long = 4	Arm No. 4 selection
Public Const ARM5	As Long = 5	Arm No. 5 selection
Public Const ARM6	As Long = 6	Arm No. 6 selection
Public Const ARM7	As Long = 7	Arm No. 7 selection
Public Const ARM8	As Long = 8	Arm No. 8 selection
Public Const ARM9	As Long = 9	Arm No. 9 selection
Public Const ARM10	As Long = 10	Arm No. 10 selection
Public Const ARM11	As Long = 11	Arm No. 11 selection
Public Const ARM12	As Long = 12	Arm No. 12 selection
Public Const ARM13	As Long = 13	Arm No. 13 selection
Public Const ARM14	As Long = 14	Arm No. 14 selection
Public Const ARM15	As Long = 15	Arm No. 15 selection

Axis classification : Control axis number selection:

Public Const S1 As Long = &H1	S1 axis designation
Public Const S2 As Long = &H2	S2 axis designation
Public Const S3 As Long = &H4	S3 axis designation
Public Const E1 As Long = &H8	E2 axis designation
Public Const E2 As Long = &H10	E3 axis designation
Public Const W1 As Long = &H20	W1 axis designation
Public Const W2 As Long = &H40	W2 axis designation

Public Const AXISALL	As Long = S1 + S2 + S3 + E1 + E2 + W1 + W2
Public Const LOCKAXIS_S1	As Long = S2 + S3 + E1 + E2 + W1 + W2
Public Const LOCKAXIS_S3	As Long = S1 + S2 + E1 + E2 + W1 + W2

•Servo driver classification : Control servo driver number selection:

Public Const DRV1 As Long = 0	Servo driver 1 (S1, S2)
Public Const DRV2 As Long = 1	Servo driver 1 (S3, E1)
Public Const DRV3 As Long = 2	Servo driver 1 (E2, W1)
Public Const DRV4 As Long = 3	Servo driver 1 (W2)

PA library characteristic type definition (for Windows Visual BASIC)

•Playback motion classification:

Public Const PB_FORES	As Long = 0	Forward playback step motion
Public Const PB_BACKS	As Long = 1	Not available
Public Const PB_FORE	As Long = 2	Forward playback consecutive motion
Public Const PB_BACK	As Long = 3	Reverse playback consecutive motion

.....

•Teach data deletion operation classification:

Public Const PD_CUR	As Long = &H7500 (Current point teach data deletion
Public Const PD_FORE	As Long = &H7501 F	Previous current point teach data
	c	deletion
Public Const PD_ALL	As Long = &H7502 A	All active teach data deletion
Public Const PD_ALLDATA	As Long = &H7502 A	All teach data deletion

• Teach data attribution alteration classification:

Public Const PA_CHGVEL	As Long = &H7300	Linear velocity alteration when in playback
Public Const PA_CHGWAIT	As Long = &H7301	Wait time alteration when in playback
Public Const PA_VELPTN	As Long = &H7302	Velocity interpolation pattern alteration when in playback
Public Const PA_ROTVEL	As Long = &H7303	Rotational velocity alteration when in playback
Public Const PA_AXSACC	As Long = &H7304	Each axis precision
Public Const PA_RMRCACC	As Long = &H7305	Straight line precision
Public Const PA_JUMPID	As Long = &H7306	JUMP conditional number

PA library characteristic type definition (for Windows Visual BASIC)

•Teach data type classification:

Public Const PT_CP	As Long = &H7100	Not available
Public Const PT_PTP	As Long = &H7101	PTP linear interpolation data
		loading
Public Const PT_BCP	As Long = &H7102	Not available
Public Const PT_BPTP	As Long = &H7103	PTP linear interpolation data insertion
Public Const PT_ARC1	As Long = &H7104	Arc 1 st point data loading
Public Const PT_ARC2	As Long = &H7105	Arc 2 nd point data loading
Public Const PT_ARC3	As Long = &H7106	Arc 3 rd point data loading
Public Const PT_CIR1	As Long = &H7107	Circle 1 st point data loading
Public Const PT_CIR2	As Long = &H7108	Circle 2 nd point data loading
Public Const PT_CIR3	As Long = &H7109	Circle 3 rd point data loading
Public Const PT_AXS	As Long = &H710A	PTP axis interpolation data
		loading
Public Const PT_BAXS	As Long = &H710B	PTP axis interpolation data
		insertion
Public Const PT_POS	As Long = &H710C	Linear interpolation NOAP loading
Public Const PT_BPOS	As Long = &H710D	Linear interpolation NOAP
		insertion
Public Const PT_ARC4	As Long = &H710E	Arc 1^{st} point NOAP loading
Public Const PT_ARC5	As Long = &H710F	Arc 2 nd point NOAP loading
Public Const PT_ARC6	As Long = &H7110	Arc 3 rd point NOAP loading
Public Const PT_CIR4	As Long = &H7111	Circle 1 st point NOAP loading
Public Const PT_CIR5	As Long = &H7112	Circle 2 nd point NOAP loading
Public Const PT_CIR6	As Long = &H7113	Circle 3 rd point NOAP loading

Teach data pointer operation classification:

Public Const PM_TOP	As Long = &H7100	Moves pointer to top.
Public Const PM_NEXT	As Long = &H7101	Pointer forward, once.
Public Const PM_PRIV	As Long = &H7102	Pointer backward, once.
Public Const PM_BTM	As Long = &H7103	Moves pointer to bottom.
Public Const PM_JMP	As Long = &H7104	Moves pointer to designated
		number.
Public Const PM_CIR	As Long = &H7105	Circle teach point searched,
		moving pointer to teach point
		found first.
Public Const PM_ARC	As Long = &H7106	Arc teach point searched, moving
		pointer to teach point found first.

PA library characteristic type definition (for Windows Visual BASIC)

•Default velocity alteration classification:

Public Const VT_ONEVEL As Long = &H(Each default velocity alteration
Public Const VT_XYZVEL As Long = &H	1 Tip position default velocity
	alteration
Public Const VT_YPRVEL As Long = &H2	Tip orientation default velocity
	alteration

.....

7-axis arm function

Velocity control mode classification:

Public Const VM_XYZ1	As Long = &H200	Base coordinate linear velocity control
Public Const VM_YPR1	As Long = &H201	Base coordinate rotational velocity control
Public Const VM_XYZ2	As Long = &H202	Mechanical interface coordinate
		linear velocity control
Public Const VM_YPR2	As Long = &H203	Mechanical interface coordinate
		rotational velocity control
Public Const VM_ONE	As Long = &H204	Each axis velocity control
Public Const VM_XYZYPR1	As Long = &H205	Base coordinate linear/rotational velocity control
Public Const VM_XYZYPR2	As Long = &H206	Mechanical interface coordinate
		linear/rotational velocity control

Redundant axis control mode classification:

Public Const JM_SET	As Long = &H345	Redundant axis control parameter operation start
Public Const JM_RESET	As Long = &H346	Redundant axis control parameter reset
Public Const JM_VSET	As Long = &H347	Redundant axis velocity control mode
Public Const JM_ON	As Long = &H348	Redundant axis control all axes restriction mode
Public Const JM_OFF	As Long = &H349	Redundant axis control restriction release
Public Const JM_S3ON	As Long = &H34A	Redundant axis control only S3 axis restriction mode
Public Const JM_S3DIV	As Long = &H34B	Redundant axis control S3 axis interpolation restriction mode
Public Const JM_S3HOLD	As Long = &H34C	Redundant axis control S3 axis fixation restriction mode
Public Const JT_RIGHT	As Long = 1	Moves redundant axis restriction
Public Const JT_HOLD	As Long = 0	Holds redundant axis restriction
Public Const JT_LEFT	As Long=-1	Moves redundant axis restriction parameter to the left.

PA library characteristic type definition (for Windows Visual BASIC)

•Target tip matrix control mode classification:

Public Const MM_XYZ	As Long = &H5680	Tip position control
Public Const MM_NOA	As Long = &H5681	Tip orientation control
Public Const MM_XYZNOA	As Long = &H5682	Tip position/orientation control

.....

Direct control classification: (Optional function)

Public Const DM_STOP	As Lo	ong = 0	Direct control stop
Public Const DM_START	As Lo	ong = 1	Direct control start
Public Const ARM_STANDI	١G	As Long = 1	Floor mounted
Public Const ARM_HANGIN	G	As Long = −1	suspending from ceiling

•DIO port numbers:

Public Const DP_PORT1	As Long = 0	DIO 0 port selection
Public Const DP_PORT2	As Long = 1	DIO 1 port selection
Public Const DP_PORT3	As Long = 2	DIO 2 port selection
Public Const DP_PORT4	As Long = 3	DIO 3 port selection
Public Const DPO_PORT1	As Long = 4	DO 0 port selection
Public Const DPO_PORT2	As Long = 5	DO 1 port selection
Public Const DPO_PORT3	As Long = 6	DO 2 port selection
Public Const DPO_PORT4	As Long = 7	DO 3 port selection
Public Const DPX_PORT1	As Long = 8	DO 0 port selection
Public Const DPX_PORT2	As Long = 9	DO 1 port selection
Public Const DPX_PORT3	As Long = 10	DO 2 port selection
Public Const DPX_PORT4	As Long = 11	DO 3 port selection

Memo

DPO_XXXXX is used when acquiring contents set to be outputted by PA library. DPX_XXXXX is used when acquiring current output value (related to information in PA library or playback data).

•DIO channel numbers:

Public Const DC_CH1	As Long = 0	Channel 1 selection
Public Const DC_CH2	As Long = 1	Channel 2 selection
Public Const DC_CH3	As Long = 2	Channel 3 selection
Public Const DC_CH4	As Long = 3	Channel 4 selection
Public Const DC_CH5	As Long = 4	Channel 5 selection
Public Const DC_CH6	As Long = 5	Channel 6 selection
Public Const DC_CH7	As Long = 6	Channel 7 selection
Public Const DC_CH8	As Long = 7	Channel 8 selection

PA library characteristic type definition (for Windows Visual BASIC) Sensor correction coordinate classification: Public Const MODE_XYZ1 As Long = &H1 Adds absolute correction value in the mechanical interface coordinate system Public Const MODE_XYZ2 As Long = &H2 Adds relative correction value in the mechanical interface coordinate system Public Const MODE_XYZ3 As Long = &H4 Adds absolute correction value in the base coordinate system Public Const MODE XYZ4 As Long = &H8 Adds relative correction value in the base coordinate system Public Const MODE_WAVE1 As Long = &H10 Adds absolute correction value in the trajectory coordinate system Public Const MODE_WAVE2 As Long = &H20 Adds relative correction value in the trajectory coordinate system •Teach point attribute designation: Public Const PA_SETID As Long = &H7304

•Circle & arc teach point number designation:

Public Const PN_1	As Long = 1
Public Const PN_2	As Long = 2
Public Const PN_3	As Long = 3

JUMP data valid/invalid (in teach data):

Public Const JMP_ON	As Long = 1	Valid
Public Const JMP_OFF	As Long = 0	Invalid

<u>JUMP data valid/invalid (in JUMP data):</u>

Public Const JMPENABLEAs Long = &H1000000Public Const JMPDISABLEAs Long = &H0

•JUMP command:

Public Const NO_JUMP	As Long = &H10000
Public Const DI_JUMP	As Long = &H20000
Public Const DI_WAITJUMP	As Long = &H30000
Public Const DI_WAIT	As Long = &H40000

PA library characteristic type definition (for Windows Visual BASIC)

•JUMP conditional logic:

Public Const LEVEL_ON	As Long = &H100
Public Const LEVEL_OFF	As Long = &H200
Public Const EDGE_ON	As Long = &H400
Public Const EDGE_OFF	As Long = &H800

•Objective DI:

Public Const DIO_INTERNAL	As Long = &H0
Public Const DIO_EXTERNAL	As Long = &H1

•Teaching place when in CUBE creation:

Public Const MAXPNT	As Long = 1
Public Const MINPNT	As Long = 2
Public Const CENTERPNT	As Long = 3

•DiorDO mask setting:

Public Const DIMSK	As Long = 0
Public Const DOMSK	As Long = 1

•RETRAC ON/OFF:

Public Const RETRACOFF	As Long = 0
Public Const RETRACON	As Long = 1

•CUBE data:

Public Const NOCUBE	As Long = &H0
Public Const CUBEON	As Long = &H1
Public Const CUBEMAX	As Long = &H2
Public Const CUBEMIN	As Long = &H4
Public Const CUBECENTER	As Long = &H8
Public Const CUBESIDE	As Long = &H10

PA library characteristic type definition (for Windows Visual BASIC)

• TEACHMODE:

Public Const TEACH_OFF	As Long = 0
Public Const TEACH_LOW	As Long = 1
Public Const TEACH_MID	As Long = 2
Public Const TEACH_HIGH	As Long = 3

•TEACHLOCK:

Public Const LOCK_OFF	As Long = 0
Public Const LOCK_ON	As Long = 1

Communication status with servo driver:

Public Const STP_STATUS	As Long = 0
Public Const MOV_STATUS	As Long = 1
Public Const SIM_STATUS	As Long = 2

•fpr RETRAC:

Public Const MOD_ROBFILE	As Long = 1
Public Const MOD_TOLFILE	As Long = 2

for Dead man switch:

Public Const SET_DDM	As Long = 3
----------------------	-------------

Normal ERR_OK 0 No error						
ERR_OK 0 No error					nal	Norm
		or	No erro	0	ERR_OK	
(1) Operation control section (PA library) detection error:		library) detection error:	tion (PA	ontrol sec	Operation co	(1)
ERR_FILE -1 Designated file not existing		ated file not existing	Designa	-1	ERR_FILE	
ERR_READ -2 File loading failure		ading failure	File loa	-2	ERR_READ	
ERR_WRITE -3 File saving failure		ving failure	File sav	-3	ERR_WRITE	
ERR_INT -4 Unsuccessful interruption into 486		cessful interruption into 486	Unsucc	-4	ERR_INT	
ERR_OPEN -5 pa_opn_arm() not executed		_arm() not executed	pa_opn_	-5	ERR_OPEN	
ERR_MALLOC -6 Failed to allocate memory space		to allocate memory space	Failed t	-6	ERR_MALLOC	
ERR_PRM -7 Parameter alteration not allowed when in control	l	eter alteration not allowed when in control	Parame	-7	ERR_PRM	
ERR_PNT -8 A specified degree of Teaching data is out of range	ige	ified degree of Teaching data is out of rang	A speci	-8	ERR_PNT	
Parameter error:					ameter error:	•Para
ERR_ARM -20 Designated arm not existing		ated arm not existing	Designa	-20	ERR_ARM	
ERR_AXIS -21 Designated axis not existing		ated axis not existing	Designa	-21	ERR_AXIS	
ERR_DRV -22 Designated driver not existing		ated driver not existing	Designa	-22	ERR_DRV	
ERR_PB -23 Incorrect playback motion mode		ect playback motion mode	Incorrec	-23	ERR_PB	
ERR_PD -24 Incorrect teach point deletion mode		ect teach point deletion mode	Incorrec	-24	ERR_PD	
ERR_PA -25 Incorrect teach point attribution mode		ect teach point attribution mode	Incorrec	-25	ERR_PA	
ERR_PTN -26 Incorrect teach point velocity pattern attribution valu	ו value	ect teach point velocity pattern attribution	Incorre	-26	ERR_PTN	
ERR_PT -27 Incorrect teach point data type		ect teach point data type	Incorre	-27	ERR_PT	
ERR_PM -28 Incorrect teach point operation type		ect teach point operation type	Incorrec	-28	ERR_PM	
ERR VT -29 Incorrect default velocity alteration type		ect default velocity alteration type	Incorrec	-29	ERR VT	
ERR VM -30 Incorrect velocity control mode		ect velocity control mode	Incorrec	-30	ERR VM	
ERR JM -31 Incorrect redundant axis control mode		ect redundant axis control mode	Incorrec	-31	ERR JM	
ERR JT -32 Incorrect redundant axis operation mode		ect redundant axis operation mode	Incorre	-32	ERR JT	
ERR MM -33 Incorrect target tip matrix control mode		ect target tip matrix control mode	Incorrec	-33	ERR MM	
ERR DM -34 Incorrect direct control mode		ect direct control mode	Incorrec	-34	ERR DM	
ERR DP -35 Incorrect digital input/output port designation		ect digital input/output port designation	Incorre	-35	ERR DP	
ERR DC -36 Incorrect digital input/output channel designation	n	ect digital input/output channel designation	Incorre	-36	ERR DC	
ERR MES -37 Error code not defined	-	code not defined	Error co	-37	ERR MES	
ERR BOARD -38 Error code not defined		ode not defined	Error co	-38	ERR BOARD	
ERR DIO -39 Incorrect digital input/output DiorDO designation	ı	ect digital input/output DIorDO designation	Incorrec	-39	ERR DIO	
ERR_PRJ -40 Project not loaded		t not loaded	Project	-40	ERR_PRJ	
•WinRT error:					RT error:	• Win
ERR UNMAPMEMORY -100 Error occurred in WinRTUnMapMemory	,	Error occurred in WinRTUnMapMemory	-100	MORY	ERR UNMAPME	
ERR UNMAPMEMORY2 -101 Error occurred in WinRTUnMapMemory2	2	Error occurred in WinRTUnMapMemory2	-101	MORY2		
ERR OPENDEVICE -200 Error occurred in WinRTOpenNamedDevice	vice	Error occurred in WinRTOpenNamedDev	-200	CE	ERR OPENDEVI	
ERR CONFIG –201 Error occurred in WinRTGetFullConfiguration	ration	Error occurred in WinRTGetFullConfigur	-201		ERR CONFIG	
ERR MAPMEMORY -300 Frror occurred in WinRTMapMemory		Error occurred in WinRTMapMemory	-300	RY		
ERR MAPMEMORY2 -301 Error occurred in WinRTMapMemory2		Error occurred in WinRTMapMemorv2	-301	RY2		

ERROR LIST (in common)

(2) Motion control section detection error:

•Warning error:

ERR_CANT_CPU	-1000	Access to motion controller not allowed.
ERR_NON_EVNT	-1001	Format does not match with command.
ERR_CANT_EVNT	-1002	Command not compatible with current mode
ERR_INVALD_EVNT	-1003	Invalid command
ERR_NON_ARM	-1004	Designated arm number not existing.
ERR_NON_ROB	-1005	Download new ROB file
ERR_NON_TOL	-1006	Download new TOL file
ERR_S1_VEL	-1010	S1 axis velocity exceeded
ERR_S2_VEL	-1011	S2 axis velocity exceeded
ERR_S3_VEL	-1012	S3 axis velocity exceeded
ERR_E1_VEL	-1013	E1 axis velocity exceeded
ERR_E2_VEL	-1014	E2 axis velocity exceeded
ERR_W1_VEL	-1015	W1 axis velocity exceeded
ERR_W2_VEL	-1016	W2 axis velocity exceeded
ERR_XYZ_VEL	-1018	Tip linear velocity exceeded
ERR_YPR_VEL	-1019	Tip rotational velocity exceeded
ERR_S1_SAGL	-1020	S1 axis safety angle exceeded
ERR_S2_SAGL	-1021	S2 axis safety angle exceeded
ERR_S3_SAGL	-1022	S3 axis safety angle exceeded
ERR_E1_SAGL	-1023	E1 axis safety angle exceeded
ERR_E2_SAGL	-1024	E2 axis safety angle exceeded
ERR_W1_SAGL	-1025	W1 axis safety angle exceeded
ERR_W2_SAGL	-1026	W2 axis safety angle exceeded
ERR_S1_TAGL	-1030	S1 axis target angle exceeded
ERR_S2_TAGL	-1031	S2 axis target angle exceeded
ERR_S3_TAGL	-1032	S3 axis target angle exceeded
ERR_E1_TAGL	-1033	E1 axis target angle exceeded
ERR_E2_TAGL	-1034	E2 axis target angle exceeded
ERR_W1_TAGL	-1035	W1 axis target angle exceeded
ERR_W2_TAGL	-1036	W2 axis target angle exceeded
ERR_NOA_CLC	-1038	Unable to calculate NOA Ver.PCI
ERR_LNK_CTL	-1039	Unable to create teach point due to
		continuity restriction
ERR_MEM_FULL	-1040	Failed to allocate memory space
ERR_MIS_COMD	-1041	Prior procedure required before issuing this
		command
ERR_PB_CIR	-1042	Incorrect circle or arc designation
ERR_PB_NEXT	-1043	Next pointer not existing
ERR_PB_PRIV	-1044	Previous pointer not existing
ERR_PB_END	-1045	Playback data ended
ERR_PB_NULL	-1046	Playback data not existing
ERR_PB_REFER	-1047	Failed to find playback data
ERR_PB_REPLACE	-1048	Accepted as replace command

.

ERROR LIST (in common)

ERR_PB_PANIC	-1049	Pointer management accident
ERR_NOT_ENUGH	-1050	Target value is out of control area. (Arm
		length is not enough.)
ERR_MIS_PARAM	-1051	Designated parameter value exceeded the
		setting range
ERR_NOA_DAT	-1060	Designated NOA not appropriate
ERR_PNT_ATR	-1061	Not available
ERR_PTP_DAT	-1062	Exceeding RMRC motion range
ERR_CP_LOGGING	-1063	Not allowed to use while in CP data
		acquisition
ERR_FIFO_MAX	-1064	Exceeded the maximum interpolation number
ERR_FIFO_ARC	-1065	Unable to generate circle or arc
COVERS1	-1070	S1 axis velocity angle exceeded
COVERS2	-1071	S2 axis velocity angle exceeded
COVERS3	-1072	S3 axis velocity angle exceeded
COVERE1	-1073	E1 axis velocity angle exceeded
COVERE2	-1074	E2 axis velocity angle exceeded
COVERW1	-1075	W1 axis velocity angle exceeded
COVERW2	-1076	W2 axis velocity angle exceeded
ERR MIS VAL	-1080	Setting value is too large or too small
ERR PNT APP	-1081	Approach cannot be performed with axis
		control,
ERR PLY FOR	-1098	Consecutive motion not allowed while in
		teach mode.
ERR PLY MOD	-1099	Switched to teach mode by outer operation.
ERR_USE_TCH	-1100	Teach lock can be ON only in teach mode.
ERR_ACT_DAT	-1101	Designated Key teach data not existing
ERR_CHG_KEY	-1103	Unable to perform Key research for teach
		data
ERR_CUB_NUM	-1200	Interference area designation number error
ERR_CUB_LEN	-1201	Side length designation cannot be performed
		with this cube information. This cube has
		another attribution.
ERR_CUB_MAX	-1202	Upper value teaching cannot be performed
		with this cube information. This cube has
		another attribution.
ERR_CUB_MIN	-1203	Lower value teaching cannot be performed
		with this cube information. This cube has
		another attribution.
ERR_CUB_CTR	-1205	Center value teaching cannot be performed
		with this cube information. This cube has
		another attribution.
ERR_CUB_PRM	-1206	Unknown cube parameter setting
ERR_CUB_SET	-1207	Setting cannot be performed with this cube
		information. This cube has another
		attribution.

ERR_PLY_KEY -1249 Wror acqu	ng designated number when in Key iisition
ERR_NON_KEY -1250 Ther teac	re is no designated ID attribution in h data designated by Key
ERR_NON_CID -1251 Desi	gnated teach point has no JUMP data.
ERR_JMP_SET -1252 Teac its n	ch data designated by Key does not have umber JUMP information.
ERR_NON_IDN -1253 Teac no J	ch point designated by ID attribution has UMP information.
ERR_JMP_NUM -1254 Unab by te	ble to find JUMP information designated each point attribution.
ERR_JMP_ATR -1255 Wror data	ng designated parameter when in JUMP acquisition/setting
ERR_KEY_ATR -1256 Wror data	ng designated parameter when in JUMP acquisition/setting
ERR SOC TST -1300 Sock	ket generation failure
ERR_BND_TST -1311 Faile	ed to bind socket and address
ERR_LSN_TST -1312 Liste	ening failure
ERR_APT_TST -1313 Acce	epting failure
ERR_SOC_SND -1314 Sock	ket generation failure
ERR_SOC_BLK -1315 Not a	available
ERR_SOC_CLT -1316 Too	many clients connected
ERR_PRM_DEV -1350 Para	meter motion velocity is exceeding
veloo inval	city limit value. Parameter alteration is id.

 		······				
Operation continuity malful	nction error:	——> (Brake-stop status)				
	0017	Annu laurath annu a dad DMDO maticus limit				
ERR_OVER900	-2017	Arm length exceeded RMRC motion limit				
		length while in motion				
	-2020	S1 evis engle eveneded				
	-2020	S1 axis angle exceeded				
	-2021	S2 axis angle exceeded				
	-2022	55 axis angle exceeded				
	-2023	E i axis angle exceeded				
	-2024	E2 axis angle exceeded				
	-2025	WI axis angle exceeded				
ERR_W2_AGL	-2026	W2 axis angle exceeded				
DOVERS1	-2030	S1 axis direct control angle exceeded				
DOVERS2	-2031	S2 axis direct control angle exceeded				
DOVERS3	-2032	S3 axis direct control angle exceeded				
DOVERE1	-2033	E1 axis direct control angle exceeded				
DOVERE2	-2034	E2 axis direct control angle exceeded				
DOVERW1	-2035	W1 axis direct control angle exceeded				
DOVERW2	-2036	W2 axis direct control angle exceeded				
		-				
ERR_CANT_MOVE	-2051	RMRC control is not allowed at the current				
		position.				
ERR_S1_REZ	-2060	Anomalous S1 resolver deviation				
ERR_S2_REZ	-2061	Anomalous S2 resolver deviation				
ERR_S3_REZ	-2062	Anomalous S3 resolver deviation				
ERR_E1_REZ	-2063	Anomalous E1 resolver deviation				
ERR_E2_REZ	-2064	Anomalous E2 resolver deviation				
ERR_W1_REZ	-2065	Anomalous W1 resolver deviation				
ERR_W2_REZ	-2066	Anomalous W2 resolver deviation				
	•					
Anomalous resolver de	Anomalous resolver deviation means when the resolver value inputted at the previous time and the present time one exceed the allowable					
at the previous time an						
 range. (Incorrect load	range. (Incorrect loading, provokes missing data.)					
ERR TIMEOUT	-2070	Automatically stopped on account of				
	20,0	exceeding surveillance time.				
ERR SYNCOUT	-2071	Not reaching the target value				
	2071					

ERR_SYNC_S1	-2080	Anomalous S1 axis synchronization in axis control
ERR_SYNC_S2	-2081	Anomalous S2 axis synchronization in axis control
ERR_SYNC_S3	-2082	Anomalous S3 axis synchronization in axis control
ERR_SYNC_E1	-2083	Anomalous E1 axis synchronization in axis control
ERR_SYNC_E2	-2084	Anomalous E2 axis synchronization in axis control
ERR_SYNC_W1	-2085	Anomalous W1 axis synchronization in axis control
ERR_SYNC_W2	-2086	Anomalous W2 axis synchronization in axis control
ERR_RMRC_X	-2087	Anomalous X axis synchronization in RMRC control
ERR_RMRC_Y	-2088	Anomalous Y axis synchronization in RMRC control
ERR_RMRC_Z	-2089	Anomalous Z axis synchronization in RMRC control

.....

Memo

Anomalous synchronization occurs when target and current value deviation exceed the allowable range. (Arm is not moving or rather delays motion.)

ERR_VELOCITY	-2090 -2091	Anomalous velocity deviation Anomalous tip orientation deviation in RMRC control
ERR_CUB_INN	-2100	Interfered with cube
ERR_ARM_ERR0	-2200	Motion start or continuation is not allowed at arm singularity
ERR_ARM_ERR1	-2201	Motion start or continuation is not allowed at arm singularity
ERR_ARM_ERR2	-2202	Motion start or continuation is not allowed at arm singularity

<u>∙Fat</u>	al error> (Control	stop status)
	ERR_POWER_ON	-3000	control not started.
Memo			
	After fatal error o	ccurred v	vithout issuing control start command. if
	other command is	issued, t	his error occurs.
	ERR_EM_CTL	-3001	Emergency stop is pushed.
	ERR_ARC_SEND	-3002	Anomalous arc net communication
	ERR_S1X_LIM	-3003	S1 axis limit switch is ON.
	ERR_DRV_TYP	-3005	Servo driver type is different from parameter designation.
	ERR_FORCE_ON	-3010	Not in force control
	ERR_DDD_STA	-3070	Anomalous communication control servo (master status.
	ERR_D11_STA	-3071	Anomalous servo driver (S1) status
	ERR_D12_STA	-3072	Anomalous servo driver (S2) status
	ERR_D21_STA	-3073	Anomalous servo driver (S3) status
	ERR_D22_STA	-3074	Anomalous servo driver (E1) status
	ERR_D31_STA	-3075	Anomalous servo driver (E2) status
	ERR_D32_STA	-3076	Anomalous servo driver (W1) status
	ERR_D41_STA	-3077	Anomalous servo driver (W2) status
Memo			
	Anomalous servo	driver is t	he case when servo driver detects any
	anomaly and turns	s into wait	ing status after being released from control.
	For servo status,	refer to n	ext page.
	ERR_S_SUSPD	-3091	Anomaly when issuing control (communication) s command
	ERR_E_SUSPD	-3092	Anomaly when issuing control (communication) e command
	ERR_I_SUSPD	-3093	Anomaly when issuing initialization command
Memo			
	Anomalous con	trol comm	nand issuing means when issuing command to
	the servo drive	r, there is	no response for a certain time. (Servo driver
	is anomalous.)		

(3)Servo status driver detection error:

Reference

More information, refer to servo driver operation manual and (3) error information in the section 6.14.1.

DRV_MEM_ERR	1	Anomalous shared memory
EEP_ROM_ERR	2	Anomalous EEPROM
CPU_XXX_ERR	3	Anomalous CPU
ARC_NET_ERR	4	Anomalous communication cycle
VEL_SPN_ERR	5	Anomalous velocity deviation
REZ_SPN_ERR	6	Anomalous resolver deviation
VEL_LIM_ERR	7	Anomalous position limit
MTR_TRQ_ERR	8	Anomalous motor torque
IPM_XXX_ERR	9	Anomalous IPM
BRK_XXX_ERR	10	Severed brake line
REZ_001_ERR	11	Severed resolver line (gear side)
REZ_002_ERR	12	Severed resolver line (motor side)
OVR_TRQ_ERR	13	Over current
OVR_VEL_ERR	14	Over velocity
DMS_XXX_ERR	15	Anomalous dead man SW
CPU_NON_ERR	16	Other anomalous CPU

FUNCTION LIST		<> Page number
System Setting & Init	ialization Fu	nction
pa ini sys	<8-2>	PA library initialization
pa_ter_sys	<8-3>	PA library termination
Arm status control fu	nction	
na onn arm	<8 -4 >	Open arm (control arm selection)
pa_opn_arm	<8-5>	Close arm (control arm separation)
pa_sta_arm	<8-6> <9-7>	Controller operation start (Servo driver communication start)
pa_ext_arm	\0-1/	Controller operation and (Servo driver communication and)
pa_sta_sim	<8-8>	Simulation control start (simulation communication start)
pa_ext_sim	<8-9>	Simulation control end (simulation communication end)
pa stp arm	<8-10>	Arm brake-stop
pa_sus_arm	<8-11>	Arm temporarily stop
pa_rsm_arm	<8-12>	Arm temporarily-stop-release
Axis motion control fu	unction	
pa_exe_axs	<8-13>	Axis angle control
pa_exe_hom	<8-14>	Axis angle control to home position
pa_exe_esc	<8-15>	Axis angle control to escape position
pa_exe_saf	<8-16>	Axis angle control to safety position
Tip position/orientation	on (RMRC)	deviation control function
pa_mov_XYZ	<8-17>	Position deviation control in robot coordinate system
pa_mov_YPR	<8-18>	Orientation deviation control in robot coordinate system
pa_mov_xyz	<8-19>	Position deviation control in tip coordinate system (available only for Visual C++)
pa_mov_XYZ0	<8-19>	Position deviation control in tip coordinate system (available only for Visual BASIC)
pa_mov_ypr	<8-20>	Orientation deviation control in tip coordinate system (available only for Visual C++)
pa_mov_YPR0	<8-20>	Orientation deviation control in tip coordinate system (available only for Visual BASIC)
pa_mov_mat	<8-21>	Tip position /orientation absolute position control

Chapter 7 Library Reference

FUNCTION LIST

<> Page number

---- Function on teach point operation & playback control -----

pa_axs_pnt	<8-23>	Axis motion control from the present position to the current
na moy pnt	<8- 24 >	Linear motion control from the present position to the current
pa_mov_pm	(0 24/	noint
pa_ply_pnt	<8-25>	Playback control
pa_chg_pnt	<8-27>	Teach point pointer alteration ((current point alteration)
pa_add_pnt	<8-29>	Teach point addition
pa_del_pnt	<8-31>	Teach point deletion
pa_rpl_pnt	<8-32>	Teach point replacement
pa_set_pnt	<8-33>	Teach point attribution setting
pa_set_idn	<8-34>	ID_No. setting at teach point
pa_chg_dio	<8-35>	Teach point (PTP) DO attribution setting
pa_vel_pnt	<8-36>	Playback control velocity coefficient alteration
pa_swt_dio	<8-37>	Playback control teach point DO valid/invalid setting
pa_get_pnt	<8-38>	Current point teach point data loading
pa_get_cur	<8-40>	Current point teach point number loading
pa_get_num	<8-41>	Teach point all numbers loading
pa_get_idn	<8-42>	Current point ID_No. loading
pa_get_cpt	<8-43>	Current point circle/arc teach data loading
pa_get_pvl	<8-44>	Playback control velocity coefficient loading
pa_get_pdo	<8-45>	Playback control teach point DO valid/invalid loading
pa_lod_pnt	<8-46>	Loading teach data to controller
pa_sav_pnt	<8-47>	Saving teach data to man-machine controller
pa_set_dlc	<8-48>	Playback DO automatic stop/non stop setting
pa_get_dlc	<8-49>	Playback DO automatic stop/non stop loading

FUNCTION LIST		<> Page number					
	(Additional function from Ver.3.0)						
pa_ply_set	<8-50>	Teach data Key acquisition by number designation					
pa_act_pnt	<8–51>	Active teach data switching					
pa_jmp_set	<8–52>	JUMP data acquisition by number designation					
pa_get_jmp	<8–53>	JUMP data acquisition by Key/ID designation					
pa_set_jmp	<8–54>	JUMP data setting					
pa_ena_jmp	<8–55>	JUMP condition valid/invalid setting					
pa_ply_mod	<8–56>	Teach mode setting					
pa_chg_key	<8–57>	Current active teach data Key alteration					
pa_get_key	<8–58>	Current active teach data Key acquisition					
pa_mon_pnt	<8–59>	Acquired to monitor teach data status					
pa_set_cmt	<8–60>	Comment setting					
pa_jmp_cmt	<8-61>	Current point shifting by comment					
pa_get_ena	<8-62>	JUMP condition valid/invalid acquisition					
pa_get_pmd	<8-63>	Teach mode acquisition					
pa_del_jmp	<8–64>	JUMP data deletion					
pa_sav_ptj	<8-65>	Saving teach data and JUMP data					
pa_lod_ptj	<8-66>	Loading teach data and JUMP data					
pa_get_prj	<8-67>	Project name acquisition					
pa_set_prj	<8-68>	Project name setting					
pa_sav_pr	<8-69>	Saving project					
pa_lod_prj	<8-70>	Loading project					
pa_set_cub	<8-/1>						
pa_get_cub	<8-72>	CUBE teach designation					
pa_cub_ien	<8-/3>						
pa_cub_cmt	<8-74>						
pa_del_cub	<0-73/ <0-76>						
pa_ena_cup	<8-70/ /8-77>						
pa_ini_cub	\0 ///						
Velocity control 1	function						
pa_mod_vel	<8-78>	Velocity control mode setting					
pa_odr_vel	<8-80>	Velocity control data set					
Tip absolute posit	ion/orientation,	axis real-time					
		control function					
pa_mod_dpd	<8-82>	Target position/orientation real-time control mode setting					
pa_odr_dpd	<8-84>	Target position/orientation real-time control data set					
pa_mod_axs	<8-85>	Axis real-time control mode setting					
pa_odr_axs	<8-86>	Axis real-time control data set					

FUNCTION LIST		\Diamond	Page number
Direct control function	(Option	al function)	
pa_mod_dir <8-	7> Servo le	ock ON/OFF when in direct control star	t
pa_wet_ded <8-	8> Weight	compensation control	
pa_drt_ded <8-	9> Arm ins	tallation direction setting	
pa_chk_cnt <8-	0> Synchro	onization processing in direct control	
pa_set_tim <8-	1> Time-o	ut setting in synchronization processing	
pa_get_tim <8-	2> Time-o	ut loading in synchronization processing	
pa_get_drt <8-	3> Arm ins	tallation direction acquisition/loading	
Function on position setting/	lefinition		
pa_set_hom <8-	4> Home p	osition setting	
pa_set_esc <8-	5> Escape	position setting	
pa_set_saf <8-	6> Safety	position setting	
pa_def_hom <8-	7> Defining	g current value as home position	
pa_def_esc <8-	8> Defining	g current value as escape position	
pa_def_saf <8-	9> Defining	g current value as safety position	
Function on coordinate conv	rsion matrix	& tip position offset	
pa_set_mtx <8-	00> Coordir	nate spatial conversion matrix (position o	offset) setting
pa_set_mat <8-	01> Coordir	ate spatial conversion matrix setting	
pa_set_wav <8-	02> Weaving	g trajectory setting	
pa_odr_xyz <8-	03> Tip pos	ition offset value setting	
pa_lmt_xyz <8-	04> Limit va	alue setting when in offset value suppler	nent
pa_get_mat <8-	05> Current	setting conversion matrix loading	
pa_get_sns <8-	06> Current	setting tip offset value loading	
pa_get_Imt <8-	07> Limit va	alue loading when in offset value suppler	nent
Redundant axis control funct	on	(7-axis, only)	
pa_mod_jou <8-	07> Redund	ant axis control mode setting	
pa_odr_jou <8-	10> Redund	ant axis control data set	
pa_mov_jou <8-	11> Redund	ant axis (elbow) motion control	
pa_get_jou <8-	12> Arm red	dundant axis control mode loading	

FUNCTION LIST		<> Page number
Arm status information lo	bading fur	nction
pa_get_mod	<8-113>	Arm control status loading
pa_get_ver	<8-115>	Motion controller S/W version number loading
pa_get_com	<8-116>	Communication status (no communication/simulation/ actual machine) loading
pa_get_sts	<8-117>	Current arm information loading
pa_get_cnt	<8-119>	Current arm control counter loading
pa_get_err	<8-120>	Current arm error information loading
pa_get_agl	<8-121>	Current arm axis value loading
pa_get_xyz	<8-122>	Current arm tip position loading
pa_get_noa	<8-123>	Current arm orientation matrix loading
pa_get_ypr	<8-124>	Current arm position angle loading
pa_get_prm	<8-125>	Current arm parameter loading
pa_get_tar	<8-127>	Current arm target data loading
	(Additio	nal function from Ver.3.0)
pa_get_sav	<8-128>	Axis servo ON/OFF status acquisition
pa_sav_sts	<8-129>	Servo status acquisition
pa_get_smd	<8-130>	TEACH MODE acquisition from servo
pa_set_ddm	<8-131>	Dead man SW valid∕invalid
pa_get_ddm	<8-132>	Dead man SW valid/invalid status acquisition
pa_set_lok	<8-133>	TEACH LOCK setting
pa_get_lok	<8-134>	TEACH LOCK acquisition
pa_tct_tim	<8-135>	Tact time (playback time) acquisition
pa_get_max	<8-136>	Board controllable arm numbers acquisition
pa_get_spt	<8-137>	Acquiring arm identification number
pa_set_sim	<8-138>	Simulation magnification setting
pa_set_inc	<8-139>	Real-time velocity setting
pa_get_sim	<8-140>	Simulation magnification acquisition
pa_get_inc	<8-141>	Real-time velocity acquisition

	Cha	pter 7 Library Reference		
FUNCTION LIST			\diamond	Page number
D				
Digital input/output fu	inction			
pa_inp_dio	<8-142>	Digital input (32ch. unit input)		
pa_oup_dio	<8-143>	Digital output (32ch. unit output)		
pa_get_dio	<8-144>	Digital input (1ch. unit input)		
pa_set_dio	<8-145>	Digital output (1ch. unit set)		
pa_rst_dio	<8-146>	Digital output (1ch. unit reset)		
		(Additional function t	from Ver.3	.0)
pa dio msk	<8-147>	DIO mask setting		
pa_get_msk	<8-148>	DIO mask acquisition		
Function on paramete	er			
pa set tol	<8-149>	Tool information setting		
pa_set_vel	<8–150>	Default velocity alteration		
pa_lod_ctl	<8-151>	loading parameter to controller		
		(Additional function	from Ver.3	.0
pa_tst_nom	<8–152>	RETRAC creation ON/OFF setting		
pa_get_rmd	<8-153>	RETRAC creation ON/OFF acquisition	on	
pa lod rob	<8–154>	Robot model file loading		
pa_lod_tol	<8-155>	Tool model file loading [°]		
pa_sav_rob	<8-156>	model file saving `		
pa_ena_nom	<8-157>	RETRAC calculation switching		
pa_get_nom	<8-158>	Acquiring either T-matrix or RETRA	C calculati	on
pa_tkn_nom	<8–159>	Acquiring RETRAC calculation OK/N	ют ок	
Other functions				
pa_map_ctl	<8-160>	Shared area mapping with controller		
pa_fsh_chk	<8-161>	Waiting for control command process	sing compl	etion
pa_fsh_sub	<8-162>	Waiting for control command process	sing compl	etion
pa_req_ctl	<8-163>	Issuing command setting intrusion to	controller	
pa_req_sub	<8-164>	Issuing command setting intrusion to	controller	
pa_rst_ctl	<8–165>	Arm error information reset		
pa_err_mes	<8-166>	Error message acquisition		

Chapter 8 PA Library

pa_ini_sys

Function PA library initialization

Syntax

long pa_ini_sys(void)

Explanation

This "pa_ini_sys" has to be called before using PA library.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_ter_sys

Descriptio	n example	
#inc	slude	Library prototype declaration
#inc	lude <paerr.h></paerr.h>	Error code
mai	n()	
{		
	pa_ini_sys();	
	:	
	:	
	pa_ter_sys();	
}		
\frown		
<u> Memo) </u>		
pa.h	Needs when the libra	ary is used.
pae	rr.h :Needs on account	error names are declared.

pa_ter_sys

Function

PA library is terminated.

Syntax

long pa_ter_sys(void)

Explanation

This "pa_ter_sys" has to be called after using PA library.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_ini_sys

pa_opn_arm

Funct	tion	
	Open ar	m (control arm selection)
Synta	ax	
5	ERR	pa_opn_arm(ARM armno)
	armno	Arm number (No.)
Expla	nation	
	The arr	m designated by "armno" can be accessed.
	When plu	ural arms are controlled, arms are distinguished by "armno."
Retur	n value	
i to cui	FRR OK	Normal termination
	Others:	Anomalous termination (Refer to error table)
Refer	rence	
	pa_cls_a	rm
Desc	ription exa	ample
	#include	<pa.h> Library prototype declaration</pa.h>
	#include	<pre>> <paerr.h> Error code</paerr.h></pre>
	main() {	
	l	na ini sys() [,]
		pa_nn_syst;; pa_opn_arm(ARM1): Arm_number_selection:
		:
		pa_cls_arm(ARM1);
		pa_ter_sys();
	}	
Memo)	
	na h	·Needs when the library is used
	paerr.h	:Needs on account error names are declared.

All these descriptions are always needed to use the library.

pa_cls_arm

Function Close arm

Syntax

long pa_cls_arm(ARM armno)

armno Arm number (No.)

Explanation

The arm designated by "armno" cannot be accessed.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_opn_arm

pa_sta_arm

Function

Motion controller operation start

Syntax

long pa_sta_arm(ARM armno)

Arm number (No.) armno

Refer to error table.

Explanation

The controller designated by "armno" starts to communicate with servo driver. The controller becomes ready to receive motion command.

This function has to be always performed except initialization.

Return value

ERR OK Normal termination Others: Anomalous termination (Refer to error table)

For return value, there is controller error other than "ERR_OK."

Reference

	CHOC	
	pa_ext_ar	'm
Desc	ription exa	ample
	#include	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	#include	<pre><paerr.h> Error code</paerr.h></pre>
	main()	
	{	
		pa_ini_sys();
		pa_opn_arm(ARM1); Arm number selection
		pa_sta_arm(ARM1);
		:
		Arm motion function
		:
		pa_ext_arm(ARM1);
		pa_cls_arm(ARM1);
		pa_ter_sys();
	}	
Nemo)	
	pa.h	:Needs when the library is used.
	paerr.h	:Needs on account error names are declared

This sentence is omitted in following description examples.
pa__ext__arm

Function

Motion controller operation exit

Syntax

long pa_ext_arm(ARM armno)

armno Arm number (No.)

Explanation

The controller designated by "armno" terminates to communicate with servo driver The controller becomes not ready to receive control command.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_sta_arm

pa_sta_sim

```
Function
      Starts arm motion with simulation mode.
Syntax
      long pa_sta_sim(ARM armno)
               Arm number (No.)
      armno
Explanation
      The controller designated by "armno" starts inner servo driver simulation and
      controls it.
      This library is used in place of "pa_sta_arm." Program can be debugged without
      moving arm.
Return value
      ERR OK Normal termination
      Others: Anomalous termination (Refer to error table)
Reference
      pa_ext_sim
Description example
      #include <pa.h>
                                  .. Library prototype declaration
      #include <paerr.h>
                                           .. Error code
      main()
      {
               pa_ini_sys();
               pa_opn_arm(ARM1);.. Arm number 1 selection
               pa_sta_sim(ARM1); ... Uses "pa_sta_arm" when the actual machine is
                                           operated.
                        ÷
                     Arm motion function
               pa_ext_sim(ARM1);
                                   .. Uses "pa_ext_arm" when the actual machine is
                                           operated.
               pa_cls_arm(ARM1);
               pa_ter_sys();
     }
Memo
      Control can be terminated with "pa_ext_arm," also, when in simulation (pa_sta_sim).
```

pa__ext__sim

Function

Simulation mode is terminated.

Syntax

long pa_ext_sim(ARM armno)

armno Arm number (No.)

Explanation

The controller designated by "armno" terminates inner servo driver simulation and ends control.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_sta_sim

pa_stp_arm

Function

The brake stops arm motion.

Syntax

long pa_stp_arm(ARM armno, long func)

Arm number (No.) armno func Designation whether to wait or not until motion is completed.

Explanation

The controller designated by "armno" stops servo and performs brake-stop to arm.

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion stops completely.

•Designates WM_NOWAIT: returns without confirming a stop.

However, "pa_stp_arm" is performed instantly.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Description example

.. Arm in motion

: if (stop key is pushed)

1

pa_stp_arm(ARM1,WM_WAIT); .. Arm brake-stop

pa_sus_arm

Function

Stops the arm motion temporarily.

Syntax

long pa_sus_arm(ARM armno, long func)

armnoArm number (No.)funcDesignation whether to wait or not until motion is completed.

Explanation

The arm designated by "armno" becomes servo-lock status if it is in motion. Maintaining as it was before temporary-stop, continues the status kept by "par_rsm_arm."

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless temporarily, motion stops completely.

•Designates WM_NOWAIT: returns without confirming a temporary stop. However, "pa_sus_arm" is executed instantly.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_rsm_arm

Description example

: ... Arm in motion if (temporary stop-key is pushed) pa_sus_arm(ARM1, WM_WAIT); : ... While in arm servo lock if (resuming key is pushed)

pa_rsm_arm(ARM1, WM_WAIT);

.. Arm servo lock released

(Resuming arm motion)

pa_rsm_arm

Function

Releases arm temporary stop.

Syntax

long pa_rsm_arm(ARM armno, long func)

armno Arm number (No.)func Designation whether to wait or not until motion is completed.

Explanation

If the arm designated by "armno" is in temporary stop, it is released resuming prior motion.

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless temporarily, motion stops completely.

•Designates WM_NOWAIT: returns without confirming temporary-stop-release. However, "pa_rsm_arm" is executed instantly.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_sus_arm

pa_exe_axs

Function

Performs each axis motion.

Syntax

long pa_exe_axs(ARM armno, AXIS axis, ANGLEP angle, long func)

armno	Arm number (No.)
axis	designates by "enum AXIS": motion axis designation.
	Plural axes can be selected. (Example: S1 S2 S3)
angle	Motion angle: is designated by pointer type "ANGLEP" to structure ANGLE
func	Designation whether to wait or not until motion is completed.

Explanation

The axis designated by "axis" creates motion at default angle velocity to the angle designated by "angle".

This function creates motion by "func" as follows:

- •Designates WM_WAIT : does not return unless motion stops completely.
- •Designates WM_NOWAIT: returns without confirming motion completion.

Remark

When the designated axis target angle exceeds its axis motion range, its target angle is altered to motion range allowing maximum value. Automatic target value alteration is reported to users with the warning: "target angle exceeded." Angle velocity default value employs default velocity.

Reference

For alteration, arm parameter has to be changed. Arm parameter alteration method can be referred to parameter setting manual or "pa_set_vel."

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_set_vel

Description example

```
:
ANGLE ang;
ang.s1=1.57;
ang.s2=1.57;
ang.w2=1.57;
pa_exe_axs(ARM1, S1|S2|W2, &ang, WM_WAIT);
... Moves S1, S2 and W2 axis at the distance of 1.57 [rad]
:
```

pa_exe_hom

Function

Controls each axis to home position.

Syntax

long pa_exe_hom(ARM armno, long func)

armnoArm number (No.)funcDesignation whether to wait or not until motion is completed.

Explanation

Moves to the home position setting in the arm parameter. Home position default angle for all axes is $0 \, [deg]$.

Reference

Home position default angle correction method can be referred to parameter setting manual or "pa_set_hom."

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed. •Designates WM_NOWAIT : returns without confirming motion completion.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_set_hom	Alters home position.
pa_def_hom	Replaces home position with current value.

pa_exe_esc

Function

Controls each axis to "escape" position.

Syntax

long pa_exe_esc(ARM armno, long func)

armno Arm number (No.)func Designation whether to wait or not until motion is completed.

Explanation

Moves to the "escape" position setting in parameter. Escape position default angles are:

S2 : 45[deg] E1 : 90[deg] W1 : 45[deg] Others: 0[deg]

Reference

Escape position default angle correction method can be referred to parameter setting or "pa_set_esc."

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed. •Designates WM_NOWAIT : returns without confirming motion completion.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_set_esc	Alters escape position.
pa_def_esc	Replaces escape position with current value.

pa_exe_saf

Function

Controls each axis to "safety position."

Syntax

long pa_exe_saf(ARM armno, long func)

armnoArm number (No.)funcDesignation whether to wait or not until motion is completed.

Explanation

Moves to "safety" position setting in parameter. Safety position default angles are: S2 : 45[deg] E1 : 90[deg] W1 :-45[deg] Others: 0[deg]

Reference

Escape position default angle correction method can be referred to parameter setting or "pa_set_saf."

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed.

•Designates WM_NOWAIT : returns without confirming motion completion.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_set_saf	Alters safety position.
pa_def_saf	Replaces safety position with current value.

pa_mov_XYZ

Function

RMRC base coordinate position deviation control

Syntax

long pa_mov_XYZ(ARM armno, float X, float Y, float Z, long func)

armno	Arm number (No.)		
Х	Base coordinate	toward X	position deviation [mm]
Y	Base coordinate	toward Y	position deviation [mm]
Z	Base coordinate	toward Z	position deviation [mm]
func	Designation wheth	er to wait o	or not until motion is completed.

Explanation

With base coordinate axis as standard, the tip position moves at exact distance created from designated position deviation toward X, Y and Z. Tip orientation does not change.

Tip motion trajectory is linear. Velocity is interpolated creating modified sin curve profile for start-up/shutdown.

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed.

•Designates WM_NOWAIT : returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg] (930 [mm] length from S2 rotation origin to W1 rotation origin). Singularity check is performed when the target value is created in RMRV control.

Reference

For more, refer to programming manual in chapter 3.
Remark
When the tip target position calculated from designated deviation, exceeds arm motion range, warning occurs: "target value arm length exceeds 925 [mm] (automatically cut target value)." If arm motion continues and exceeds motion range, the operation is automatically switched to temporary-stop status. Immediately, the servo-lock performs.
When LENGTH value is beyond 925 [mm] before being in motion, this motion is not performed as the motion range exceeds. Two motion range types: LENGTH 925 [mm] available for RMRC control and axis angle limit. If exceeding either limit, arm motion is not performed.
Return value

ERR OK Normal termination

pa_mov_YPR

Function

RMRC Base coordinate orientation deviation control

Syntax

long pa_mov_YPR(ARM armno, float Y, float P, float R, long func)

armno	Arm number (No.)		
Y	Base coordinate	rotation on X axis	orientation deviation [rad]
Р	Base coordinate	rotation on Y axis	orientation deviation [rad]
R	Base coordinate	rotation on Z axis	orientation deviation [rad]
func	Designation whethe	er to wait or not unti	l motion is completed.

Explanation

With base coordinate axis as standard, the tip orientation (direction) rotates at exact distance created from designated deviation: Yaw, Pitch and Roll. Tip position does not change.

Tip rotational velocity is interpolated creating modified sin curve profile for start-up/shutdown.

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed.

• Designates WM_NOWAIT : returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg] (930 [mm] length from S2 rotation origin to W1 rotation origin).

Reference

For more, refer to programming manual in chapter 3.

Remark

No warning occurs even if the tip target orientation calculated by the designated deviation exceeds arm motion range.

If arm motion continues and exceeds motion range, the operation is automatically switched to temporary-stop status. Immediately, the servo-lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this motion is not performed as the motion range exceeds.

Two motion range types: LENGTH 925 [mm] available for RMRC control and axis angle limit. If exceeding either limit, arm motion is not performed.

Return value

ERR_OK Normal termination

pa_mov_xyz (for Visual BASIC, pa_mov_XYZ0)

Function

RMRC mechanical interface coordinate position deviation control

Syntax

long pa_mov_xyz(ARM armno, float x, float y, float z, long func)

armno /	Arm	number	(No.).
---------	-----	--------	--------

х	Mechanical interface coordinate	toward X	position deviation	[mm]
---	---------------------------------	----------	--------------------	------

y Mechanical interface coordinate toward Y position deviation [mm]

z Mechanical interface coordinate toward Z position deviation [mm]

func Designation whether to wait or not until motion is completed.

Explanation

With base coordinate axis as standard, the tip position moves at the only distance created from designated position deviation toward X, Y and Z. Tip orientation does not change.

Tip motion trajectory is linear. Velocity is interpolated creating trapezoidal profile.

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed.

•Designates WM_NOWAIT: returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg] (930 [mm] length from S2 rotation origin to W1 rotation origin). Singularity check is performed when the target value is created in RMRV control.

(Reference)

For more, refer to programming manual in chapter 3.
Remark
When the tip target position calculated from designated deviation, exceeds arm motion range, warning occurs: "target value arm length exceeds 925 [mm] (automatically cut target value)." If arm motion continues and exceeds motion range, the operation is automatically
switched to temporary-stop status. Immediately, the servo-lock performs.
When LENGTH value is beyond 925 [mm] before being in motion, this motion is not performed as the motion range exceeds.
Two motion range types: LENGTH 925 [mm] available for RMRC control and axis angle limit. If exceeding either limit, arm motion is not performed.
Return value
ERR_OK Normal termination

pa_mov_ypr (for Visual BASIC, pa_mov_YPR0)

Function

RMRC mechanical interface coordinate orientation deviation control

Syntax

long pa_mov_ypr(ARM armno, float y, float p, float r, long func)

armno	Arm number (No.).		
У	Mechanical interface coordinate	rotation on X axis	position deviation
	[rad]		
р	Mechanical interface coordinate [rad]	rotation on Y axis	position deviation
r	Mechanical interface coordinate [rad]	rotation on Z axis	position deviation
f	Destinguites where the sector of the sector		

func Designation whether to wait or not until motion is completed.

Explanation

The tip orientation moves with RMRC control at the distance created from orientation deviation designated at y, p and r in the mechanical interface coordinate.

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed.

•Designates WM_NOWAIT: returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg] (930 [mm] length from S2 rotation origin to W1 rotation origin).

(Reference)

For more, refer to programming manual in chapter 3.				
Remark				
No warning occurs even if the tip target orientation ca	alculated by the	designated		

No warning occurs even if the tip target orientation calculated by the designated deviation exceeds arm motion range.

If arm motion continues and exceeds motion range, the operation is automatically switched to temporary-stop status. Immediately, the servo-lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this motion is not performed as the motion range exceeds.

Two motion range types: LENGTH 925 [mm] available for RMRC control and axis angle limit. If exceeding either limit, arm motion is not performed.

Return value

ERR_OK Normal termination

pa_mov_mat

Function

Tip position/orientation target absolute position designation control

Syntax

long pa_mov_mat(ARM armno, MOVEMODE mmod, MATRIX mat, ANGLEP angle, long func)

armno	Arm number (No.).
mmod	Absolute target matrix classification ? 絶先目標行列種別???????
mat	Absolute tip position/orientation target matrix
angle	Each axis value for redundant axis restriction control [rad]
func	Designation whether to wait or not until motion is completed.

Explanation

Moves to the target provided by "mat" for the arm designated by "armno". Three motion target designation methods: absolute position, absolute orientation and absolute position/orientation. These can be designated by "mmod". Trajectory to the designated target value is interpolated linearly.

MOVEMODE mmod classification:

•MM_XYZ	:By "mat", position is altered without changing absolute
	position target matrix tip orientation.
·MM_NOA	:By "mat", orientation is moved without changing absolute
	orientation target matrix tip position.
·MM_XYZNOA	: By "mat", absolute position orientation matrix tip
	position/orientation is moved.

MATRIX mat

(nx ox ax px ny oy ay py nz oz az pz) matrix: mat[3][4]

ANGLEP angle

Also, in this control, redundant axis control mode (the mode selected by "pa_mod_jou") to control elbow position is available and restricted by each axis value provided by "angle." For 6-axis or 7-axis arm, when redundant axis control mode is OFF (no restriction), "angle" is invalid. However, a variable has to be set 0.

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed.

•Designates WM_NOWAIT: returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg] (930 [mm] length from S2 rotation origin to W1 rotation origin).

Reference

For more, refer to programming manual.

```
Return value
      ERR_OK Normal termination
      Others: Anomalous termination (Refer to error table)
Description example
                :
      MATRIX mat;
      ANGLE
                        an;
      mat[0][0] = 0.0;
               :
      mat[2][3]= 850.0;
      an.s1 = 0.0;
      an.s2 = 0.0;
      an.s3 = 60.0/180.0*M_PI; ...60[deg]
          :
      an.w2 = 0.0;
      pa_mov_mat(ARM1, MM_XYZNOA, mat, &an, WM_WAIT);
           :
      Moves with RMRC interpolation from the current point to the tip
                                           position/orientation indicated by "mat".
```

pa_axs_pnt

Function

Moves from the present point to the current point.

Syntax

long pa_axs_pnt(ARM armno, long func)

armno Arm number (No.). func Designation whether to wait or not until motion is completed.

Explanation

Moves the arm with axis interpolation from the present point to the current point.

<Differences between pa_axs_pnt and pa_mov_pnt>

•Whatever a current point data type is, "pa_axs_pnt" moves with axis control.

•For "pa_mov_pnt," when the current point data type is PTP data, moves with linear interpolation (RMRC) control. When type is CP data, moves with axis interpolation (axis angle control.)

When the present and current point position/orientation are completely different, it is advisable to use axis interpolation. From any position/orientation (home orientation, etc.) it can reach the current point.

Explanation for "func" is the same as "pa_mov_pnt".

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_mov_pnt

:

Moves linearly to the current point.

Description example

pa_chg_pnt(ARM1, PM_TOP, 0);	Moves teach point pointer to the top.
pa_axs_pnt(ARM1, WM_WAIT);	Moves to the current (top) teach point with
	axis interpolation.

pa_mov_pnt

Function

Moves from the present point to the current point.

Syntax

long pa_mov_pnt(ARM armno, long func)

armno Arm number (No.).

func Designation whether to wait or not until motion is completed.

Explanation

Moves the arm from the present point to the current point interpolating linearly tip trajectory and tip orientation.

This function creates motion by "func" as follows:

•Designates WM_WAIT : does not return unless motion is completed.

•Designates WM_NOWAIT: returns without confirming motion completion.

For this method, RMRC control is employed, the arm tip position trajectory from the present position to the current one is linearly interpolated and orientation is also interpolated.

For 7-axis arm:

Even if the tip position/orientation trajectory is the same, plural axis values exist then. So that redundant axis control has to be set.

- •If redundant axis operation control mode is selected, current point teach data axis value restricts motion.
- •If redundant axis operation control mode not restricted is selected, motion is not restricted by current point teach data axis value.
- Either redundant axis control modes, the tip trajectories are the same. But, each axis value is different.

Redundant axis control mode is available in all RMRC controls until it is reset.

Reference

For more, refer to programming manual in chapter 3.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_chg_pnt	Current point alteration
pa_axs_pnt	Each axis moves to the current point.
pa_ply_pnt	Playback control
pa_mod_jou	Restricted axis control mode

Description example

pa_mod_jou(ARM1, JM_ON); Redund	dant axis control mode "All axes restriction"
	selection
pa_chg_pnt(ARM1, PM_TOP, 0);	Moves the teach point pointer to the top
pa_mov_pnt(ARM1, WM_WAIT);	Moves to the current (top) teach point with
	axis interpolation.

pa_ply_pnt

Function

Performs playback control.

Syntax

long	pa_ply_pnt(ARM armno, PLAYBACK pbmod, long number, long func)
armno	Arm number (No.).
pbmod	Motion direction and motion method are designated by enum
	PLAYBACK."
func	Designation whether to wait or not until motion is completed.

Explanation

Performs playback motion designated by "pbmod".

- **PB_FORES**: Performs playback with step toward. If data is PTP, motion continues to the next.
- **PB_BACKS**: Performs playback with step reverse. If data is PTP, motion continues to the next.
- **PB_FORE**: Starts to consecutively playback forward for teach data from the current point. Playback is performed as many as designated by the number. If the number is designated -1, playback is infinitely performed.

This function creates motion by "func" as follows:

- •Designates WM_WAIT : does not return unless motion is completed.
- •Designates WM_NOWAIT: returns without confirming motion completion.

Playback motion is available when teach data is being loaded or when teaching is performed. However, this can be used only when the current point and the arm position are placed together. If not, move the arm to the current point.

Playback control: method to interpolate the tip position/orientation calculated from teach data axis value and control it.

7-axis arm function

For 7-axis arm, Even if the tip position/orientation trajectory is the same, plural axis values exist. So that redundant axis operation has to be set.

Before performing playback control:

- •If redundant axis operation control mode is selected, teach point data axis value restricts motion.
- If redundant axis operation control mode: "JM_OFF" is selected, motion is not restricted by teach point data axis value.
 Default is JM OFF.
- With any redundant axis control mode, the tip trajectory is the same. But, each axis value is different.
- Redundant axis control mode is available in all RMRC controls until it is reset.

Reference

For more, refer to programming manual.

÷

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_mov_pnt	Moves linearly to the arm current point.
pa_axs_pnt	Each axis moves to the arm current point.
pa_mod_jou	Performs redundant axis operation control.

Description example

:

pa_mod_jou(ARM1, JM_ON); .. Redundant axis control mode "all axes restriction" selection

pa_chg_pnt(ARM1, PM_TOP, 0);	Moves th	ne teach point pointer to the top
pa_mov_pnt(ARM1, WM_WAIT);	Moves to	the current (top) teach point with
	axis int	erpolation.
pa_ply_pnt(ARM1, PB_FORE, -1, \	NM_WAIT);	Playback control starts from the
		current point (top) to infinity.

Alters the current point of teach point.

pa_chg_pnt

Function

Syntax

Oyntax	
long p	a_chg_pnt(ARM armno, PNTMOVE pmov, long jpt)
armno A pmov D jpt P pmov = A	orm number (No.). Designates teach point pointer forwarding place with "enum PNTMOVE." Pointer shifting designation number Available when in "PM_JMP."
Explanation Changes te Teach poin	each point pointer to the teach point position designated by "pmov". t pointed out by teach point pointer is called current point.
PM_TOP	:Moves the teach point pointer to the top.
PM_NEXT	: Moves the teach point pointer to the next teach point.
T te n	his function is available when teach data is being loaded or when eaching is performed. If the current point is at the last teach point, othing is performed.
PM_PRIV	: Moves the teach point pointer to the previous teach point.
T te	his function is available when teach data is being loaded or when eaching is performed. If the current point is at the top teach point, othing is performed.
PM_BTM	: Moves the teach point pointer to the last teach point.
T 	his function is available when teach data is being loaded or when eaching is performed. If the current point is at the last teach point, othing is performed.
PM_JMP	: Moves the teach point pointer to the teach point. With designated number "jpt".
PM_CIR	Researches the circle teach point forward from the current point and moves the teach point pointer to the teach point found in the first place.
PM_ARC	:Researches the arc teach point forward from the current point and moves the teach point pointer to the teach point found in the first place.
Wh is de point point	en the current point (the 2ndpoint) is the circle first point, if "PM_NEXT" esignated, the current point become the 5 th point. To summarize, the ts able to be the current point are point attribution: PTP and circle 1 st

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_sav_pnt

Memo

Teach point pointer:

When operation function on teach point is performed, the teach point has to be indicated for the operation target. The one indicating this teach point is the teach point pointer.

The teach point pointed out by teach point pointer is called the current point (current teach point).

After pointer shifting operation, if intending to restart playback, the current point and present arm position have to be placed together.

When teach data is loaded, the current point is the top teach point.

Teach point operation is total only for teach data operation. It has nothing to do with actuating arm itself.

Reference

For more, refer to programming manual 3

pa_add_pnt

Function
Adds the current position to the teach point.
Syntax
long pa_add_pnt(ARM armno, PNTTYPE ptyp)
arman Arm number (No.)
ntyp. Teach point addition position and data type designated by "enum PNTTYPE"
Adds the current value as teach point with the method designating by "ptyp".
• PT_PTP : Adds PTP linear interpolation data after the current point.
The current point becomes the added teach point.
• PT BPTP : Adds PTP linear interpolation data before the current point.
The current point becomes the added teach point.
•PT_ARC1 : Adds the arc 1 st point.
The current point becomes the added teach point.
•PI_ARG2 : Adds the arc 2 ¹¹⁰ point.
The current point has to be the arc 1° point.
The current point becomes the added teach point.
• PT ARC3 : Adds the arc 3^{rd} point.
The current point has to be the arc 2^{nd} point.
The current point becomes the added teach point.
• PT_CIR1 : Adds the circle 1 st point.
The current point becomes the added teach point.
•PT_CIR2 : Adds the circle 2 nd point.
The current point has to be the circle 1 st point.
The current point becomes the added teach point.
•DT CIP3 · Adde the circle 3 rd point
The current point has to be the circle 2 nd point
The current point has to be the orded teach point.
•PT_AXS : Adds PTP axis interpolation data retaining axis recovery attribution
after the current point.
The current point becomes the added teach point.
•PT_BAXS : Inserts PTP axis interpolation data retaining axis recovery
attribution before the current point.
The current point becomes the inserted teach point.

• PT_POS : Adds PTP linear interpolation NOAP data after the current point. The current point becomes the added teach point.
•PT_BPOS : inserts PTP linear interpolation NOAP data before the current point.
The current point becomes the added teach point.
• PT_ARC4 : Adds the arc 1 st point with NOAP data.
The current point becomes the added teach point.
• PT_ARC5 : Adds the arc 2^{nd} point with NOAP data.
The current point has to be the arc 1 st point.
The current point becomes the added teach point.
• PT_ARC6 : Adds the arc 3 rd point with NOAP data.
The current point has to be the arc 2 nd point.
The current point becomes the added teach point.
• PT_CIR4 : Adds the circle 1^{st} point with NOAP data.
The current point becomes the added teach point.
• PT_CIR5 : Adds the circle 2 nd point with NOAP data.
The current point has to be the circle 1 st point.
The current point becomes the added teach point.
• PT_CIR6 : Adds the circle 3 rd point with NOAP data.
The current point has to be the circle 2 nd point.
The current point becomes the added teach point.
Return value
Others: Anomalous termination (Refer to error table)
Peference
na cha pat
pa_del_pnt Teach data deletion
Deservities exemple
pa_chg_pnt(ARM1, PM_JMP, 5); Moves the teach point pointer to the
pa add ppt(ARM1_PT_PTP); Joads PTP linear interpolation data
teach point to the 6 th teach point.
:

pa_del_pnt

Function

Deletes the teach point.

Syntax

long	pa_del_pnt(ARM armno, PNTDEL pdel)
armno	Arm number (No.).
pdel	Designates teach point to be deleted, with "enum PNTDEL".

Explanation

Deletes teach point designated by "pdel".

• **PD_CUR** : Deletes teach point of current point. If current point is deleted, teach point pointer moves back to the prior teach point after deletion.

On account current point is changeable, when intending to restart playback, the arm has to be moved to the current point position to get coordination.

•PD_ALL : Deletes all teach points of current teach Key.

•PD_ALLDATA : Deletes all teach data points.

Command cannot be accepted while in playback.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_chg_pnt	Current point alteration
pa_add_pnt	Teach point addition

pa_rpl_pnt

Function

Replaces the present axis value with teach point data of current point.

Syntax

long pa_rpl_pnt(ARM armno)

Arm number (No.). armno

Explanation

Replaces the present axis value with teach point data of current point.

Remark

This function is available when teach data is being loaded or when teaching is performed.

There is no function to recover replaced data.

This replacement function is available when the current point is PTP data. When intending to change only the position of certain completed teach data, if this replacement and current point alteration functions are combined well, alteration can be easily performed.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_chg_pnt

Current point alteration

Description example

pa_chg_pnt(ARM1, PM_JMP, 3); .. Moves the teach point pointer to the 3rd teach point. pa_rpl_pnt(ARM1); .. Replace the 3rd teach point with the

current point.

pa_set_pnt

Function

Sets the teach point attribution.

Syntax

long	pa_set_pnt(ARM armno, PNTATTR pattr, long* ldat, float fdat)
armno pattr	Arm number (No.). Designates attribution altered, with "enum PNTATTR".
ldat	Attribution altered

fdat Attribution altered

Explanation

Attribution designated by current point: "armno" has to be set in "Idat" or "fdat".

 PA_CHGVEL : Alters playback linear velocity.
"fdat" dimension: [mm/sec]
•PA_CHGWAIT: Alters playback waiting time. "Idat[0]" dimension: [msec]
 PA_VELPTN : Alters teach data velocity interpolation pattern.
ldat[0] shows velocity pattern.
ldat[1] shows start up time [*10mSec]
ldat[2] shows start up time [*10mSec]
 PA_ROTVEL : Alters playback rotational velocity.
"fdat" dimension: [rad/sec]
•PA_AXSACC: Alters each axis accuracy. "fdat" dimension: [deg]
 PA_RMRCACC: Alters straight line accuracy. "fdat" dimension: [mm]
 PA_JUMPID: Alters JUMP numbers. Setting at Idat[0].
Reference

For teach data format, refer to programming manual.

Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Description example

÷

long i,ldat[3];

pa_chg_pnt(ARM1, PM_JMP, 3);.. Moves the teach point pointer to the 3rd teach point.

pa_set_pnt(ARM1, PA_CHGVEL, Idat, 1.2f); ... Changes 3rd teach point velocity to 1.2[mm/sec].

pa_set_idn

Function

Sets teach point ID data attribution.

Syntax

long pa_set_idn(ARM armno, PNTID pa, long dat)

armno	Arm number (No.).
ра	Alteration attribution designation
dat	Attribution value

Explanation

This "pa" designates teach point attribution intended to change. Now, the attribution supported by this library is only one.

Macro definition PA_SETID : Sets ID number.

This ID number is set to be designated by "dat".

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_idn Teach point ID number acquisition

Description example

÷

pa_set_idn(ARM0,PA_SETID,0x1234); ... ID No. setting

pa_chg_dio

```
Function
```

Sets teach point (PTP) DO data attribution.

Syntax

long pa_chg_dio(ARM armno, DIOSTATUSP dp)

armno Arm number (No.).dp Pointer to the DO data attribution structure "DIOSTATUS".

Explanation

Sets each designated port data attribution as current point DO data attribution. (Port 1 cannot be set on account of the system activation.) Setting cannot be performed while in playback control.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Description example

DIOSTATUS dos;

•	
dos.io1 = 0x01;	PORT1 CH1 ON
dos.io2 = 0x80;	PORT2 CH8 ON
dos.io3 = 0x40;	PORT3 CH7 ON
:	
pa_chg_dio(ARM1,&dos);	Sets current point teach

Remark

DO information format inside teach data is long. Beware when putting this format into "DIOSTATUS" type.

Example: For adding PORT1_CH1 ON, PORT2_CH3 ON and PORT3_CH8 ON to current point DO information.

```
2
PNTDAT pnt;
UBYTE* ubp;
DIOSTATUS dos;
pa_get_pnt(ARM0,&pnt);
                           .. Current point DO information loading
ubp = (UBYTE*)&pnt.ply.pnt.atr[6];
                                     .. Setting with DIOSTATUS type.
dos.io1 = *(ubp+2);
dos.io2 = *(ubp+1);
                               (ATTENTION! To each port address.)
dos.io3 = *ubp:
dos.io1 = 0x01:
                            ...Adds DIO information.
dos.io2 = 0x04;
dos.io3 = 0x80;
pa_chg_dio(ARM0,&dos);
                            .. Setting to current point DIO information
```

data DIO information.

pa_vel_pnt

Function

Alters all teach data interpolation velocity in playback control.

Syntax

long pa_vel_pnt(ARM armno, float vgain)

armno Arm number (No.). vgain Interpolation velocity alteration gain

Explanation

Alters arm playback interpolation velocity designated by "armno". Velocity of all data with PTP interpolation is corrected.

PTP interpolation velocity in playback control is the shifting time calculating from shifting value created from tip linear motion velocity: Vxyz and tip rotational motion velocity: Vypr.

 $\Delta Txyz = \Delta XYZ / Vxyz$ $\Delta Typr = \Delta YPR / Vypr$

Larger one is selected.

Selected velocity (Vxyz or Vypr) is altered by "vgain".

If " $\Delta Txyz > \Delta Typr$ ",

Vxyz = Vxyz*vgain

Velocity is interpolated on the basis of "Vxyz".

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_pvl Playback velocity coefficient information acquisition

pa_swt_dio

Function

Sets teach point DO data valid/invalid.

Syntax

long pa_swt_dio(ARM armno, long sw)

armno Arm number (No.). sw Valid/invalid parameter

Explanation

When parameter (sw) is 0, DO attribution inside teach data becomes invalid and is not output even during playback control.

If parameter (sw) is not 0, output is exactly performed following teach data DO attribution in playback control.

Default is 1

This can be changed while in playback control.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_ply_pnt	performs playback control.
pa_get_pdo	DO data valid/invalid acquisition while in playback.

pa_get_pnt

Function			
	Acquires teach point attribution of current point.		
Synta	x		
-	long	pa_get_pnt(ARM armno, PNT	DATP tea)
	armno tea	Arm number (No.). Download area for teach poir	nt attribution of current point.
	Explanati	on	
	·	Acquires current point teach data	
		tea.ply.pnt.agl[0]	
		~tea.ply.pnt.agl[6]	S1 axis angle [rad] \sim W2 axis [rad]
		tea.ply.pnt.vel[0]	Linear velocity [mm/sec]
		tea.ply.pnt.vel[1]	Rotational velocity [rad/sec]
		tea.ply.pnt.atr[0]	Teach point type(PTP/PTP(NOAP))
		tea.ply.pnt.atr[1]	Interpolation method (straight line/circle/arc)
		tea ply pnt atr[2]	Velocity type (Acceleration & Deceleration/
			Acceleration/ Deceleration/Straight line)
		tea.ply.pnt.atr[3]	Waiting time [*10mSec]
		tea.ply.pnt.atr[4]	Serial number (not available for users)
		tea.ply.pnt.atr[5]	ID number
		tea.ply.pnt.atr[6]	DO information
		tea.ply.pnt.atr[7]	Accuracy
		Up	per 16 bit: RMRC accuracy (0-25.5[mm])
		Lo	wer 16 bit: axis accuracy (0-25.5[deg])
		tea.ply.pnt.atr[8]	JUMP conditional number
		tea.ply.pnt.atr[9]	Acceleration time [*0.01mSec]
		tea.ply.pnt.atr[10]	Deceleration time [*0.01mSec]
		tea.ply.pnt.atr[11]	Spare
		tea.ply.cmt[32]	Maximum 32 letters comment
		tea.noa.xyz[0]~tea.noa.xyz[3] Arm X, Y and Z coordinate [mm]
		tea.noa.noa[0]~tea.noa.noa[3	3] Arm orientation
		tea.jmp.cid	Number specifying JUMP condition
		tea.jmp.jdg[0].cnd[0]	JUMP condition
		tea.jmp.jdg[0].cnd[1]	Not available
		tea.jmp.jdg[0].xdi	DI information
		tea.jmp.jdg[0].tim	Time-out [mSec]
		tea.jmp.jdg[0].key	Teach data Key
		tea.jmp.jdg[0].pid	Teach point ID
		tea.jmp.jdg[0].cnt	Inside information
		: tea.jmp.jdg[7].cnd[0]	JUMP condition
		tea.jmp.jdg[7].cnd[1]	Not available
		tea.jmp.jdg[7].xdi	DI information
		tea.jmp.jdg[7].tim	Time-out [mSec]
		tea.jmp.jdg[7].key	Teach data Key

tea.jmp.jdg[7].pid tea.jmp.jdg[7].cnt Teach point ID Inside information

JUMP condition can be set 8 (eight).

Reference

For interpolation pattern, refer to programming manual.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_get_cur	Acquires teach point number of current point.
pa_get_num	Acquires total numbers of teach point.
pa_get_idn	Acquires teach point ID number.

pa__get__cur

Function

Acquires current point teach point number.

Syntax

long	pa_get_cur(ARM armno, long* cur)
armno	Arm number (No.).
cur	Current point teach point number.

Explanation

Acquires teach point number from teach point attributions of current point.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_get_pnt	Acquires current point teach point attribution.
pa_get_num	Acquires teach point total numbers.

pa__get__num

Function

Acquires teach point total numbers.

Syntax

long	pa_get_num(ARM armno, long* num)
armno	Arm number (No.).
num	Teach point total numbers

Explanation

Acquires teach point total numbers.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_get_pnt	Acquires current point teach point attribution.
pa_get_cur	Acquires current point teach point number.

pa__get__idn

Function

Acquires teach point ID data attribution.

Syntax

long pa_get_idn(ARM armno, long* idn)

armno Arm number (No.). idn attribution value

Explanation

Acquires current point ID data attribution.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_set_idn Teach point ID number setting

Description example

long id;

```
:
```

pa_get_idn(ARM0,&id);

.. Current point ID number acquisition
pa__get__cpt

Function

 1^{st} , 2^{nd} and 3^{rd} point information are acquired when current point is circle/arc.

Syntax

long pa_get_cpt(ARM armno, PNTNO pno, PNTDATP pntdat)

armno Arm number (No.). pno Circle/arc Identification number designation. pntdat Pointer for teach data structure "PNTDAT".

Explanation

Teach data to obtain by "pa_get_pnt" is only the current point data. Therefore, if intending to acquire $2^{nd}/3^{rd}$ data for circle/arc, use this function.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_pnt

Acquires current point teach point attribution.

pa__get__pvl

Function

Acquires playback velocity coefficient information.

Syntax

long	pa_get_pvl(ARM armno, float* div)
armno	Arm number (No.).
div	Playback velocity coefficient

Explanation

Acquires current setting playback velocity coefficient information.

For Playback velocity coefficient, default = 1. This default can be changed by "pa_vel_pnt".

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_vel_pnt

Playback velocity coefficient information setting

pa__get__pdo

Function

Acquires DO information valid/invalid inside teach data when in playback control.

Syntax

long pa_get_pdo(ARM armno, long* stat)

armno	Arm number (No.).
stat	DO valid/invalid flag

Explanation

stat = 1:Playback data DO information valid.
stat = 0:Playback data DO information invalid.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_swt_dio

Teach data DO information valid/invalid setting when in playback control.

pa_lod_pnt

Function

Loads teach point to controller.

Syntax

long pa_lod_pnt(ARM armno, STRING file)

armno Arm number (No.). file Teach point data file name

Explanation

Loads data designated by "file" to the arm designated by "armno".

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_sav_pnt Teach data saving

pa_sav_pnt

Function

Loads teach points from the controller. Saves them in hard disk of man-machine controller.

Syntax

long pa_sav_pnt(ARM armno, STRING file)

armno Arm number (No.). file Teach data storing file name

Explanation

Uploads teach data from the arm controller designated by "armno". Saves it with the designated file name in the hard disk of man-machine controller.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_lod_pnt

Teach data loading

pa_set_dlc

Function

Sets either to stop automatically or not synchronizing DO information with arm motion in playback control.

Syntax

long pa_set_dlc(ARM armno, long data)

armno Arm number (No.). data DO automatic stop valid/invalid parameter

Explanation

When teach point DO information is outputted during playback control, if the arm is temporarily stopped (paused) or in brake-stop, set either to stop or not to output DO information.

When parameter (data) is 0, if the arm is stopped, DO information output is also stopped.

When parameter (data) is 1, even if the arm is stopped, DO information output continues.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_dlc

pa__get__dlc

Function

Acquires determination whether to automatically stop or not synchronizing DO information with arm motion in playback control.

Syntax

long	pa_get_dlc(ARM	armno,	long*	stat)
------	----------------	--------	-------	-------

armno Arm number (No.). stat DO automatic stop valid/invalid flag

Explanation

stat = O:Teach data DO information automatic stop invalid. stat = 1:Teach data DO information automatic stop valid.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_set_dlc

pa__ply__set

F
FUNCTION

Acquires teach data Key with number designation.

Syntax

long pa_ply_set(ARM armno, long number, long* key);

armno Arm number (No.). number Teach data number key Teach data Key number pointer

Explanation

Acquires teach data Key with number designation.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_jmp_set Acquires JUMP data with Key and number designation

Description example:

long key;

:

pa_ply_set(ARM0,0,&key); Acquires teach data Key with number designation.

pa_act_pnt

Function Active teach data switching

Syntax

long pa_act_pnt(ARM armno, long key)

armno Arm number (No.). key Teach data Key number

Explanation

Switches currently active teach data to designated Key.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_chg_key Switching currently active teach data to Key.

Description example:

: pa_act_pnt(ARM0,3); :

.... Alters from Key No.3 data into active teach data.

pa_jmp_set

F	
FUNCT	ion
i unoc	

JUMP data acquisition with number designation

Syntax

long pa_jmp_set(ARM armno, long key, long num, JUMPP jmp);

armno	Arm number (No.).	
key	Teach data Key number	
num	Data number	
jmp	JUMP data	

Explanation

Acquires JUMP data by teach data Key and number designation

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_set_jmp	JUMP data setting
pa_get_jmp	JUMP data acquisition

Description example:

JUMP jmp;

:

pa_jmp_set(ARM0,2,0,&jmp); JUMP data acquisition by Key2 and number designation

pa__get__jmp

Func	tion	
	JUMP d	ata acquisition.
-		
Synta	ax	
	long	pa_get_jmp(ARM armno, long key, long id, JUMPP jmp);
	armno	Arm number (No.).
	key	Teach data Key number
	id	Teach point ID number
	jmp	JUMP data pointer
Expla	nation	
	Acquires	s JUMP data.
Retu	m value	
	FRR OK	Normal termination
	Others:	Anomalous termination (Refer to error table)
		· · · · · · · · · · · · · · · · · · ·
Refer	rence	
	pa_set_jr	np JUMP data setting
Descr	ription exa	ample:
•	JUMP	imp.
	0000	······
	pa_get_jr	np(ARM0,2,0,&jmp); This is defined in Key=2 and ID=0. JUMP data acquisition

pa_set_jmp

Function		
JUMP	data	setting

Syntax

long pa_set_jmp(ARM armno, long key, long id, JUMPP jmp);

armno	Arm number (No.)	
key	Teach data Key number	
id	Teach data ID number	
jmp	JUMP data	

Explanation

Sets JUMP data.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_jmp

JUMP data acquisition

pa_ena_jmp

Funct	ion		
	JUMP da	ata valid/invalid setting.	
Synta	х		
	long	pa_ena_jmp(ARM armno, long	g stat);
	armno	Arm number (No.).	
	stat	0: invalid	
		1: valid	
Expla	nation		
	Sets JUI	MP data valid⁄invalid.	
Retur	n value		
	ERR_OK	Normal termination	
	Others:	Anomalous termination (Refe	r to error table)
Refer	ence		
	pa_get_ei	na JUMP data valid/in	nvalid status acquisition
Descr	iption exa	mple:	
		:	
	pa_ena_jr	np(ARM0,1);	JUMP data is valid

pa__ply__mod

Function

Teach mode setting

Syntax

long

armno	Arm number (No.).
mod	0: Teach mode released
	1: Low
	2: Medium
	3: High

Explanation

Sets teach mode.

Macro definitions employed in "mod" are as follows:

pa_ply_mod(ARM armno, long mod);

Macro definition:	
TEACH_OFF	Teach mode released
TEACH_LOW	Teach mode:Low
TEACH_MID	Teach mode:Medium
TEACH_HIGH	Teach mode:High

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_pmd

:

:

Teach mode acquisition

Description example:

pa_ply_mod(ARM0,TEACH_LOW); Teach mode ON(low velocity)

pa_chg_key

Funct	ion		
	Alters cu	rrently active teach data Key	Ι.
Synta	x		
	long	pa_chg_key(ARM armno, long	; key);
	armno	Arm number (No.).	
	key	Teach data Key number poir	nter
Explar	nation		
	Alters cu	rrently active teach data Key	<i>.</i>
Retur	n value		
	ERR_OK	Normal termination	
	Others:	Anomalous termination (Refe	r to error table)
Refer	ence		
	pa_act_pr	nt Alters active teach	n data.
	pa_get_ke	ey Acquires currently	active teach data Key.
Descri	ption exa	mple:	
	long	key;	
		:	
	pa_get_ke	ey(ARM0,&key);	Alters currently active teach data Key.
	if(key==1)	When active teach data Key is 1
		pa_chg_key(ARM0,2);	Alters currently active teach data Key to 2.
		:	

pa__get__key

Function

Acquires active teach data Key.

Syntax

long	pa_get_key(ARM armno, long* key);
armno	Arm number (No.).
key	Teach data Key number pointer

Explanation

Acquires active teach data Key.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_chg_key	Alters currently active teach data Key.
pa_act_pnt	Alters active teach data.

pa_mon_pnt

Function

Acquires current teach point data (for monitor.)

Syntax

long pa_mon_pnt(ARM armno, PNTDATP pntdat);

armno Arm number (No.). pntdat Pointer to teach point data structure.

Explanation

Acquires current teach point data (for monitor.)

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_pnt

Acquires current teach point data.

pa_set_cmt

Function

Teach data comment setting

Syntax

long pa_set_cmt(ARM armno, char* cmt);

armno Arm number (No.). cmt Comment

Explanation

Designates comment at teach point (maximum 32 letters.)

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Description example:

:

:

pa_set_cmt(ARM0,"Diverging point"); Sets comment at current point.

pa_jmp_cmt

Function Moves current teach point by comment designation.	
Syntax long pa_jmp_cmt(ARM armno, long key, char* cmt);	
armno Arm number (No.). key Teach data Key number designation cmt Comment designation	
Explanation Moves current teach point by comment designation.	
Return value ERR_OK Normal termination Others: Anomalous termination (Refer to error table)	
Reference pa_chg_pnt	
Description example:	
: pa_jmp_cmt(ARM0,1,"Diverging point"); Moves current point to teach point with comment designated by Key 1. :	

pa_get_ena

Function

JUMP data valid/invalid acquisition.

Syntax

long pa_get_ena(ARM armno, long* stat);

armno	Arm number (No.).
stat	0: valid
	1: invalid

Explanation

Acquires JUMP data valid/invalid.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_ena_jmp JUMP data valid/invalid setting

pa__get__pmd

Function

Teach mode acquisition

Syntax

long

armno	Arm number (No.).
mod	0:Teach mode released
	1 : Low
	2:Medium
	3 : High

Explanation

Acquires teach mode.

Macro definitions employed in "mod" are as follows:

pa_get_pmd(ARM armno, long* mod);

Macro definition:	
TEACH_OFF	Teach mode released
TEACH_LOW	Teach mode:Low
TEACH_MID	Teach mode:Medium
TEACH HIGH	Teach mode:High

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_ply_mod

Teach mode setting

pa_del_jmp

Funct	tion JUMP da	ata deletior	n	
Synta	іх			
	long	pa_del_jm	p(ARM armno, long	key, long jnm);
	armno key jnm	Arm numb Key numb JUMP nu	oer (No.). oer mber	
Expla	nation Deletes	JUMP data	a.	
Retur	n value ERR_OK Others:	Normal te Anomalous	ermination s termination (Refe	r to error table)
Refer	ence			
	pa_set_jn	np	JUMP data setting	5
Descr	iption exa long	mple: key;		
	pa_get_ke pa_jmp_c	∍y(ARM0,& mt(ARM0,k ∶	key); key,0);	Active Key acquisition JUMP data deletion

pa_sav_ptj

Function

Teach and JUMP data saving.

Syntax

long pa_sav_ptj(ARM armno, char* name);

armno Arm number (No.). name File name

Explanation

Saves active teach data and its JUMP data.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_lod_ptj	Teach data and JUMP data loading
pa_lod_prj	Project loading
pa_sav_prj	Project saving
pa_lod_pnt	Teach data loading
pa_sav_pnt	Teach data saving

Description example:

:

```
:
pa_sav_ptj(ARM0,"c:¥¥data.csv");
```

.... Teach and JUMP data saving.

pa_lod_ptj

Function

Teach and JUMP data loading.

Syntax

long pa_lod_ptj(ARM armno, char* name);

armno Arm number (No.). name File name

Explanation

Loads active teach data and its JUMP data.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_sav_ptj	Teach data and JUMP data loading
pa_lod_prj	Project loading
pa_sav_prj	Project saving
pa_lod_pnt	Teach data loading
pa_sav_pnt	Teach data saving

Description example:

:

:

```
pa_lod_ptj(ARM0,"c:¥¥data.csv"); ..... Teach and JUMP data loading
```

pa__get__prj

Function

Project name acquisition

Syntax

long pa_get_prj(ARM armno, char* name);

armno Arm number (No.). name Project name

Explanation

Acquires project name.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_set_prj

Project name setting

pa_set_prj

Function Project name setting

Syntax

long pa_set_prj(ARM armno, char* name);

armno Arm number (No.). name Project name

Explanation

Sets project name with maximum 128 letters.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_ptj Project name acquisition

Description example:

:

pa_set_prj(ARM0,"Test project"); Project name setting

pa_sav_prj

Function
Project saving

Syntax

long pa_sav_prj(ARM armno, char* fdname);

armno	Arm number (No.).
name	Storing folder name

Explanation

Saves project.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_sav_ptj	Teach data and JUMP data loading
pa_lod_ptj	Teach data and JUMP data loading
pa_lod_prj	Project loading
pa_lod_pnt	Teach data loading
pa_sav_pnt	Teach data saving

Description example:

:

```
pa_sav_prj(ARM0,"c:¥¥data"); .... Project saving
:
```

pa_lod_prj

Function Project loading

Syntax

long pa_lod_prj(ARM armno, char* fdname);

armno	Arm number (No.).
name	Storing folder name

Explanation

Loads project.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_sav_ptj	Teach data and JUMP data saving
pa_lod_ptj	Teach data and JUMP data loading
pa_sav_prj	Project saving
pa_lod_pnt	Teach data loading
pa sav pnt	Teach data saving

Description example:

:

:

```
pa_lod_prj(ARM0,"c:¥¥data"); .... Project loading
```

pa_set_cub

Function	Function
CUBE designation	CL

Syntax

long pa_set_cub(ARM armno, long num, float xyz[], float ypr[]);

armno	Arm number (No.).
num	CUBE number (O-23)
xyz[]	Maximum value [mm]
ypr[]	Minimum value [mm]

Explanation

Designates CUBE.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_get_cub	CUBE information teaching
pa_cub_len	CUBE side length designation

Description example:

float	xyz[3];
float	ypr[3];

```
:

xyz[0]=100.0;

xyz[1]=100.0;

xyz[2]=100.0;

ypr[0]=0.0;

ypr[1]=0.0;

ypr[2]=0.0;

pa_set_cub(ARM0, 0, xyz, ypr); .... 0 (zero) CUBE designation

:
```

pa__get__cub

Funct	tion CUBE te	eaching de	signation
Synta	ix long	pa_get_cı	ıb(ARM armno, long num, long mod);
	armno num mod	Arm num CUBE nu 1 : Maxim 2 : Minim 3 : Cente	ber (No.). ımber(0–23) ıum value um value r
Explanation Designates CUBE teaching.			
	Macro definitions employed in "mod" are as follows: Macro definition: MAXPNT: Maximum value MINPNT: Minimum value CENTERPNT: Center		
Retur	n value ERR_OK Others:	Normal t Anomalou	ermination s termination (Refer to error table)
Refer	ence		
	pa_set_c pa_cub_le	ub en	CUBE information designation CUBE side length designation
Descr	iption exa	imple:	

pa_get_cub(ARM0, 0, MAXPNT); 0 (zero) CUBE designation :

pa_cub_len

Function

CUBE side length designation

Syntax

long pa_cub_len(ARM armno, long num, float xyz[]);

armno	Arm number (No.).
num	CUBE number (0–23)
xyz	Each side length [mm]

Explanation

CUBE side length designation

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_set_cub	CUBE information designation
pa_get_cub	CUBE information teaching

pa_cub_cmt

Function Names CUBE.

Syntax

long pa_cub_cmt(ARM armno, long num, char* name);

armno	Arm number (No.).
num	CUBE number (0-23)
name	CUBE name

Explanation

Names CUBE.(maximum 32 letters)

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_del_cub

Function CUBE deletion

Syntax

long pa_del_cub(ARM armno, long num);

armno	Arm number (No.).
num	CUBE number (0-23)

Explanation CUBE deletion

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_ena_cub

Function CUBE valid/invalid

Syntax

long pa_ena_cub(ARM armno, long num, long mod);

armno	Arm number (No.).
num	CUBE number (0-23)
mod	1 : valid
	0 : invalid

Explanation

Sets CUBE valid/invalid By designating num as -1, all CUBE information can be set to be invalid at a time. Valid designation is impossible.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa__inf__cub

Function

CUBE information reference

Syntax

long pa_inf_cub(ARM armno, long num, CUBEP cub);

armno	Arm number (No.).
num	CUBE number (0–23)
cub	CUBE information

Explanation

Refers to CUBE information.

cubena	CUBE information valid/invalid
cubmod	Designation method when in CUBE information creation
NOCUBE:	CUBE information not exists
CUBEON:	Maximum value/minimum value designation
CUBEMAX:	Maximum value teaching
CUBEMIN :	Minimum value teaching
CUBECENTER:	Center teaching
CUBESIDE :	Side length designation
cub.max[3]	Maximum value or side length
cub.min[3]	Minimum value or center
cub.cmt[32]	Comment

Combination of cub.mod are as follows:

CUBEONMaximum value/minimum value designationCUBEMAX/CUBEMINMaximum value/minimum value teachingCUBECENTER/CUBESIDESide length/center teachingThis combination is not correct.CUBE information is not established.

Return value

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference

pa_set_cub	CUBE information designation
pa_get_cub	CUBE information teaching
pa_cub_len	CUBE side length designation

pa_mod_vel

Function	on:		
	Sets velocity mode.		
Syntax	c		
-	long	pa_mod_vel(ARM armno, VELMODE vmod, AXIS axis)	
	armno	Arm number (No.)	
	vmod	Designates velocity mode by "enum VELMODE".	
	axis	Designates motion axis. Plural valid axes can be designated only when	
		axis velocity mode is designated. Velocity can be also. (ex) S1 \mid S3	
Explan	ation:		
	Sets in v	elocity mode designated by "vmod".	
	If velocit	y mode is set, the arm moves with velocity set value.	
	Setting o	r alteration for velocity set value is performed by "pa_odr_vel".	
	VM_XY	Z:Linear velocity mode in base coordinate	
		(for Visual BASIC: VM_XYZ1)	
	VM_YP	R:Rotational velocity mode in base coordinate	
		(for Visual BASIC: VM_YPR1)	
	VM_xyz	: Linear velocity mode in mechanical interface coordinate	
		(for Visual BASIC: VM_XYZ2)	
	VM_ypr	Rotational velocity mode in mechanical interface coordinate	
		(for Visual BASIC: VM_YPR2)	
	VM_ON	E:Axis velocity mode	
		Makes the axis designated by "axis" move with the designated velocity.	
VM_XYZYPR:Linear/rotational velocity mode in base coordinate			
		(for Visual BASIC: VM_XYZYPR1)	
	VM_xyz	ypr:Linear/rotational velocity mode in mechanical interface coordinate	
		(for Visual BASIC: VM_XYZYPR2)	
		Remark	
	Uncontro	llable areas exist in any control except in axis velocity control.	
	This is d	efined as a singularity. It is the point where E1 axis becomes 0 [deg] (930	
	[mm] len	gth from S2 rotation origin to W1 rotation origin).	

Reference

For more, refer to programming manual in chapter 3.

Remark

When the tip target position calculated from designated velocity, exceeds arm motion range, warning occurs: "target value arm length exceeds 925 [mm] (automatically cut target value)."

If arm motion continues and exceeds motion range, the operation is automatically switched to temporary-stop status. Immediately, the servo-lock performs. When LENGTH value is beyond 925 [mm] before being in motion, this designation is ignored on account of being out of motion range.
For axis velocity control likewise, each axis angle exceeds each axis angle limit at designated velocity, the following warnings occur:

-1070	S1 axis	velocity control	angle exceeded
-1071	S2 axis	velocity control	angle exceeded
-1072	S3 axis	velocity control	angle exceeded
-1073	E1 axis	velocity control	angle exceeded
-1074	E2 axis	velocity control	angle exceeded
-1075	W1 axis	velocity control	angle exceeded
-1076	W2 axis	velocity control	angle exceeded

There are two motion ranges: LENGTH 925 [mm] available for RMRC control and axis angle limit. If exceeding either limit, arm motion cannot be performed to the direction exceeding the motion range. Velocity command to this direction is ignored. But, velocity command to the movable direction can be provided.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_odr_vel Velocity setting in velocity mode

pa_odr_vel

Function:

Sets velocity for velocity mode.

Syntax:

long	pa_odr_vel(ARM armno, float spd[])
armno	Arm number (No.)
spd[]	Velocity setting (Its significance is different depending on velocity mode.)

Explanation:

Sets velocity for velocity control mode.

for Base coordinate linear velocity mode & Mechanical interface coordinate linear velocity mode

spd[0]:Displacement/velocity toward x [mm/sec] spd[1]:Displacement/velocity toward y [mm/sec] spd[2]:Displacement/velocity toward z [mm/sec]

for Base coordinate rotational velocity mode & Mechanical interface coordinate rotational velocity mode

spd[0]: Angular velocity on x axis [rad/sec]
spd[1]: Angular velocity on y axis [rad/sec]
spd[2]: Angular velocity on z axis [rad/sec]

for Axis velocity mode

spd[0]:S1 axis motion angular velocity [rad/sec] spd[1]:S2 axis motion angular velocity [rad/sec] spd[2]:S3 axis motion angular velocity [rad/sec] spd[3]:E1 axis motion angular velocity [rad/sec] spd[4]:E2 axis motion angular velocity [rad/sec] spd[5]:W1 axis motion angular velocity [rad/sec] spd[6]:W2 axis motion angular velocity [rad/sec]

for Base coordinate linear/rotational velocity mode & Mechanical interface coordinate linear/rotational velocity mode

spd[0]:Displacement/velocity toward x [mm/sec] spd[1]:Displacement/velocity toward y [mm/sec] spd[2]:Displacement/velocity toward z [mm/sec] spd[3]:Angular velocity on x axis [rad/sec] spd[4]:Angular velocity on y axis [rad/sec] spd[5]:Angular velocity on z axis [rad/sec]

	Remark
Sets velocity command value control mode, velocity comma time-out (maximum value: 100 within time-out, it is recogni velocity control and sets in bra	with seven float type configurations. After entering velocity and ("pa_odr_vel" or "pa_chk_cnt") has to be issued every D msec) setting by "pa_set_tim". If command is not issued zed as controller anomaly. The arm automatically stops ake-stop status.
Return value: ERR_OK Normal termin Others: Anomalous terr	ation nination (Refer to error table)
Reference:	
pa_mod_vel Velo	ity mode setting
pa_chk_cnt Sync	hronization processing
pa_set_tim Time	-out setting
Description example: float spd[7];	
pa_set_tim(ARM1, 20);	····Time-out setting (200msec)
pa_mod_vel(ARM1, VM_X	YZ, 0); Velocity mode setting
: Hereafter, "pa_odr_vel" 200msec.	or "pa_chk_cnt" has to be issued, at least once, within
= -50.0	X
pd[1] = 40.0	Ŷ
spd[2] = 100.0:	
pa_odr_vel(ARM1, spd);	Velocity alteration
: 	v
spd[0] = 0.0;	X
spa[1] = 0.0;	1 7
spu[z] = 0.0,	Z Velocity clear
μα_οαι_νει(Αιτινιτ, sμu),	Velocity clear
pa_sus_arm(ARM1, WM_	NOWAIT); ···· Velocity control termination

Memo

AXIS is invalid except VM_ONE.

pa_mod_dpd

Function:

Sets target tip position/orientation direct real-time control mode.

Syntax:

long pa_mod_dpd(ARM armno);

armno Arm number (No.)

Explanation:

Sets directly target tip position/orientation.

This mode creates motion, taking target value provided by "pa_odr_dpd" as absolute value.

Even though motion to absolute target value can be performed employing "pa_mov_mat", there is a difference whether interpolation is performed or not.

Trajectory from current position to target value provided by "pa_odr_dpd" is not interpolated. Therefore, when this mode is employed, velocity/trajectory interpolation has to be performed by users.

Remark

If entering real-time control mode, command library (pa_odr_dpd) has to be issued at least once within 1000msec all the time. If command is not issued within 1000 msec, it is recognized as man-machine controller anomaly. The arm automatically terminates real-time control mode and sets in brake-stop status. For time-out setting, use "pa_set_tim".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_odr_dpd	RMRC real-time control
pa_chk_cnt	Synchronization processing
pa_set_tim	Time-out setting

```
Description example:
      MATRIX mat;
      ANGLE an:
                1
      pa_mov_mat(ARM1, MM_XYZNOA, mat, &an, WM_WAIT);
      pa_set_tim(ARM1, 20);...Time-out setting(200msec)pa_mod_jou(ARM1, JM_ON);...Redundant axis control mode setting (all
                                                      axes restricted)
      pa_mod_dpd(ARM1);
                                             ··· Control mode selection by tip matrix
     Hereafter, "pa_odr_dpd" or "pa_chk_pnt" has to be issued, at least once, within
      200msec.
                Renewing "mat".
      pa_odr_dpd(ARM1, mat, &an); · · · Tip matrix and restriction data axis value setting
                                                      (Refer to "pa_odr_dpd")
                Renewing "mat".
      pa_odr_dpd(ARM1, mat, &an);
                          1
      pa_sus_arm(ARM1 , WM_NOWAIT); ... Real-time control termination
```

pa_odr_dpd

Function:

Sets target tip position/orientation data in real time.

Syntax:

long pa_odr_dpd(ARM armno, MATRIX mat, ANGLEP angle);

armno	Arm number (No.)
mat	Absolute target position/orientation matrix
angle	Each axis value for redundant axis restriction control

Explanation:

Sets target value when in target position/orientation direct mode.

For "mat", designates absolute position/orientation every control cycle (10ms). Motion controller performs RMRC feedback control without trajectory interpolation for position/orientation provided by "mat".

To summarize, arm control trajectory is controlled by the value set in PA library. Therefore, a difference between current position/orientation and setting "mat" has to be one cycle deviation (velocity divided by control cycle.)

In this control, likewise, redundant axis control mode (mode selected by "pa_mod_jou") to control elbow position is valid and restricted by each axis value provided by "angle".

If redundant axis control mode is "no restriction" or "S3 axis fixed", "angle" is invalid.

If redundant axis control mode is "S3 interpolation", "MATRIX mat" likewise, S3 axis angle every control cycle is also set in "angle".

Remark

If entering real-time control mode, command library (pa_odr_dpd) has to be issued at least once within 1000msec all the time. If command is not issued within 1000 msec, it is recognized as man-machine controller anomaly. The arm automatically terminates real-time control mode and sets in brake-stop status. For time-out setting, use "pa_set_tim".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_mod_dpd	RMRC real-time control mode setting
pa_mod_axs	Each axis real-time control mode setting
pa_odr_axs	Each axis real-time control
pa_chk_cnt	Synchronization processing
pa_set_tim	Time-out setting

pa_mod_axs

Function:

Sets target angle direct control (real-time) mode.

Syntax:

long pa_mod_axs(ARM armno);

armno Arm number (No.)

Explanation:

Sets directly target angle.

This mode creates motion, taking target value provided by "pa_odr_axs" as absolute value.

Even though motion to target angle value can be performed employing "pa_exe_axs", there is a difference whether interpolation is performed or not.

Angle from current position to target value provided by "pa_odr_axs" is not interpolated. Therefore, when this mode is employed, velocity/angle interpolation has to be performed by users.

Remark

If entering real-time control mode, command library (pa_odr_axs) has to be issued at least once within 1000msec all the time. If command is not issued within 1000 msec, it is recognized as man-machine controller anomaly. The arm automatically terminates real-time control mode and sets in brake-stop status. For time-out setting, use "pa_set_tim".

```
Return value:
      ERR OK Normal termination
      Others: Anomalous termination (Refer to error table)
Reference:
                         Each axis real-time control
      pa_odr_axs
Description example:
      ANGLE angle;
      pa_get_agl(ARM1, &angle);
                                     ... Each axis value (current value) setting
      pa_odr_axs(ARM1, &angle);
                                  ··· Time-out setting (200msec)
      pa_set_tim(ARM1, 20);
      pa_mod_axs(ARM1); ... Control mode selection by axis real-time control
Hereafter, "pa_odr_axs" or "pa_chk_pnt" has to be issued, at least once, within 200msec.
      angle.s3 += 0.5*M PI/180.0:
                                            ... Each axis renewal
      pa_odr_axs(ARM1, &angle);
                                            ... Each axis value setting
                                            ... Each axis renewal
      pa_odr_axs(ARM1, &angle);
                                            ... Each axis value setting
      pa_sus_arm(ARM1, WM_NOWAIT);
                                            ··· Real-time control termination
```

pa_odr_axs

Function:

Sets target axis data in real time.

Syntax:

long pa_odr_axs(ARM armno, ANGLEP angle);

armno Arm number (No.) angle Each axis target value for each axis real-time control

Explanation:

Sets target axis value in real time.

For "angle", designates each axis value every control cycle (10ms).

Motion controller performs axis feedback control without axis interpolation for each axis provided by "angle".

To summarize, arm axis is controlled by the value set in PA library. Therefore, the difference between current angle and setting "angle" has to be one cycle deviation (velocity divided by control cycle.)

Remark

If entering real-time control mode, command library (pa_odr_axs) has to be issued at least once within 1000msec all the time. If command is not issued within 1000 msec, it is recognized as man-machine controller anomaly. The arm automatically terminates real-time control mode and sets in brake-stop status. For time-out setting, use "pa_set_tim".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_mod_axs	Each axis real-time control setting
pa_odr_dpd	RMRC real-time control

pa_mod_dir

Function:

Direct control (servo lock) ON/OFF

Syntax:

long pa_mod_dir(ARM armno, DIRECTMODE dmod);

armno Arm number (No.) dmod Designates servo lock by "enum DIRECTMODE".

Explanation:

Before changing to weight compensation control or simplified weight compensation control, the arm has to be in servo-lock status.

Its servo-lock status ON/OFF switching is performed.

DM_START:	Servo-lock ON
DM_STOP :	Servo-lock OFF

Remark

If entering weight compensation control, (to be concrete, issuing pa_wet_ded), synchronization processing library (pa_chk_cnt) has to be issued, at least once, within 1000msec. If command is not issued within 1000 msec, it is recognized as man-machine controller anomaly. The arm automatically terminates real-time control mode and sets in brake-stop status. For time-out setting, use "pa_set_tim".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_chk_cnt pa_set_tim Synchronization processing Time-out setting

pa__wet__ded

```
Function:
```

Weight compensation control

Syntax:

long pa_wet_ded(ARM armno, AXIS axis);

armno Arm number (No.) axis Weight compensation axis designation

Explanation:

Weight compensation control is performed with axis angle, adjacent arm link weight and gravity center position.

Macro definitions		Designated axes
LOCKAXIS_S3	:	S1 S2 E1 E2 W1 W2
LOCKAXIS_S1	:	S2 S3 E1 E2 W1 W2

As macro definitions shown above, there are only two weight compensation controls. Axes able to operate simultaneously are six. Either S1 or S3 axis is always in servo-lock status. (If different setting except the ones above are adopted, "LOCKAXIS_S3 " is automatically set on the motion control calculator side.)

This function can be performed only when in arm direct control.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_mod_dir Direct control status ON/OFF

Description example:

AXIS axis; : axis = LOCKAXIS_S1; : pa_set_tim(ARM0,20); ma_mod_dir(ARM0,DM_START); pa_mod_dir(ARM0,DM_START); : Hereafter, "pa_odr_dpd" or "pa_chk_pnt" has to be issued, at least once, within 200msec.

: "mat" renewal pa_sus_arm(ARM0, WM_NOWAIT); ··· Weight compensation control termination

pa_drt_ded

Function:

Sets arm installation position. (floor mounted/suspending from ceiling)

Syntax:

long pa_drt_ded(ARM armno, long vec);

armno Arm number (No.) vec Arm installation position designation

Explanation:

Before performing weight compensation control, designate the arm status either floor mounted or suspending from ceiling. On account of arm being already initialized as floor mounted status, only when the arm is suspended from the ceiling, this library has to be performed.

Macro definition employed in "vec" as follows:

Macro definitions	Designation
ARM_STANDING	Floor mounted status
ARM_HANGING	Status suspended from ceiling

Arm installation positions when in weight compensation control are only two macro definitions as described above. Other definitions cannot be employed.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_wet_ded	Direct control status ON/OFF
pa_get_drt	Direct control installation position acquisition

pa__chk__cnt

Function:

Synchronization processing in weight compensation control (velocity, redundant axis velocity and real-time control)

Syntax:

long pa_chk_cnt(ARM armno)

Arm number (No.) armno

Explanation:

Synchronization processing between man-machine controller and motion controller is performed in weight compensation control.

If entering weight compensation control, this PA library has to be issued at least once within 1000msec all the time. If command is not issued within 1000 msec, it is recognized as man-machine controller anomaly. The arm automatically terminates real-time control mode and sets in brake-stop status. For time-out setting, use "pa_set_tim".

```
Return value:
```

ERR OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_wet_ded	Weight compensation control start
pa_set_tim	Time-out setting in synchronization processing

Description example:

}

AXIS axis: : axis = LOCKAXIS S1; pa_set_tim(ARM0,20); ··· Time-out setting (200msec) pa_mod_dir(ARM0,DM_START); \cdots Direct control start ··· S1 axis servo-lock selection pa_wet_ded(ARM0,axis); Hereafter, "pa_odr_dpd" or "pa_chk_pnt" has to be issued, at least once, within 200msec. while(1){ 1 pa_chk_cnt(ARM1); ···· Synchronization processing Sleep(100); • <Actuates arm manually.> 2

pa_mod_dir(ARM1, DM_STOP); ··· Direct control termination

÷

pa_set_tim

Function:

Time-out setting in synchronization processing

Syntax:

long pa_set_tim(ARM armno, long tim);

armno Arm number (No.) tim Time-out

Explanation:

Sets synchronization processing time-out in weight compensation, velocity and redundant axis control Default (when power is ON) is 1000ms. Setting range is 10~1000ms.

Unit is[*10ms].

(ex) tim = 1 : 10ms tim > 100 : error

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_wet_ded	Weight compensation control
pa_chk_cnt	Synchronization processing
pa_get_tim	Time-out acquisition

pa__get__tim

Function:

Time-out acquisition in synchronization processing

Syntax:

long pa_get_tim(ARM armno, long* tim);

armno Arm number (No.) tim Time-out

Explanation:

Acquires synchronization processing time-out in weight compensation, velocity and redundant axis control. Unit is [*10ms].

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_chk_cnt pa_set_tim Synchronization processing Time-out setting

pa__get__drt

Function:

Arm installation position acquisition in direct control (floor mounted/suspending from ceiling)

Syntax:

long pa_get_drt(ARM armno, long* stat);

armno Arm number (No.) stat Arm installation position parameter

Explanation:

Before performing weight compensation control, acquire arm status either mounted on the floor or suspended from the ceiling.

Parameter(stat) is 1: floor mounted Parameter(stat) is -1: suspending from ceiling

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_drt_ded Arm installation direction setting in direct control

pa_set_hom

Function:

Alters home position

Syntax:

long pa_set_hom(ARM armno, ANGLEP angle);

armno Arm number (No.) angle Designates each axis angle. Unit: [rad]

Explanation:

Alters home position set in arm parameter. Returns to default value when power supply is off. Home position default angle is 0[deg] for all axes. For home position default angle correction method, refer to parameter setting.)

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_def_hom	Defines current value as home position
pa_exe_hom	Arm control to home position

Description example:

```
:
ANGLE angle;
angle.s1 = 1.3;
angle.s2 = 1.5;
:
angle.w2 = 0.0;
pa_set_hom(ARM1, &angle);
:
```

pa_set_esc

Function:

Alters escape position.

Syntax:

long pa_set_esc(ARM armno, ANGLEP angle);

armno Arm number (No.) angle Designates each axis angle. Unit: [rad]

Explanation:

Alters escape position set in arm parameter. Returns to default value when power supply is off. Escape position default angles are: S2: 45 [deg] E1: 90 [deg] W1: 45 [deg] Others: 0[deg]

Reference

For escape position default angle correction method, refer to parameter setting.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_def_esc	Defines current value as escape position
pa_exe_esc	Arm control to escape position

pa_set_saf

Function:

Alters safety position.

Syntax:

long pa_set_saf(ARM armno, ANGLEP angle)

armno Arm number (No.) angle Designates each axis angle. Unit: [rad]

Explanation:

Alters safety position set in arm parameter. Returns to default value when power supply is off. Safety position default angles are: S2: 45 [deg] E1: 90 [deg] W1: -45 [deg] Others: 0[deg]

Reference

For safety position default angle correction method, refer to parameter setting.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_def_saf	Defines current value as safety position.
pa_exe_saf	Arm control to safety position

pa__def__hom

Function:

Memorizes each axis angle of current value as home position.

Syntax:

long pa_def_hom(ARM armno);

armno Arm number (No.)

Explanation:

Memorizes each axis angle of current value as home position. Returns to default value when power supply is off. Home position default angle is 0 [deg] for all axes.

Reference

For home position default angle correction method, refer to parameter setting.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_set_hom	Home position alteration	
pa_exe_hom	Arm control to escape position	

Description example:

:

:

pa_def_hom(ARM1); ... Defines current value as home position.

pa__def__esc

Function:

Memorizes each axis angle of current value as escape position.

Syntax:

long pa_def_esc(ARM armno);

armno Arm number (No.)

Explanation:

Memorizes each axis angle of current value as escape position. Returns to default value when power supply is off. Escape position default angles are: S2: 45 [deg] E1: 90 [deg]

E1: 90 [deg] W1: 45 [deg] Others: 0[deg]

Reference

For escape position default angle correction method, refer to parameter setting.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_set_esc	Escape position alteration	
pa_exe_esc	Arm control to escape position	

pa__def__saf

Function:

Memorizes each axis angle of current value as safety position.

Syntax:

long pa_def_saf(ARM armno)

armno Arm number (No.)

Explanation:

Memorizes each axis angle of current value as safety position.

Returns to default value when power supply is off.

Safety position default angles are:

```
S2: 45 [deg]
E1: 90 [deg]
W1: -45 [deg]
Others: 0[deg]
```

Reference

For safety position default angle correction method, refer to parameter setting.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_set_saf	Safety position alteration	
pa_exe_saf	Arm control to safety position	

pa_set_mtx

Function:

Conversion matrix setting in three dimension space coordinate while in playback control

Syntax:

long pa_set_mtx(ARM armno, MATRIX mat1)

armno	Arm number (No.)
mat1	Coordinate conversion matrix

Explanation:

Sets coordinate conversion matrix "mat1" for the arm designated by "armno". Arm trajectory control is corrected by conversion matrix in playback control. Coordinate conversion matrix default value is unit matrix I.

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Reference

For more, refer to programming manual, chapter 3.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Description example:

MATRIX mat1;

:

1

pa_set_mtx(ARM1, mat1); : ... Sets coordinate conversion matrix.

pa_set_mat

Function:

Playback trajectory coordinate conversion

Syntax:

long pa_set_mat(ARM armno, MATRIX mat0, MATRIX mat1);

armno	Arm number (No.)
mat0	Work coordinate matrix
mat1	Teach data coordinate matrix

Explanation:

Places playback teach data from teach data coordinate to work coordinate system.

Creating standard coordinate matrix (:mat1) from teach data, provides work coordinate matrix (:mat0) to place deviation in its coordinate system.

Reference

For work coordinate matrix/teach coordinate matrix creation method, refer to programming manual, chapter 3.

"pa_set_mtx" is unit matrix [I] created from one of this function: "mat1".

This function cannot be performed while in playback control.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_set_mtx

Description example:

MATRIX mat0,mat1;

:

(Work coordinate matrix creation:mat0) (Teach data coordinate matrix creation:mat1)

(Teach data coordinate matrix creation.matr)

pa_set_mat(ARM0,mat0,mat1); Sets coordinate conversion matrix

pa_odr_xyz

Function:

Sets tip position offset.

Syntax:

long pa_odr_xyz(ARM armno, TRANSMATP trans);

armno Arm number (No.) trans Designates either coordinate system with absolute deviation or with relative deviation. Pointer to trajectory offset data structure: TRANSMAT.

Explanation:

Sets tip position offset with mode and coordinate designated by "trans->Enable". Coordinates and modes of "trans->Enable" are as follows:

MODE_xyz : Mechanical interface coordinate, absolute deviation
Offset is set as trans->_xyz[0]−[2].
(for Visual BASIC: MODE_XYZ1)
MODEIxyz : Mechanical interface coordinate, relative deviation
Offset is set as trans->Ixyz[0]-[2].
(for Visual BASIC: MODE_XYZ2)
MODE_XYZ : Base coordinate, absolute deviation
Offset is set as trans->_XYZ[0]-[2].
(for Visual BASIC: MODE_XYZ3)
MODEIXYZ : Base coordinate, relative deviation
Offset is set as trans->IXYZ[0]-[2].
(for Visual BASIC: MODE_XYZ4)
MODE_wave: Trajectory coordinate, absolute deviation
Offset is set as trans->_wave[0]-[2].
(for Visual BASIC: MODE_WAVE1)
MODEIwave: Trajectory coordinate, relative deviation
Offset is set as trans->Iwave[0]-[2].
(for Visual BASIC: MODE_WAVE2)

With this function, offset value can be changed in real-time during playback control. This makes it possible to detect playback trajectory deviation with sensor, etc. and correct it.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error charts)

Reference:

pa_get_sns Trajectory offset acquisition during playback control

```
Description example:
      TRANSMAT tm;
      float
                data:
      pa_ply_pnt(ARM0,PB_FORE,-1,WM_WAIT); ... Playback start
               :
       data = 0.5f;
                                   ... Limit value when in offset addition = 0.5[mm]
      pa_Imt_xyz(ARM0, data);
                                  ... Limit value setting when in offset addition
tm.Enable = MODE_xyz; ... mechanical interface coordinate absolute deviation selection
      tm._xyz[0] = 2.0;
                                  ... Offset value toward x = 2.0[mm]
      tm._xyz[1] = 0.0;
                                  ... Offset value toward y = 0.0[mm]
      tm._xyz[2] = 0.0;
                                  ... Offset value toward z = 0.0[mm]
      pa_odr_xyz(ARM0,&tm); ... Adds offset value to mechanical interface coordinate
                         1
```

pa_lmt_xyz

Function:

Sets limit value (value added every cycle) when in tip position offset addition

Syntax:

Iongpa_Imt_xyz(ARM armno, float data);armnoArm number (No.)dataLimit value when in offset addition. Unit: [mm]

Explanation:

In offset control, when tip position offset is provided by "pa_odr_xyz", offset value first enters the offset pool. This offset value is added with very small fixed quantity every cycle until offset value fills out the pool in several cycles, Sets a very small fixed quantity every cycle (here is called limit value.)

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_Imt Tip position offset limit value acquisition

pa__get__mat

Function:

Acquires coordinate conversion matrix when in playback.

Syntax:

long pa_get_mat(ARM armno, MATRIX mat0, MATRIX mat1);

armno	Arm number (No.)
mat0	Work coordinate matrix
mat1	Teach data coordinate matrix

Explanation:

Acquires teach data coordinate matrix and work coordinate matrix currently set by "pa_set_mat" or "pa_set_mtx".

As work coordinate matrix is the only one set by "pa_set_mtx", "mat1" ought to be a unit matrix.

MATRIX mat0, mat1:

(nx ox ax px)	
ny oy ay py	Matrix	mat0[3][4], mat1[3][4]
nz oz az pz	J	

Return value:

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

pa_set_mat	Playback trajectory coordinate conversion
pa_set_mtx	Conversion matrix setting in three dimension space coordinate
	when in playback control

pa_get_sns

_	
Fun	ction'
I UII	ouon.

Acquires trajectory offset when in playback.

Syntax:

long pa_get_sns(ARM armno, TRANSMATP sns);

armno Arm number (No.) sns Pointer to currently provided trajectory offset structure TRANSMAT

Explanation:

Trajectory offset is stored in TRANSMAT type: sns.

<pre>(for Visual BASIC: sns.xyz11) sns.Ixyz[]: Mechanical interface coordinate, relative deviation offset value (x,y,z)</pre>	snsxyz[] : Mechanical interface coordinate, absolute deviation offset value (x,y,z)
sns.Ixyz[]: Mechanical interface coordinate, relative deviation offset value (x,y,z) (for Visual BASIC: sns.xyz12) snsXYZ[]: Base coordinate, absolute deviation offset value (X,Y,Z) (for Visual BASIC: sns.xyz21) sns.IXYZ[]: Base coordinate, relative deviation offset value (X,Y,Z) (for Visual BASIC: sns.xyz22) snswave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave1) sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave2)	(for Visual BASIC: sns.xyz11)
<pre>(for Visual BASIC: sns.xyz12) snsXYZ[]: Base coordinate, absolute deviation offset value (X,Y,Z)</pre>	sns.Ixyz[]: Mechanical interface coordinate, relative deviation offset value (x,y,z)
snsXYZ[]: Base coordinate, absolute deviation offset value (X,Y,Z) (for Visual BASIC: sns.xyz21) sns.IXYZ[]: Base coordinate, relative deviation offset value (X,Y,Z) (for Visual BASIC: sns.xyz22) snswave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave1) sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave2)	(for Visual BASIC: sns.xyz12)
<pre>(for Visual BASIC: sns.xyz21) sns.IXYZ[]: Base coordinate, relative deviation offset value (X,Y,Z) (for Visual BASIC: sns.xyz22) snswave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave1) sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave2)</pre>	snsXYZ[]: Base coordinate, absolute deviation offset value (X,Y,Z)
 sns.IXYZ[]: Base coordinate, relative deviation offset value (X,Y,Z) (for Visual BASIC: sns.xyz22) snswave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave1) sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave2) 	(for Visual BASIC: sns.xyz21)
<pre>(for Visual BASIC: sns.xyz22) snswave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw)</pre>	sns.IXYZ[]: Base coordinate, relative deviation offset value (X,Y,Z)
snswave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave1) sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave2)	(for Visual BASIC: sns.xyz22)
(for Visual BASIC: sns.wave1) sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave2)	snswave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw)
sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw) (for Visual BASIC: sns.wave2)	(for Visual BASIC: sns.wave1)
(for Visual BASIC: sns.wave2)	sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw)
	(for Visual BASIC: sns.wave2)

Remark

For absolute deviation, offset value currently set by "pa_odr_xyz" is set. For relative deviation, integration value of offset value set by "pa_odr_xyz" is set.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_odr_xyz

Tip position offset setting

pa__get__lmt

Function:

Acquires limit value (value added every cycle) when in tip position offset addition.

Syntax:

long pa_get_Imt(ARM armno, float* dat); armno Arm number (No.) dat Limit value when in offset addition. Unit: [mm]

Explanation:

Acquires very small quantity offset value (limit value) added every cycle in tip offset control.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_lmt_xyz

Limit value setting when in offset addition

pa_mod_jou

7-axis arm function

Function:

Redundant axis control mode

Syntax:

long pa_mod_jou(ARM armno, JOUMODE jmod);

armno Arm number (No.) jmod Designates redundant axis control mode by "enum JOUMODE".

Explanation:

Sets redundant axis control mode

For 7-axis arm, like PA-10, even if tip position and orientation trajectory are the same, plural axis values exist. Redundant axis operation has to be set.

IN all RMRC control, if intending to control elbow position, following redundant axis control modes are provided:

JM_OFF : Redundant axis control restriction release	
Redundant axis control is reset in RMRC control.	
JM_ON : Redundant axis control all axes restriction mode	
Each axis value, when in motion, is restricted by teach point or each	I
axis value of designated data in RMRC control.	
JM_S3ON : Redundant axis control only S3axis restricted mode	
Each axis value of S3 axis when in motion is restricted by teach point	
or each axis value of designated data in RMRC control.	
JM_S3DIV : Redundant axis control S3 axis interpolation restriction mode	
Each axis value of S3 axis when in motion is restricted by teach point	:
or each axis value of designated data in RMRC control.	
JM_S3HOLD: Redundant axis control S3 axis fixation restriction mode	
Each axis value of S3 axis when in motion is fixed by teach point or	-
each axis value of designated data in RMRC control.	

In any method, tip trajectory is the same. But, each axis value is different.

Reference

For more, refer	[.] to programm	ing manual, chapt	er 3.		
Restriction for	ce for each pr	ovided axis data	is as follows:		
No restriction $JM_OFF \rightarrow JM_OFF$	$\langle Small \rangle$ M_ON $\rightarrow JM_$	<Medium $>S3ON \rightarrow JM_S3$	<large> DIV → JM_S3H</large>	Fixed OLD	

When intending to change elbow position keeping the same position and orientation in RMRC control:

JM_SET : Sets the mode to operate redundant axis control parameter. For parameter operation method, uses "pa_odr_jou".

JM_RESET: Returns redundant axis control parameter to default value (no restriction).

JM_VSET :Sets the mode to operate redundant axis control parameter at constant velocity.

For parameter operation method, uses "pa_odr_vel".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_odr_jou	Redundant axis control ON/OFF
pa_odr_vel	Velocity mode velocity setting

Description example:

:

pa_mod_jou(ARM1, JM_ON);	Redundant axis control mode
	"All axes restriction" selection
pa_ply_pnt(ARM1, PB_FORE, -1, WM_WAIT); Playback control
:	

pa_odr_jou

7-axis arm function

Function:

Redundant axis control parameter operation

Syntax:

long pa_odr_jou(ARM armno, JOUTYPE jtyp);

armno Arm number (No.). jtyp Redundant axis transition direction

Explanation:

If redundant axis control parameter is operated, arm position can be changed. This parameter is valid only when "JM_SET" is selected by "JM_SET".

JT_RIGHT: Shifts redundant axis restriction parameter to the right. JT_LEFT : Shifts redundant axis restriction parameter to the left. JT_HOLD : retains redundant axis restriction parameter.

Parameter operation continues until next operation is performed.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_mod_jou

Redundant axis control mode

Description example:

:

pa_mod_jou(ARM1, JM_SET);	Redundant axis restriction parameter operation
	mode
pa_odr_jou(ARM1, JT_LEFT);	Shifts Redundant axis restriction parameter to
	the left.

pa_mov_jou

7-axis arm function

Function:

Redundant axis control motion by S3 axis designation

Syntax:

long pa_mov_jou(ARM armno, float s3, long func);

armno	Arm number (No.).
s3	Designates S3 axis target angle [rad]
func	Designation whether to wait or not motion completion

Explanation:

For 7-axis arm, like PA-10, even if tip position and orientation trajectory are the same, plural axis values exist. Therefore, this is the mode to control 7-axis arm as 6-axis one by interpolating a certain axis (S3). Designating S3 axis target angle without changing tip position/orientation, controls redundant axis (elbow) changing S3 axis angle to the target angle.

After performing this processing, redundant axis control mode is in S3 interpolation restriction. The mode continues to be in S3 axis interpolation restriction status if it is not changed.

The explanation on "func" is the same as "pa_mov_XYZ".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_mod_jouRedundant axis control mode settingpa_odr_velVelocity mode velocity setting

Description example:

float s3;

÷

s3 = 80.0*M_PI/180.0; ... S3 axis target value = 80[deg] pa_mov_jou(ARM1, s3, WM_WAIT); ... Redundant axis (elbow) control :

pa_mov_XYZ(ARM1, 0.0, 100.0, 0.0, WM_WAIT);

(Moves 100 mm toward Y (Y=100[mm]) kept on laying redundant axis (elbow) down.)

pa__get__jou

7-axis arm function

Function:

Acquires redundant axis control mode in RMRC control.

Syntax:

long pa_get_jou(ARM armno, long* stat);

armno Arm number (No.). stat Redundant axis control status

Explanation: "stat" is set by "JOUMODE" as follows:

stat=JM_OFF	: Redundant control is OFF status.
stat=JM_ON	:Redundant control is all axes restriction control mode status.
stat=JM_S3ON	:Redundant control is S3 axis restriction control mode status.
stat=JM_S3DIV	:Redundant control is S3 axis interpolation control mode status.
stat=JM_S3HOL	D:Redundant control is S3 axis fixation control mode status.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_mod_jou Redundant axis control mode setting.

pa__get__mod

Function:

Acquires motion control calculator status.

Syntax:

long pa_get_mod(ARM armno, long* stat);

armno Arm number (No.) stat Current motion control calculator status

Explanation:

Acquires motion control calculator status. Motion control calculator status is as follows:

- 1 : Not available
- 2 : Not available
- 3 : Brake-stop status
- 4 : Not available
- 5 : Not available
- 6 : Not available
- 7 : Not available
- 8 : Each axis angle control status
- 9 : Each axis velocity control status
- 10: Direct servo-lock status
- 11: Simplified weight compensation status
- 12: Weight compensation status
- 13: RMRC control status
- 14: RMRC redundant axis control status
- 15: Each axis control servo-lock status
- 16: Not available
- 17: Each axis angle correction status
- 18: Circle interpolation playback status
- 19: Linear interpolation playback status
- 20: Arc interpolation playback status
- 21: RMRC control servo-lock status
- 22: Playback start waiting status (each axis control)
- 23: Each axis control servo-lock status (while in playback)
- 24: RMRC control servo-lock status (while in playback)
- 25: Playback start waiting status (RMRC control)
- 26: Playback tip position shifting status
- 27: Redundant axis movable status
- 28: RMRC real-time status
- 29: Playback axis interpolation angle correction status
- 30: Interim status shifting to the point after coordinate conversion
- 31: Redundant axis movable status (S3 axis interpolation)
- 32: Each axis real-time control mode status
- 33: Motion between teach data (RMRC control)
- 34: Motion between teach data (each axis control)

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)
pa__get__ver

Function:

Acquires motion control program version.

Syntax:

long pa_get_ver(ARM armno, float* ver); armno Arm number (No.)

ver Motion control program version.

Explanation:

Acquires motion control CPU program version.

Return value:

pa__get__com

Function:

Acquires current arm communication status.

Syntax:

long pa_get_com(ARM armno, long* stat);

armno Arm number (No.) stat Current arm communication status.

Explanation:

Acquires communication status between the controller while in arm control and the servo driver (not communicating / while in communication and actual machine control / while in communication and simulation control.)

Macro definition employed by "stat" is as follows:

STP_STATUS	0	Status not in communication
MOV_STATUS	1	while in communication and actual machine control
SIM_STATUS	2	while in communication with inner servo driver of
		motion control section and in simulation mode control

Before issuing PA library function loading current arm information, when this definition is used to confirm whether or not the controller is communicating now, if it is communicating, it is clearly seen that current information can be loaded by issuing the library. If not communicating, current information cannot be loaded by even issuing PA library.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Description example:

long	jou;		
long	stat;		
	:		
While in	n RMRC control		
	:		
pa_get_	_com(ARM1, &stat);	··· Acquires communication stat	us
if(!stat)){	If not in communication	
	pa_sta_arm(ARM0);	··· Starts communication.	
}			
pa_get_	jou(ARM0, &jou);⋯Loadin	g current redundant axis control mode.	
	:		

pa_get_sts

Function:

Acquires current arm information.

Syntax:

long pa_get_sts(ARM armno, ARMSTATUSP asts);

armno	Arm number (No.)
asts	Current arm information

Explanation:

armno	Acquires current arm information of "armno".
asts.max	Board controllable arm numbers 1or2
asts.arm	Arm identification number 0or1
asts.axis	Arm axis numbers
asts.typ	Arm type
asts.drv	Servo driver classification
asts.dio	Expansion DIO board exist / not exist
asts.remote	operation mode (valid / invalid)
asts.count	Control counter value
asts.error	Error code
asts.angle.s1	Current S1 axis value
:	
asts.angle.w2	Current W2 axis value
asts.noap[0][0]	Current tip orientation matrix
:	
asts.noap[2][3]	Current tip position matrix (Z)
asts.ypr[0]	Current orientation (TAW)
:	

When command processing is finished, the controller computes by adding the count of the inner variable. With this function, comparing inner variable before and after issuing command, users can recognize processing termination for command. . This inner variable is "asts.count".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_cnt pa_get_err pa_get_agl pa_get_xyz pa_get_noa pa_get_ypr

pa__get__cnt

Function:

Acquires control count from arm information.

Syntax:

long pa_get_cnt(ARM armno, long* cunt); armno Arm number (No.) cunt Control count information

Explanation:

Acquires control count information from current arm information.

When command processing is finished, the controller computes by adding the count of the inner variable. With this function, comparing inner variable before and after issuing command, users can recognize processing termination for command. This inner variable is control count value.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_sts pa_get_err pa_get_agl pa_get_xyz pa_get_noa pa_get_ypr

pa_get_err

Function:

Acquires error information from arm information.

Syntax:

long	pa_get_err(ARM armno, long* er	r);
armno	Arm number (No.)	
err	Error information (error code)	

Explanation:

Acquires error code information from current arm information.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_sts pa_get_cnt pa_get_agl pa_get_xyz pa_get_noa pa_get_ypr

pa__get__agl

Function:

Acquires axis information from arm information.

Syntax:

long	pa_get_agl(ARM armno,	ANGLEP angle);
armno	Arm number (No.)	
angle	Current axis value inform	nation [rad]

Explanation:

Acquires axis information from arm information. angle.s1: Current S1 axis value angle.s2: Current S2 axis value angle.s3: Current S3 axis value angle.e1: Current E1 axis value angle.e2: Current E2 axis value angle.w1: Current W1 axis value angle.w2: Current W2 axis value

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_sts pa_get_cnt pa_get_err pa_get_xyz pa_get_noa

. ._ . _ . _

pa__get__xyz

Function:

Acquires tip position information from arm information.

Syntax:

long	pa_get_xyz(ARM armno, VECTOR ve	c);
armno	Arm number (No.)	
vec	Current tip position information [mm]	

.....

Explanation:

Acquires tip position information from arm information. vec[0]:Arm tip X coordinate value vec[1]:Arm tip Y coordinate value vec[2]:Arm tip Z coordinate value

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_sts pa_get_cnt pa_get_err pa_get_noa pa_get_ypr

pa_get_noa

Function:

Acquires tip position/orientation matrix information from arm information.

Syntax:

longpa_get_noa(ARM armno, MATRIX noap);armnoArm number (No.)noapCurrent tip position/orientation information

Explanation:

Acquires tip position/orientation matrix information from current arm information.

noap[3][4] = $\begin{pmatrix} nx & ox & ax & px \\ ny & oy & ay & py \\ nz & oz & az & pz \end{pmatrix}$

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_sts pa_get_cnt pa_get_err pa_get_xyz pa_get_ypr

. ._ . _ . _

.

pa__get__ypr

Function:

Acquires tip orientation information from arm information.

Syntax:

long	pa_get_ypr(ARM armno, VECTOR ypr);
armno	Arm number (No.)
ypr	Current tip orientation information [rad]

.....

Explanation:

Acquires tip orientation information from current arm information. ypr[0]: Arm tip orientation "yaw" value ypr[1]: Arm tip orientation "pitch" value ypr[2]: Arm tip orientation "roll" value

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_sts pa_get_cnt pa_get_err pa_get_xyz pa_get_noa

pa_get_prm

Function:

Acquires parameter information from arm information.

Syntax:

long	pa_get_prm(ARM armno, PARAMP prm);
armno	Arm number (No.)
prm	Current parameter information

Explanation:

Acquires parameter information from current arm information.		
prm.rezl;	Resolver resolution	
prm.pul[7];	Position limiter(+)	
prm.pdl[7];	Position limiter $(-)$	
prm.vel[7 + 2];	Velocity limiter	
prm.dev[7 + 2];	Default velocity	
prm.lim[7 + 2];		
prm.ceh[7 + 2];		
prm.cem[7 + 2];		
prm.cel[7 + 2];		
prm.pg1[7];	Position control gain 1	
prm.pg2[7];	Position control gain 2	
prm.vg1[7];	Velocity control gain	
prm.tg1[7];	(Not available)	
prm.pcm[7];	Position control selection matrix	
prm.fcm[7];	(Not available)	
prm.arl[7];	Arm length	
prm.arg[7];	Axis gravity center position	
prm.arw[7];	Axis weight	
prm.hom[7];	Home position recovery target value	
prm.saf[7];	Other point recovery target value	
prm.esc[7];	Escape point recovery target value	
prm.tol[7];	Tool parameter	
prm.fvl[7];		
prm.dmy[7];	(Not available)	
prm.spa[7];	Spare	

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_sts pa_get_cnt pa_get_err pa_get_xyz pa_get_noa pa_get_ypr

```
Description example:
```

:

```
:

PARAM prm;

:

pa_get_prm(ARM1, &prm);

printf( ~S1_max:%ld S1_min:%ld ~,prm.pul[0] ,prm.pdl[0] );

printf( ~S2_max:%ld S2_min:%ld ~ ,prm.pul[1] ,prm.pdl[1] );
```

pa__get__tar

Function:

Acquires target angle and target tip position/orientation matrix information.

Syntax:

long	pa_get_tar(ARM armno, ARMTARGETP tar);
armno	Arm number (No.)
tar	Target angle and tip position/orientation information

Explanation:

For "angle", each target axis angle every control cycle in axis control is included. For "noap", target tip position/orientation every control cycle in RMRC control is included.

noap[3][4] = $\begin{pmatrix} nx & ox & ax & px \\ ny & oy & ay & py \\ nz & oz & az & pz \end{pmatrix}$

For "ypr", Yaw, Pitch and Roll value calculated from tip orientation: "noa" are included

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_agl pa_get_noa pa_get_xyz pa_get_ypr

pa__get__sav

Function:

Acquires each axis servo ON/OFF status.

Syntax:

long pa_get_sav(ARM armno, long* sav);

armno	Arm number (No.)
sav	Servo status

Explanation:

Acquires each axis servo status.

When S1 servo is ON	sav=0x01
When S2 servo is ON	sav=0x02
When S3 servo is ON	sav=0x04
When E1 servo is ON	sav=0x08
When E2 servo is ON	sav=0x10
When W1 servo is ON	sav=0x20
When W2 servo is ON	sav=0x40
All axes servo ON	sav=0x7F

Return value:

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

pa_sav_sts

Function:

Acquires each axis servo status.

Syntax:

long	pa_sav_sts(ARM armno, long* sts);
armno	Arm number (No.)

sts	Each axis servo status

Explanation:

Acquires each axis servo status.

sts[0]	S1 axis servo status
sts[1]	S2 axis servo status
	:
sts[6]	W2 axis servo status
sts[7]	Master servo status

Return value:

pa__get__smd

Function:

Acquires "TEACHMODE" from servo.

Syntax:

long pa_get_smd(ARM armno, long* mod);

armno Arm number (No.) mod 0: OFF 1: ON

Explanation:

Acquires "TEACHMODE" from servo.

Return value:

pa_set_ddm

Function:

Dead man SW valid/invalid

Syntax:

long pa_set_ddm(ARM armno, long type, long val);

armno	Arm number (No.)
type	Switch type
val	1 : valid
	0:invalid

Explanation:

Sets dead man SW valid/invalid.

Return value:

pa__get__ddm

Function:

Acquires dead man SW valid/invalid status.

Syntax:

long pa_get_ddm(ARM armno, long type, long* val);

armno	Arm number (No.)
type	Switch type
val	1 : valid
	0:invalid

Explanation:

Acquires dead man SW valid/invalid status.

Return value:

pa_set_lok

Function: TEACHLOCK setting

Syntax:

long pa_set_lok(ARM armno, long mod);

armno	Arm number (No.)	
mod	1:Teach mode ON	
	0:Teach mode OFF	

Explanation:

Sets TEACHLOCK.

Return value:

pa__get__lok

Function: TEACHLOCK acquisition

Syntax:

long pa_get_lok(ARM armno, long* mod);

armno	Arm number (No.)	
mod	1 : Teach mode	ON
	0:Teach mode	OFF

Explanation:

Acquires TEACHLOCK.

Return value:

pa_tct_tim

Function:

Tact time (playback time) acquisition

Syntax:

long	pa_tct_tim(ARM armno, long* tim);
armno	Arm number (No.)
tim	Tact time

Explanation:

Acquires tact time (playback time)

Return value:

pa__get__max

Function:

Acquires board controllable arm numbers.

Syntax:

long	pa_get_max(ARM armno, long	* num);
armno	Arm number (No.)	
num	Controllable arm numbers	1 or 2

Explanation:

Acquires board controllable arm numbers.

Return value:

pa__get__spt

Function:

Acquires arm identification number.

Syntax:

long pa_get_spt(ARM armno, long* spt);

armno Arm number (No.) spt 0 or 1st

Explanation:

Acquires arm identification number on account of two arms being actuated with one board.

Return value:

pa_set_sim

Function:

Simulation magnification setting

Syntax:

long	pa_set_sim(ARM armno, long tim);
armno	Arm number (No.)
tim	Simulation magnification $(1 \sim 50)$

Explanation:

Sets simulation magnification.

Return value:

pa_set_inc

Function:

Real-time velocity setting

Syntax:

long	pa_set_inc(ARM armno, float inc);
armno	Arm number (No.)
inc	Real-time velocity(0.01~1)

Explanation:

Sets real-time velocity.

Return value:

pa__get__sim

Function:

Simulation magnification acquisition

Syntax:

long	pa_get_sim(ARM armno, long* sim);
armno	Arm number (No.)
sim	Simulation magnification (1 \sim 50)

Explanation:

Acquires simulation magnification.

Return value:

pa__get__inc

Function:

Real-time velocity acquisition

Syntax:

long	pa_get_inc(ARM armno, float* inc);
armno	Arm number (No.)
inc	Real-time velocity(0.01~1)

Explanation:

Acquires real-time velocity.

Return value:

pa_inp_dio

Function:

Digital input (32ch. unit input)

Syntax:

long	pa_inp_dio(ARM armno, DIOKIND kind, DIOSTATUSP dio);
armno	Arm number (No.)
kind	DIO_INTERNAL(System)
	DIO_EXTERNAL(Expansion DIO board)
dio	Designates digital input area by structure "DIOSTATUSP".

Explanation:

Gets the status from standard digital input and sets it in the designated area: "dio".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_oup_dio	Digital input (32ch. unit input)	
pa_get_dio	Digital input (1ch. unit input)	
pa_set_dio	Digital output (1ch. unit set)	
pa_rst_dioDigital output (1ch. unit reset)		

Description example:

:

```
DIOSTATUS dio;

:

pa_inp_dio(ARM1, DIO_EXTERNAL, &dio);

printf( "dio_1:%x ",dio.io1 );

printf( "dio_2:%x ",dio.io2 );

printf( "dio_3:%x ",dio.io3 );

printf( "dio_4:%x ",dio.io4 );

:
```

pa_oup_dio

Function:

Digital output (32ch. unit output)

Syntax:

long	pa_oup_dio(ARM armno, DIOKIND kind, DIOSTATUSP dio);
armno	Arm number (No.)
kind	DIO_INTERNAL(System)
	DIO_EXTERNAL(Expansion DIO board)
dio	Designates digital output value by structure "DIOSTATUSP".

Explanation:

Designates standard digital output value by structure "DIOSTATUSP".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_inp_dio	Digital input (32ch. unit output)
pa_get_dio	Digital input (1ch. unit output)
pa_set_dio	Digital output (1ch. unit output)
pa_rst_dio	Digital output (1ch. unit output)

Description example:

:

```
DIOSTATUS dio;

:

dio.io1 = 0x00;

dio.io2 = 0x20;

dio.io3 = 0x24;

dio.io4 = 0xff;

pa_oup_dio(ARM1, DIO_EXTERNAL, &dio);

:
```

pa_get_dio

Function:		
Channe	unit digital input	
Syntax:		
long	pa_get_dio(ARM armno, DIOKIND kind,	
	DIOPORT port, DIOCH ch, unsigned char* in);	
armno	Arm number (No.)	
kind	DIO_INTERNAL(System)	
	DIO_EXTERNAL(Expansion DIO board)	
(*)port	Designates input port by "enum DIOPORT".	
ch	Designates input channel by "enum DIOCH".	
in	Input data area:	
	If in = 0 : OFF	
	If in $\langle \rangle 0$: ON	
Explanation:		
Channe	unit input for standard/Expansion digital input.	
Loads p	ort channel "ch" value indicated by "port".	
<note< td=""><td>> (*) Not only digital input information, but also output information can be</td></note<>	> (*) Not only digital input information, but also output information can be	
	acquired.	
	port =	
	DP_XXXXX: acquires input information as usual.	
	DPO_XXXXX: is information set to output by PA library.	
	DPX_XXXXX: is information for current output value (output value created	
	by PA library or information in playback data).	
Return value:		
ERR_OK	Normal termination	
Others:	Anomalous termination (Refer to error table)	
Reference:		
pa_inp_d	io Digital input (32ch. unit input)	
pa_oup_o	dio Digital output (32ch. unit output)	
pa_set_c	lio Digital output (1ch. unit setting)	
pa_rst_d	io Digital output (1ch. unit resetting)	
Description ex	ample:	
unsigned char io;		
:		
pa_get_dio(ARM1, DIO_EXTERNAL, DP_PORT1, DC_CH4, &io);		
	:	

pa_set_dio

Function:

Channel unit setting for digital output.

Syntax:

long	pa_set_dio(ARM armno, DIOKIND kind,
	DIOPORT port, DIOCH ch);

armno	Arm number (No.)
kind	DIO_INTERNAL(System)
	DIO_EXTERNAL(Expansion DIO board)
port	Designates output port by "enum DIOPORT"
ch	Designates output channel by "enum DIOCH".

Explanation:

Channel unit setting for standard output. Sets port channel "ch" indicated by "port".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_inp_dio	Digital input (32ch. unit input)
pa_oup_dio	Digital output (32ch. unit output)
pa_get_dio	Digital input (1ch. unit input)
pa_rst_dio	Digital output (1ch. unit resetting)

Description example:

:

pa_rst_dio

Function:

Channel unit resetting for digital output.

Syntax:

long pa_rst_dio(ARM armno, DIOKIND kind,

DIOPORT port, DIOCH ch);

armno	Arm number (No.)
kind	DIO_INTERNAL(System)
	DIO_EXTERNAL(Expansion DIO board)
port	Designates output port by "enum DIOPORT".
ch	Designates output channel by "enum DIOCH"

Explanation:

Channel unit resetting for standard output. Resets port channel "ch" indicated by "port".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_inp_dio	Digital input (32ch. unit input)
pa_oup_dio	Digital output (32ch. unit output)
pa_get_dio	Digital input (1ch. unit input)
pa_set_dio	Digital output (1ch. unit setting)

Description example:

: pa_rst_dio(ARM1, DIO_EXTERNAL, DP_PORT1, DC_CH4); :

8-146

pa_dio_msk

Function:

DIO mask setting

Syntax:

long pa_dio_msk(ARM armno, long dio, long kind, long msk);

armno	Arm number (No.)
dio	DOMSK or DIMSK
kind	Board type
msk	Mask bit (System is only lower 8bit, expansion 32bit)

Explanation:

Sets DIO mask.

Return value:

pa__get__msk

Function:

DIO mask acquisition

Syntax:

long	pa_get_msk(ARM armno, long dio, long kind, long* msk);
armno	Arm number (No.)
dio	DOMSK or DIMSK

kind Board type

msk Mask bit (System is only lower 8bit, expansion 32bit)

Explanation:

Acquires DIO mask.

Return value:

pa_set_tol

Function:

Sets tool information.

Syntax:

long

armno	Arm number (No.)
x	Offset value toward "x" from arm tip to tool tip [mm]
У	Offset value toward "y" from arm tip to tool tip [mm]
z	Offset value toward "z" from arm tip to tool tip [mm]
off	Offset value toward "z" from tool tip to work face [mm]

pa_set_tol(ARM armno, float x, float y, float z, float off);

Explanation:

Sets tool information (offset value from arm tip to tool tip) of controller parameter file.

All tool information default values are 0 [mm].

This value cannot be set during RMRC control.

This value is vanishing when power supply is off.

If intending to change parameter file default value, use parameter setting.

As this offset is added for arm mechanical interface coordinate system, added points are kept even if in orientation rotation. Only tip direction changes.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_prm pa_set_vel

Description example:

1

pa_set_tol(ARM1, 100.0, 50.0, 300.0, 40.0);

pa_set_vel

Function:

Alters default velocity.

Syntax:

-	long	pa_set_vel(ARM armno, VELTYPE vtype, float vel[]);
	armno	Arm number (No.)
	vtype	Default velocity classification
(*)	vel[]	Default velocity alteration value

Explanation:

Alters default velocity indicated by "vtype" to "vel[rad/sec]".

It vanishes with power supply: OFF.

VT_ONEVEL: Axis default velocity alteration [rad/sec] VT_XYZVEL: Tip position default velocity alteration [mm/sec] VT_YPRVEL: Tip orientation default velocity alteration [rad/sec]

(*) <NOTE>

```
When in "VT_ONEVEL", default velocity for 7 axes can be set by "vel[7]".
When in "VT_XYZVEL, VT_YPRVEL: vel[1].
```

Return value:

ERR OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

```
pa_get_prm
pa_set_tol
```

Description example: (1) ANGLE angle; float vel[7]; : vel[0] = 0.6; ···· S1 axis [rad/sec] vel[1] = 0.6; ··· S2 axis [rad/sec] : vel[6] = 3.14;···· W2 axis [rad/sec] pa_set_vel(ARM1, VT_ONEVEL, vel); ... Axis default velocity alteration angle.s3 = 3.14;pa_exe_axs(ARM1, S3, &angle, WM_NOWAIT); ... Axis control only for S3 axis Description example: (2) float vel; = 40.0: vel ··· Tip position default velocity [mm/sec] pa_set_vel(ARM1, VT_XYZVEL, &vel); · · · Tip position default velocity alteration pa_mov_XYZ(ARM1, 50.0, 100.0, 0.0, WM_WAIT);

···· RMRC base coordinate position deviation control
pa_lod_ctl

Function:

Downloads parameter to the controller.

Syntax:

long pa_lod_ctl(ARM armno, char* file);

armno Arm number (No.) file Parameter file name

Explanation:

Downloads parameter designated by "file" to the controller designated by "armno". When intending to change parameter file contents, use parameter setting.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Description example:

1

:

pa_lod_ctl(ARM1, "CTRL.PAR");

pa_tst_nom

Function:

RETRAC parameter creation mode ON/OFF setting

Syntax:

long	pa_tst_nom(ARM a	rmno, long sw);
------	------------------	-----------------

armno	Arm number (No.)
sw	0:OFF
	1:ON

Explanation:

Sets RETRAC parameter creation mode ON/OFF.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_rmd

pa__get__rmd

Function:

RETRAC parameter creation mode ON/OFF acquisition.

Syntax:

	long	pa_get_rmd(ARM	armno,	long*	sw));
--	------	----------------	--------	-------	-----	----

armno	Arm number (No.)
SW	0:OFF
	1:ON

Explanation:

Acquires RETRAC parameter creation mode ON/OFF.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_tst_nom

pa_lod_rob

Function:

Robot model file loading

Syntax:

long pa_lod_rob(ARM armno,char *file);

armno Arm number (No.) file Robot model file name

Explanation:

Loads robot model file.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_lod_tol pa_sav_rob

pa_lod_tol

Function:

Tool model file loading

Syntax:

long pa_lod_tol(ARM armno,char *file);

armno Arm number (No.) file Tool model file name

Explanation:

Loads tool model file.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_lod_rob pa_sav_rob

pa_sav_rob

Function: Robot model file saving

Syntax:

long pa_sav_rob(ARM armno);

armno Arm number (No.)

Explanation:

Saves robot model file.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_lod_tol pa_sav_rob

pa_ena_nom

Function:

RETRAC calculation switching

Syntax:

	ong	pa_ena	_nom(ARM	armno,	long	sw));
--	-----	--------	----------	--------	------	-----	----

armno	Arm number (No.)	
sw	0:T Matrix calculation	
	1: RETRAC calculation	

Explanation:

Switches to RETRAC calculation.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_nom pa_thk_nom

pa_get_nom

Function:

Acquires either T-matrix calculation or RETRAC calculation processing.

Syntax:

long	pa_get_nom(ARM armno, long* nom);
armno	Arm number (No.)
nom	0: in T-matrix calculation
	1: in RETRAC calculation

Explanation:

Acquires either T-matrix calculation or RETRAC calculation.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_ena_nom pa_thk_nom

pa_tkn_nom

Function:

Acquires whether or not the ability to perform RETRAC calculation.

Syntax:

long	pa_tkn_nom(ARM armno, long* nom);
armno	Arm number (No.)
nom	0: Not possible
	1: Possible

Explanation:

Acquires whether or not the ability to perform RETRAC calculation.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_get_nom pa_ena_nom

pa_map_ctl

Function:

Mapping area shared with the controller.

Syntax:

long pa_map_ctl(ARM armno);

armno Arm number (No.)

Explanation:

Mapping the controller area designated by "controller.armno" to man-machine controller.

Reference

For mapping details, refer to the chapter 4.

This function is the first one to be called in all PA libraries. Therefore, this function is not performed alone.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa__fsh__chk

Function:

Waiting for command completion.

Syntax:

short pa_fsh_chk(ARM armno);

armno Arm number (No.)

Explanation:

When command processing is finished, the controller computes by adding the count of the inner variable. With this function, comparing inner variable before and after issuing command, users can recognize processing termination for command.

This function is the first one to be called in all PA libraries. Therefore, this function is not performed alone.

Return value:

0	Processing is completed.
1	Processing is not completed.

pa_fsh_sub

Function:

Waiting for command completion.

Syntax:

short pa_fsh_sub(ARM armno);

armno Arm number (No.)

Explanation:

When command processing is finished, the controller computes by adding the count of the inner variable. With this function, comparing inner variable before and after issuing command, users can recognize processing termination for command.

This function is employed when issuing following PA libraries. But, this function is not employed alone.

pa_odr_xyz:Tip position offset setting
pa_swt_dio:Teach point DO data valid/invalid setting
pa_set_inc:Real-time velocity setting

Return value:

- 0 Processing is completed.
- 1 Processing is not completed.

Reference:

pa_fsh_chk

pa_req_ctl

Function:

Writing completion/interruption occurrence

Syntax:

long pa_req_ctl(ARM armno, long num);

armno Arm number (No.) num Retry times

Explanation:

The controller recognizes completion of writing data to PCI shared area by "writing completion interruption".

Interruption retry is performed at certain times designated by "num".

This function is called in all PA libraries and not performed alone.

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_req_sub

pa_req_sub

Function:

Writing completion/interruption occurrence

Syntax:

long pa_req_sub(ARM armno, long num);

armno Arm number (No.) num Retry times

Explanation:

The controller recognizes completion of writing data to PCI shared area by "writing completion interruption".

Interruption retry is performed at certain times designated by "num".

When command is issued employing "pa_req_ctl", the same as "pa_fsh_sub", this function is employed to issue simultaneously another command.

This function is employed when issuing following PA libraries. But, this function is not performed alone.

pa_odr_xyz:Tip position offset setting
pa_swt_dio:Teach point DO data valid/invalid setting
pa_set_inc:Real-time velocity setting

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

Reference:

pa_req_ctl pa_fsh_sub

pa_rst_ctl

Function:

Performs error information resetting.

Syntax:

long pa_rst_ctl(ARM armno);

armno Arm number (No.)

Explanation:

Requests error information resetting, set by arm controller designated by "armno".

Return value:

ERR_OK Normal termination Others: Anomalous termination (Refer to error table)

pa_err_mes

Function:

Acquires error message.

Syntax:

long	pa_err_mes(ERR errNo ,cahr* err);
errNo	Error number

err The area to load error message.

Explanation:

Acquires an error message responding to a error number.

Return value:

ERR_OK Normal termination Others: Anomalous termination (=ERR_MES: No error message responding to the error number.)

Appendix 1

PA library summary table

Table summarizing each PA library control condition. This can be used for programming employing PA libraries.

If the library can be issued, it is indicated with O. If the library can be issued in any condition, it is indicated with $\langle ALL \rangle$.

If each PA library is obtaining synchronization between controllers, it is indicated with O. If not, it is indicated with \times .

Here, below, shows the summary table for control number and its description.

Arm control number &	description table
----------------------	-------------------

Status No.	Indicated message	Control description	Status class.
3	Brake stop status	All axes brake-stop	(a)
8	Each axis angle control	In motion with axis control	(b)
	status		
9	Each axis velocity control	Axis velocity control mode	(f)
	status		
10	Servo lock status	All axes servo-lock in direct control	(i)
12	Self weight compensated	Weight compensation control in direct control	(i)
	status		
13	RMRC control status	In motion with RMRC control	(e)
14	RMRC redundant axis interpolation	Redundant axis correction when switching to RMRC mode	
	status	, i i i i i i i i i i i i i i i i i i i	
15	Each Axis control servo lock	Each axis pause (temporary stop) in playback control	(b)
	status	Step-stop. Playback control continuation possible.	
17	Plavback each axis	Motion created by axis interpolation to current point.	(b)
	correction status		
18	Plavback circle interpolation	Motion created by circle interpolation in playback control.	(e)
	status	······································	(-)
19	Plavback linear interpolation	Motion created by linear interpolation in playback control.	(e)
	status	······································	,
20	Plavback arc interpolation	Motion created by arc interpolation in playback control.	(e)
	status	······································	,
21	RMRC control servo lock	RMRC pause (temporary stop) in playback control.	(c)
	status	Playback step-stop	
22	Waiting Playback start	Playback control start waiting	(b)
	Status	Each axis servo-lock	
23	Each axis control servo lock	Target value lock in axis feedback control	(b)
	status		
24	RMRC control servo lock	Target value lock in RMRC feedback control	(c)
	status		
25	Waiting Playback start	Waiting for playback control start command.	(c)
	Status	RMRC servo-lock	
26	Playback tip correction	Motion created by linear interpolation to current point.	(e)
	status		
27	Redundant axis control	Redundant axis parameter operation mode	(h)
	status		
28	RMRC real-time control	Tip position/orientation real-time control mode	(k)
	status		
29	Playback each axis	Motion created by axis interpolation in playback control	(d)
	interpolation status		
30	Coordinate conversion	Shifting position/orientation to playback trajectory	(e)
	position correction status	by coordinate conversion	
31	Redundant axis S3	Redundant axis (elbow) in motion without changing	(h)
	interpolation control status	tip position/orientation	
32	Axis real-time control	Each axis real-time control mode	(j)
	status		
33	Move between Teaching	In motion of RMRC control to move between one	(e)
	data (RMRC control)	Teaching Data and another in playback control.	
34	Move between Teaching	In motion of each axis control to move between	(d)
	data (Each axis control)	one Teaching Data and another in playback control	1

<stop></stop>	
Brake-stop	·····(a)
Axis control servo-lock (Axis feedback)	·····(b)
RMRC servo-lock (Axis feedback)	·····(c)
<in motion="">: Shifts to stop after moving with one motion</in>	command.
Axis control (Axis feedback)	·····(d)
RMRC control (RMRC feedback)	·····(e)
<in mode="" motion="">: Control is not changed until term</in>	ination command is issued.
Axis velocity control mode (Axis feedback)	·····(f)
RMRC velocity control mode (RMRC feedback)	$\cdots \cdot (g)$
Redundant axis control mode (RMRC feedback)	•••••(h)
Direct control mode (torque control, axis feedback)	•••••(i)
Axis real-time control mode (axis feedback)	•••••(j)
RMRC real-time control mode (RMRC feedback)	·····(k)

[Supplementary Explanation]

Supplementary explanation on PA library temporary stop and temporary-stop release function (pa_sus_arm, pa_rsm_arm) is as follows:

Temporary stop (pause) means to stop renewing target value and create servo-stop. It does not mean the whole control stops. Therefore, redundant axis (elbow) might move in RMRC servo-lock.

Temporary-stop release (restart) means basically to restart the prior motion. It might happen not to restart.

"pa_sus_arm" (pause, temporary stop) & "pa_rsm_arm" (restart, temporary-stop release) table to be issued.

Status No.	Control	pa_sus_arm	Status NO. after pause	pa_rsm_arm
3	Brake-stop	(O)	—	_
8	Axis velocity control	0	15	0
9	Axis velocity control	0	15	×
10	Servo-lock	0	15	×
12	Weight compensation	×	—	—
13	RMRC control	0	21	0
	(RMRC velocity control)	0	21	×
14	RMRC redundant axis correction	0	15	0
15	Axis control servo-lock	(O)	—	-
17	Playback axis correction	0	23	0
18	Playback circle interpolation	0	24	0
19	Playback linear interpolation	0	24	0
20	Playback arc interpolation	0	24	0
21	RMRC control servo-lock	(O)	_	_
22	Playback start waiting	0	23	0
23	Axis control servo-lock	(O)	—	-
24	RMRC control servo-lock	(O)	_	_
25	Playback start waiting	0	24	0
26	Playback tip correction	0	24	0
27	Redundant axis control	0	21	×
28	RMRC real-time control	0	21	×
29	Playback axis interpolation	0	23	0
30	Coordinate conversion position correction	0	24	0
31	Redundant S3 axis interpolation control	0	21	0
32	Axis real-time control	0	15	×
33	Move between Teaching data (RMRC control)	0	24	0
34	Move between Teaching data (Each axis control)	0	15	0

O : Valid (possible)

× : Invalid (not possible)

(O): Valid, but, not changing status.

Control	Function	ID	3	8	9	10	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	Syncron
																														ization
Status Control	pa_stp_arm							<		Α		L		L		>														0
	pa_sus_arm							<		Α		L		L		>														0
	pa_rsm_arm									0						0		0	0											0
	pa_exe_axs		0							0						0		0	0				0							0
	pa_exe_hom				0	0			0	0						0	0	0	0	0	0	0	0				0			0
	pa_exe_esc				0	0			0	0						0	0	0	0	0	0	0	0				0			0
	pa_exe_saf				0	0			0	0						0	0	0	0	0	0	0	0				0			0
Axis motion control	pa_mov_XYZ					0				0						0		0	0			0	0			0		-		0
	pa_mov_YPR					0				0						0		0	0			0	0			0				0
	pa_mov_xyz					0				0						0		0	0			0	0			0				0
	pa_mov_ypr					0				0						0		0	0			0	0			0				0
	pa_mov_mat					0	_			0			_			0		0	0			0	0			0				0
Tip	pa_axs_pnt					0				0						0		0	0			0	0							0
position/orientation	pa_mov_pnt					0				0						0		0	0			0	0							0
control	pa_ply_pnt									0						0	0			0					0					0
	pa_tct_tim							<		Α		L		L		>														×
Playback control	pa_add_pnt		0		0	0	0	0		0						0		0	0			0	0			0	0			0
	pa_del_pnt		0		0	0	0	0		0						0		0	0			0	0			0	0			0
	pa_rpl_pnt		0		0	0	0			0						0		0	0			0	0			0	0			0
	pa_set_pnt		0			0	0			0				0		0		0	0											0
	pa_set_idn		0			0	0			0						0		0	0											0
	pa_chg_dio		0			0	0			0						0		0	0											0
	pa_vel_pnt							<		Α		L		L		>														0
	pa_swt_dio							<		Α		L		L		>														×
	pa_set_cmt							<		Α		L		L		>														0

Control	Function	ID	3	8	9	10	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	Syncron zation	ıi
Teach	pa_chg_pnt	PM_TOP																													
point		PM_NEXT	0			0				0						0		0	0											0	
operation(1)		PM_PRIV																													
		PM_BTM																_								_					
		PM_JMP	0			0		0		0				_		0		0	0			0	0			0	0			0	
		PM_CIR	0			0		0		0						0		0	0			0	0			0	0			0	
		PM_ARC	0		0			0		0						0		0	0			0	0			0	0			0	
	pa_jmp_cmt		0			0				0						0		0	0											0	
Teach	pa_get_pnt		0		0	0	0	0		0						0	0	0	0	0	0	0	0			0	0			0	
point	pa_get_cur							<		Α		L		L		>														×	
operation(2)	pa_get_num							<		Α		L		L		>														×	
	pa_get_idn							<		Α		L		L		>														×	
	pa_get_cpt		0		0	0	0	0		0						0	0	0	0	0	0	0	0			0	0			0] dd
	pa_get_pvl							<		Α		L		L		>														×	en
	pa_get_pdo							<		Α		L		L		>														×	dix
	pa_lod_pnt		0														Ì	0	0								1			0	- 1
	pa_sav_pnt		0															0	0								1			0	
	pa_set_dlc			-			-	<		Α		L		L		>														0	
	pa_get_dlc			•				<		Α		L		L		>														×	
Area-Cube	pa_set_cub		0		0	0	0	0		0						0		0	0			0	0			0	0			0	
operation	pa_get_cub		0		0	0	0	0		0						0		0	0			0	0			0	0			0	
	pa_cub_len		0		0	0	0	0		0						0		0	0			0	0			0	0			0	
	pa_cub_cmt		0		0	0	0	0		0						0		0	0			0	0			0	0			0	
	pa_del_cub		0		0	0	0	0		0						0		0	0			0	0			0	0			0	
	pa_ena_cub		0	-	0	0	0	0		0				•		0		0	0			0	0			0	0			0	
	pa_inf_cub		0		0	0	0	0		0						0	ĺ	0	0			0	0			0	0			0	

Control	Function	ID	3	8	9	10	12	13	3 1	4 1	15	16	17	18	19	20	21	22	23	24	25	26	27	28	3 29) 3	0	31	32	33	34	Syncro	ni
Teach	na nlv set						-				Δ	_	1							<u> </u>	-	-				-	_	_			<u> </u>		
data	pa_piy_set				0	\cap	\cap	ì	\$	6	$\hat{}$		L.		<u> </u>		$\hat{0}$		\cap				\cap		`							0	
operation	pa_acc_prit		$\overline{0}$								<u> </u>														·	-		4	0			0	
operation	pa_ply_mou		0			\cap				(\cap		\cap	\cap		_		-		-	_	-				0	
	na get kev						-	1			Δ	_	1		1		$\overline{}$						-			-	_	-				×	
	pa_get_key				_		-	~			Δ						>					_	-				_	_				×	
	na get nmd							``````````````````````````````````````			Δ						>					_						-				×	
	na get nri						-	<			Δ	_					>					-	-				_					0	
	pa_set_pri							<			A						>											_				0	
	pa_sev_pri		0	-				``					-		_				0	0		-						_				0	
	pa_out_pij		0					Ī											0	0											Ī	0	
Plavback	pa imp set		Ŭ					<			A		L		L		>		<u> </u>	<u> </u>								_				0	- .
JUMP attribute	pa get imp		0	-	0			Ċ)	(<u>,</u>		_				0		0	0			0	С)		(ົ	0			0	App
operation	pa_set imp		Ĭ		•			<			A		I		1		>		•	Ŭ		-	-	-		-		-	Č			0	jen
	pa ena imp				_			<			A		L		L		>					-	-					_				0	dix
	pa get ena							<			A		L				>					-	-					-				×	
	pa del imp		0			0)			(2						0		0	0		-	-					-				0	
	pa sav pti		0								-								0	0			-	-								0	
	pa lod ptj		Ō	-			-												Ō	Ō		<u> </u>						_				0	
Velocity Control	pa mod vel	VM XYZ																														_	
Function		VM_YPR																															
		VM_xyz		-		0				(С						0		0		0			С)		(С				0	
		VM_ypr																															
		VM_XYZYPR																															
		VM_xyzypr																															
		VM_one	0		0	0				(С						0		0		0											0	
	pa_odr_vel							<			A		L		L		>															0	

Control	Function	ID	3	8	9	10	12	13	3 14	4 1	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30) 3	1 3	32	33	34	Syncroni zation	
Redundant axis	pa_mod_jou	JM_OFF																															1
control function		JM_ON																															
		JM_S3ON	0		0	0		0		(0						0	0	0	0	0		0	0		С) ()				0	
		JM_S3DIV																															
		JM_S3HOLD							_	_																	_						
		JM_VSET				0				(0						0	ļ	0	0			ļ	ļ			_	_				0	
		JM_SET				0				(0						0		0	0							_					0	
		JM_RESET	0		0			0		(0						0					_					_					0	
	pa_odr_jou							<			A		L		L		>	ļ														0	
	pa_mov_jou									(0						0	-		0												0	
	pa_get_jou							<			A		L		L		>															×	
Real-time control	pa_mod_dpd					0				(0						0							0								0	~
function	pa_odr_dpd							<			A		L		L		>															0	pp
	pa_mod_axs					0				(0						0		0	0								(C			0	end
	pa_odr_axs							<			A		L		L		>															0	lix
Direct control	pa_mod_dir	DM_START	0							(0						0		0	0												0	1
function		DM_STOP					0																									0	
	pa_wet_ded					0	0																									0	
	pa_drt_ded		0			0	0																									0	
	pa_chk_cnt							<			Α		L		L		>															0	
	pa_set_tim							<			A		L		L		>															0	
	pa_get_tim							<			A		L		L		>															×	
	pa_get_drt							<			A		L		L		>															×	

Control	Function	ID	3	8	9	10	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	Syncro	ni
Orientation setting &	na set hom		0			\cap		\cap															\cap								<u> </u>
definition function			0		0	0		\cap	-	0				-		0		0	0			0				0	$\overline{0}$				
	na set saf		0		0	0		0	-	0						0		0	0			0	0			0	0			0	
	pa_cot_can		0		0	Ŭ		0	-	0	-					0		0	0			0	0			0	0		-	0	
	pa_def_nem		0		0			0		0						0		0	0			0	0			$\overline{0}$	0	-		0	
	pa def saf		0		0			0	-	Ō						0		0	0		_	0	0			0	0	_	-	0	
Tip offset function	pa_set_mtx									0		0	0	0	0	0	0			0				0					0	0	_
	pa_set_mat						1		-	0	-	0	0	0	0	0	0			0				0			-		0	0	
	pa_set_wav		_				-	<	-	Α	-	L		L		>							-						-	0	
	pa_odr_xyz							<		Α	-	L		L		>			-											0	
	pa_lmt_xyz							<		Α		L		L		>														0	
	pa_get_mat							<		Α		L		L		>														×	
	pa_get_sns							<		Α		L		L		>														×	App
	pa_get_lmt							<		Α		L		L		>														×	enc
Status information	pa_get_mod							<		Α		L		L		>														×	lix
Loading function	pa_get_ver							<	-	Α	-	L		L		>														×	
	pa_get_com							<		Α		L		L		>														×	
	pa_get_sts							<		Α		L		L		>														×	
	pa_get_cnt							<		Α		L		L		>														×	
	pa_get_err							<		Α		L		L		>														×	
	pa_get_agl							<		Α	_	L		L		>											_			×	
	pa_get_xyz							<		Α	_	L		L		>														×	
	pa_get_noa							<		Α	_	L		L		>														×	
	pa_get_ypr						ļ	<		A	_	L		L		>					_									×	
	pa_get_prm						ļ	<		Α		L		L		>											_			×	
	pa_get_tar							<	-	Α		L		L		>											_			×	
	pa_get_sav							<		Α	_	L		L		>		_												×	
	pa_sav_sts						_	<		Α		L		L		>			-											×	
	pa_get_smd							<		Α		L		L		>														×	

Control	Function	ID	3	8	9	10	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	Syncroni
																														zation
Digital input/output	pa_inp_dio							<		Α		L		L		>														×
function	pa_oup_dio							<		Α		L		L		>														×
	pa_get_dio							<		Α		L		L		>									_					×
	pa_set_dio							<		Α		L		L		>									_					×
	pa_rst_dio							<		Α		L		L		>														×
Functionr	pa_set_tol		0							0						0		0							_					0
on parameter	pa_set_vel		0	_						0						0		0	0											0
	pa_lod_ctl							<		Α		L		L		>														0
Error	pa_rst_ctl							<		Α		L		L		>								-						0
processing function	pa_err_mes							<		Α		L		L		>														×
	pa_clr_log							<		Α		L		L		>														×
	pa_sav_log							<		Α		L		L		>														×

【Other PA library function】

Control	Function
Control	Function
Control minimum	∫ pa_ini_sys
required function	l pa_ter_sys
(Employed as a pair)	∫ pa_opn_arm
	ل pa_cls_arm
	∫ pa_sts_arm
	ل pa_ext_arm
	∫ pa_sta_sim
	ک pa_ext_sim
Function not needed for	pa_map_ctl
programming	pa_fsh_chk
	pa_fsh_sub
	pa_req_ctl

[Special PA library function]

Control	Function
Simulation rate	pa_set_sim
	pa_get_sim
Real-time speed rate	pa_set_inc
	pa_get_inc

[SystemPA library function]

Control	Function
Dead-Man Switch disable/enable	pa_set_ddm
set and refer	pa_get_ddm
TEACH-LOCK set and refer	pa_set_lok
	pa_get_lok
Arm max number (To be able to control)	pa_get_max
Self arm number	pa_get_spt

Appendix 2

PA Library Return Value (Error Code)

"Previous error code remaining."

After issuing PA library from the operation control section, when the processing is completed, error code written on ISA (or VME) shared memory at this moment is defined as library return value.

If anomaly occurs during processing in the motion control section, error code fitting to its anomaly becomes return value. If processing is terminated normally, error code fitting to previous error code becomes return value. Because error information on ISA (VME) shared memory is overwritten only when anomaly occurs during processing in the motion control section.

For PA library (refer to appendix 1) not acquired synchronization between controllers, if it is issued from the operation control section, information on ISA (VME) shared memory is loaded. When loading finishes, error code on ISA (VME) shared memory becomes return value. This error code has no connection with PA library processing not acquired synchronization, issued this time. Library acquired synchronization and its error occurred during previous processing are culprits.

Taking into account the above, use PA library return value (error code) practically.

Here, below, explains how to deal with error codes.

(1) Every time PA library synchronized is issued, check errors. When error occurs, perform brake-stop, etc.

if((err = pa_mov_xyz(arm, 0.0,200.0,0.0,WM_WAIT)) != ERR_OK) Brake-stop.;

- (2) Employing function "pa_rst_ctl" for resetting an error, reset (error code: 0) previous error code.
- ③ When issuing function not synchronized, do not obtain return value.

Appendix 3

Control restart function after temporary stop during playback control

If PA library is issued while in temporary stop (pa_sus_arm) during playback control, two options for playback control can be possible either to restart or not.

• Playback control restart: possible

With temporary-stop release (pa_rsm_arm), playback control can be restarted.

• Playback control restart: impossible

On account of playback control termination, playback control cannot be restarted with temporary-stop release (pa_rsm_arm).

When intending to perform playback control again, if it is needed, after altering (pa_chg_pnt) the current point, move (pa_mov_pnt) to the current point, start playback control.

There are two playback controls: the one is in RMRC feedback control and the other one, in axis feedback control. Even if issuing the same PA library, on account of a different feedback system, control restart might not work.

Table for PA library function issuing after temporary stop in playback control and playback control restart possibility.

	Function		Playback		Pomorko
Function			Restart		
Tunction			Doosible	Not	Remarks
			FUSSIBle	possible	
pa_chg_pnt	Teach point p	ointer alteration		0	
pa_add_pnt	Teach point a	ddition		0	
pa_del_pnt	Teach point c	leletion		0	
pa_rpl_pnt	Teach point r	eplacement		0	
pa_set_pnt	Teach point a	ttribution setting	0		
pa_set_idn	Teach point I	D_No. setting	0		
pa_chg_dio	Teach point (PTP) DO attribution setting	0		
pa_get_pnt	Current point	teach point information loading	0		
pa_get_cpt	Current point	circle (arc) teach data loading	0		
		JM_OFF :No restriction		0	
	Redundant axis control mode setting	JM_ON :All axes restricted	0		
		JM_S3ON:S3 axis restriction		0	RMRC feedback control
pa_mod_jou			0		Axis feedback control
		JM_S3DIV:		0	RMRC feedback control
		S3 axis interpolation	0		Axis feedback control
		JM_S3HOLD:S3 axis fixed	0		
pa_set_hom	Home positio	Home position setting			
pa_set_esc	Escape orient	Escape orientation setting			
pa_set_saf	Safety orientation setting		0		
pa_def_hom	Current axis	s value defined as home	0		
	position				
pa_def_esc	Current axis	value defined as escape	0		
	position				
pa_def_saf	Current axis	value defined as safety	0		
	position				
na set tol	Tool informat	ion setting			RMRC feedback control
pa_361_101			0		Axis feedback control
pa_set_vel	Default velocity alteration		0		

<Playback control restart function in PA library issued after temporary stop>

APPENDIX 4

SAMPLE PROGRAM INSTRUCTION

- 1. Sample Program : EX1
 - (1) Operation
- 2. Sample Program: EX2(VisualBASIC Version)
 - (1) Operation
- 3. Sample Program: EX3(VisualBASIC Version)
 - (1)Operation
 - (2)Program
- 4. Sample Program: EX2(VisualC++ Version)
 - (1) Operation

1. SAMPLE PROGRAM : EX1

Sample program " $E \times 1$ " employs VisualBASIC, VisualC++ and MFC for each development environment, having similar operation display. Each is installed to the directory path below:

- Visual Basic Version
 ¥winpapci¥src¥sample¥VB¥EX1
- (2) Visual C++ Version
 ¥winpapci¥src¥sample¥VC¥EX1
- MFC Version
 ¥winpapci¥src¥sample¥MFC¥EX1

"¥winpapci" stands for the directory designation of "winpapci" for installation.

(1)Operation

Screen below displayed when EX1.exe is activated.

As this program operation is equivalent to each development environment, explains the operation employing MFC as an example. Screen below shown when Ex1.exe is activated. Arm is already controllable in actual machine mode, when displayed on screen.

2. SAMPLE PROGRAM: EX2 (VisualBASIC Version)

Sample program "EX2" loads project data on the basis of EX1 and is added a serial operation function. However, this function is created only in VisualBASIC development environment.

Installed to the following directory path:

¥winpapci¥src¥sample¥VB¥EX2

"¥winpapci" stands for the directory designation of "winpapci" for installation.

(1)Operation

Screen below shown when "EX2.exe" is activated.

3. SAMPLE PROGRAM: EX3 (VisualBASIC Version)

Sample program EX3: programmed to actuate arms with velocity control using game joystick. However, EX3 is created only in VisualBASIC development environment. Installed to the following directory path:

¥winpapci¥src¥sample¥VB¥EX3EX3 program File¥winpapci¥src¥sample¥VB¥EX3¥DLLEX3 Velocity Control DLL File¥winpapci¥src¥sample¥VB¥EX3¥OCXEX3 OCX File

"¥winpapci" stands for the directory designation of "winpapci" for installation.

(1)Operation

Screen below shows when EX3.exe is activated.

While in velocity control, the arm can be actuated to front/back, right/left and rotated by keeping on pushing the joystick button. Arm motion velocity can be controlled by the joystick slant.

(2)Program

EX3 program motion is as follows:

For EX3, the joystick can be simply moved by inserting OCX for joystick (J/S). Joystick (J/S) OCX contains properties and methods as follows.

PROPERTY

•pa_arm_no	Sets motion target arm number within $0 \sim 15.(Default: 0)$		
•pa_arrow	Switches into position or orientation velocity control. (Default:		
	Position)		
•pa_axis	Switches into base or tip coordinate.(Default: Base coordinate)		
•pa_device_no	Selects device number 1 or 2 connected with the joystick.(Default is		
	1:JOYSTICKID1)		
•pa_interval	Sets velocity command output cycle with "mSec" unit. (Default:100		
	$[{\tt mSec}].$ If setting for a long cyclic period it may cause over		
	surveillance time and error-stop.)		
•pa_offset_deg	Sets dead zone for joystick input value while in rotational velocity		
	control.(Default: 1000)		
•pa_offset_mm	Sets dead zone for joystick input value while in linear velocity control.		
	(Default: 1000)		

METHOD (Method entity presence i	in J/S DLL, performed on thread.)
-----------------------------------	----------------------------------	---

•pa_js_start Starts velocity control.

Arm initialization operation is performed on another thread. Loading J/S slant at designated cycle. Velocity control command output is performed to the arm.

Velocity control is not interrupted even if dragging EX3 operation display window on account of employing another thread.

Joint angle display on screen cannot be renewed while dragging.

The following parameter is needed to call this method.

 $Object.pa_js_start(Mode, ArmNo, Axis, Interval, OffsetMM, OffsetDEG, DevNO)$

Mode:	Arm control mode	(0:Actual machine	1 : Simulation)
ArmNo:	Arm Number		
Axis:	Coordinates VM_XYZ	21 (Base coordinate li	near velocity control)

VM_XYZ2(Tip coordinate linear velocity control)

VM_YPR1 (Base coordinate rotational velocity

control)

VM_YPR2(Tip coordinate rotational velocity

control)

Interval:	Velocity command output cycle [mSec]
OffsetDEG:	Dead zone when in orientation control
OffsetMM:	Dead zone when in position control
DevNO:	Joystick device number
•pa_js_continue	Acquires velocity command.
	Acquires velocity command value while in velocity control.

The following parameter is needed to call this method.

Object.pa_js_continue(x,y,z,yaw,pitch,roll)

	X:	Command velocity toward X
	Y:	Command velocity toward Y
	Z:	Command velocity toward Z
	Yaw:	Yaw direction command velocity
	Pitch:	Pitch direction command velocity
	Roll :	Roll direction command velocity
pa_js	s_stop	Terminates velocity control(thread is also deleted.)
		Parameter is not specially needed to call this method.

Object.pa_js_stop()

.

4. SAMPLE PROGRAM: EX2 (VisualC++ Version)

Sample program "E × 1" adds real-time control function employing "pa_odr_dpd pa_odr_axs " on the basis of EX1. However, this function is created only in VisualC++ development environment.

Installed to the directory path below:

¥winpapci¥src¥sample¥VC¥EX2

"¥winpapci" stands for the directory designation of "winpapci" for installation.

(1) Operation

Screen below shown when EX2.exe is activated.

- Microsoft, Windows, Visual Basic and Visual C++ are the registered brand names of the U. S. Microsoft Corporation used in the U. S. and other countries.
- WinRT is the brand name of the U. S. BSQUARE Corporation.
- Names of the companies and products described in this manual are their trade marks or registered brand names.

	Subject	Administrative No.
(1)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-6CE INSTRUCTION MANUAL FOR INSTALLATION, MAINTENANCE & SAFETY	91-10014
(2)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-6CE OPERATION MANUAL FOR OPERATION SUPPORT PROGRAM	91-10015
(3)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES INSTRUCTION MANUAL FOR SERVO DRIVER	SKC-GC20004
(4)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES SOFTWARE INSTALLATION MANUAL (WindowsNT/2000/XP)	SKC-GC20001
(5)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PROGRAMING MANUAL	SKC-GC20002
(6)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PARAMETER SETTING MANUAL	91-10020
(7)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES OPERATION MANUAL FOR SIMPLE SIMULATOR	SKC-GC20003
(8)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES INSTRUCTION MANUAL FOR TEACHING PENDANT	91-10016

List of Instruction Manuals for PA10 Series (PA10-6CE)

List of Instruction Manuals for PA10 Series (PA10-7CE)

(1)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-7CE INSTRUCTION MANUAL FOR INSTALLATION, MAINTENANCE & SAFETY	91-10023
(2)	MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-7CE	91-10024
	OPERATION MANUAL FOR OPERATION SUPPORT PROGRAM (ADDITIONAL EDITION)	

Above documents are described in our home page (<u>http://www.robot-arm.com/</u>), which can be down loaded if required.

Specifications described in this manual are subject to changes for modification without previous notification.

MITSUBISHI HEAVY INDUSTRIES, LTD. General purpose Robot PA10 SERIES

PROGRAMMING MANUAL SKC-GC20002 REV.3

A MITSUBISHI HEAVY INDUSTRIES, LTD.

HEAD OFFICE Laser & Electronics group Turbomachinery & General Machinery Department MITSUBISHI HEAVY INDUSTRIES, LTD. E-mail: kazuhiro_iijima@mhi.co.jp Phone: +81-3-6716-3845 Fax: +81-3-6716-5798 16-5,Konan2-chome,Minato-ku Tokyo 108-8215 Japan