

MITSUBISHI HEAVY INDUSTRIES, LTD.

General Purpose Robot

PA10 SERIES

PROGRAMMING MANUAL

INDEX

 Page

Chapter 1 Foreword 1-1

Chapter 2 Arm designation and motion 2-1

２．１ Axis designation 2-2

２．２ Coordinate system 2-4

２．３ Coordinate system creation 2-5

２．４ Rotation direction on coordinates 2-8

２．５ Transformations 2-9

Chapter 3 Control Mode 3-1

３．１ Motion control mode 3-2

３．２ Trajectory control mode 3-6

３．３ Axis angle interpolation 3-7

３．４ RMRC tip interpolation 3-8

３．５ Velocity control 3-11

Chapter 4 Motion and operation control section 4-1

４．１ Motion control section 4-2

４．２ Operation control section 4-3

４．３ Operation and motion control section interface 4-4

Chapter 5 Program Development Environment 5-1

５．１ Development and implementing environment 5-2

５．２ PA library configuration 5-2

５．３ PA library directory composition 5-3

５．４ Notes for the application development employing Visual C++ 5-6

５．５ Notes for the application development employing Visual BASIC 5-8

Chapter 6 Programming 6-1

６．１ Control arm 6-2

６．２ Common items 6-3

６．３ Axis angle Control 6-7

 ６．３．１ Axis angle Control 6-8

 ６．３．２ Axis orientation Control 6-9

６．４ Tip position / orientation (RMRC) control: 6 (six) axis arm 6-11

６．４．１ Tip position / orientation (RMRC) control 6-11

６．４．２ Motion in peculiar orientation (at a peculiar point) 6-19

６．４．２．１ Types of peculiar points 6-20
６．４．２．２ Singularity avoidance motion 6-21
６．４．２．３ Control around angle limit 6-23

６．５ Tip position / orientation (RMRC) control: 7-axis arm 6-24

６．５．１ Tip position / orientation (RMRC) control 6-24

６．５．２ Elbow actuating control changing tip position / orientation 6-26

６．５．３ Elbow actuating control not changing tip position / orientation 6-33

６．５．４ Notes for RMRC control 6-34

６．５．５ Redundant axis control 6-35

６．５．５．１ Redundant axis control mode 6-36

６．５．５．２ Redundant axis operation control 6-41

６．６ Velocity Control 6-44

６．６．１ Axis velocity control 6-45

６．６．２ Tip position velocity control 6-47

６．６．３ Tip orientation velocity control 6-49

６．６．４ Tip position / orientation velocity control 6-51

６．６．５ Redundant axis velocity control 6-53

６．７ Direct Control 6-55

６．８ Real-Time Control 6-57

６．８．１ Axis real-time control 6-58

６．８．２ RMRC real-time control mode 6-60

６．９ DIO Control 6-67

６．１０ Teach / Playback Motion 6-70

６．１０．１ Teach point and data 6-72

６．１０．２ Teach data operation 6-77

６．１０．２．１ Current point alteration 6-78

６．１０．２．２ Additional teach points 6-80

６．１０．２．３ Teach point (data) deletion 6-81

６．１０．３ Shift to current point (teach point) 6-82
６．１０．４ Starting of playback motion (check-up operation) 6-83

PA10 Series

Programing Manual

SKC-GC20002

Rev．0

chapter 1. FOREWORD

１－1

Chapter 1. Foreword

 This is the programming manual of the new concept robot “Mitsubishi

heavy Industries, Ltd. – General Purpose Robot: PA” to be employed in various

ways for a wide range of customers.

 The “PA” has two controllers: at the operation and motion control section.

At the operation control section, the C- language library (PA library) is

provided to access the motion control section.

 This manual explains how to use this “PA library” in C and BASIC

language.

 In this manual both 6-axis and 7-axis arm are explained as the same. If there is a

different function either in 6 or 7 axis, it is respectively shown as follows.

 ・The only function obtained by 6-axis arm

 ・The only function obtained by 7-axis arm

6 axis arm function

7 axis arm function

Remark

Chapter 2. ARM DESIGNATION AND MOTION

２－1

Chapter 2. Arm Designation and Motion

Chapter 2. ARM DESIGNATION AND MOTION

２－2

２．１ AXIS DESIGNATION

 Joint structure, axis designation and motion of “Mitsubishi heavy Industries,

Ltd. – General Purpose Intelligent Robot PA” are shown in the drawing below.

It might have a difference between configuration of the actual machines and

this illustration. However, the coordinate system is the same to both.

6 -AXIS ARM

Chapter 2. ARM DESIGNATION AND MOTION

２－3

7 -AXIS ARM

Chapter 2. ARM DESIGNATION AND MOTION

２－4

２．２ COORDINATE SYSTEMS

 In manipulator control, to indicate the current position/orientation and the target

position/orientation, the standard coordinate system is needed. Inputting the deviation

of position and orientation (rotation angle on the standard axis) for coordinates they can be

controlled.

The coordinate systems used in the motion controller are as follows:

 ・Base Coordinates ･･The manipulator origin is the basic standard.

 Its standard is for all coordinate systems and will never change.

 ・Mechanical Interface Coordinates ･･The coordinate system is altered by changes of

each axis angle in the manipulator tip coordinate (included tool +

offset.)

(Tip coordinate system)

This illustration is the 7-axis arm composition. For the 6-axis arm, there is no S3-axis.

Later on, this kind of coordinate system will be needed if combining with motion

mechanism or attaching sensors.

（＊）In “PA,” the tool coordinates (included offset) are

 regarded as the mechanical interface coordinates.

 For the coordinate systems not existing in

 the motion control section, following the application,

 make coordinate-calculations inside the operation control section.

TOOLz

y
x

W2 W1

E2
E1

S3

Z

X

Y

S2

S1

Base
Coordinates

World
Coordinates

Motion Mechanism
Coordinates

Mech. Interface
Coordinates

Tool
Coordinates

Sensor
Coordinates

Operation
Coordinates

（＊）

Mechanical Interface
Coordinates

Operation
Area

Base
Coordinates

Remark

MMeemmoo

Chapter 2. ARM DESIGNATION AND MOTION

２－5

２．３ COORDINATE SYSTEM CREATION

 How should the coordinate system shown in the section 2.2 be created:

 Here it is explained how to assign coordinate to each link which constructs a

manipulator.

【joint coordinate】

【Link parameters】

 Axis Axis Des. Twisting Angle Rotation Angle X Y Z

Link 1 1st S1 Roll φS1 0 0 1b

Link 2 2nd S2 Pitch φS2 0 -1s 0

Link 3 3rd S3 Roll φS3 0 0 0

Link 4 4th E1 Pitch φE1 0 -1e 0

Link 5 5th E2 Roll φE2 0 0 0

Link 6 6th W1 Pitch φW1 0 -1w 0

Link 7 7th W2 Roll φW2 0 0 0

 This chart shows only the 7-axis arm composition. For the 6-axis arm, there is no Link 3.

 Twisting Angles

 Roll ：Rotation around Z-axis of the base coordinate.

 Pitch：Rotation around Y-axis of the base coordinate.

 Yaw：Rotation around X-axis of the base coordinate.

 Joint Coordinates

 Roll coordinate：the same as the base coordinate.

 Pitch coordinate：90 degrees diverted around X-axis of the base coordinate.

 Yaw coordinate：90 degrees rotated around Y axis of the pitch coordinates.

 ＜A-Matrix＞

 Any manipulator is constructed with a series of links connected by joints. At each

link (each axis) the coordinate is fixed one by one. At this point, the conversion

matrix showing the relation between a link and another one is called A-matrix. To

summarize: the A-matrix indicates a relative translation and rotation between link

coordinates.

 ＜T-Matrix＞

 It can be indicated by the A-matrix product if seeing each link from the base

coordinate (the origin. of the manipulator coordinate.) This A-matrix product is

called T-matrix. T-matrix of each link seeing from the base coordinate is indicated

with Ｔｉ（＝０Ｔｉ）.

1w 1e 1s 1b

E2 E1 S3 S2
S1

W1W2

z7

z6

z5

z4

z3

z2

z1

y1

p z

x
y

a

n
o

Mech. interface Coordinate
（Tip Coordinate）

Base
Coordinate

Z

X
Y

x1

(0,0,0)

Remark

Chapter 2. ARM DESIGNATION AND MOTION

２－6

 （１）Base Coordinate Systems

 The base coordinate is the origin of a manipulator. This coordinate itself becomes the

standard coordinate system (the absolute coordinate system) as follows:

 1 0 0 0

 T0 = 0 1 0 0

 0 0 1 0

 0 0 0 1

Chapter 2. ARM DESIGNATION AND MOTION

２－7

 （２）Mechanical Interface Coordinates

 Mechanical interface coordinates (tool tip coordinate) will be created as follows:

・First of all, create the conversion matrix A1 from the manipulator origin, indicating the S1 origin.

 →The coordinate of S1 origin located at base coordinate:

 Ｔ１＝Ｔ０Ａ１

・Then, create conversion matrix: A2 indicating the S2 origin for the S1 origin (T1 coordinate.)

 →The coordinate of S2 origin located at the base coordinate:

 Ｔ２＝Ｔ１Ａ２＝Ａ１Ａ２

・Then, create conversion matrix: A3 indicating the S3 origin for the S2 origin (T2 coordinate.)

 →The coordinate of S3 origin located at the base coordinate:

 Ｔ３＝Ｔ２Ａ３＝Ａ１Ａ２Ａ３

・Then, create conversion matrix: A4 indicating the E1 origin for the S3 origin (T3 coordinate.)

 →The coordinate of E1 origin located at the base coordinate:

 Ｔ４＝Ｔ３Ａ４＝Ａ１Ａ２Ａ３Ａ４

・Then, create conversion matrix: A5 indicating the E2 origin for the E1 origin (T4 coordinate.)

 →The coordinate of E2 origin located at the base coordinate:

 Ｔ５＝Ｔ４Ａ５＝Ａ１Ａ２Ａ３Ａ４Ａ５

・Then, create conversion matrix: A6 indicating the W1 origin for the E2 origin (T5 coordinate.)

 →The coordinate of W1 origin located at the base coordinate:

 Ｔ６＝Ｔ５Ａ６＝Ａ１Ａ２Ａ３Ａ４Ａ５Ａ６

・Then, create conversion matrix: A7 indicating the W2 origin for the W1 origin (T6 coordinate.)

 →The coordinate of W2 origin located at the base coordinate:

 Ｔ７＝Ｔ６Ａ７＝Ａ１Ａ２Ａ３Ａ４Ａ５Ａ６Ａ７

・Then, create conversion matrix: A tool indicating tool tip for the W2 origin (T7 coordinate.)

 →The tool tip coordinate located at the base coordinate:

 Ｔｔｏｏｌ＝Ｔ７Ａｔｏｏｌ＝Ａ１Ａ２Ａ３Ａ４Ａ５Ａ６Ａ７Ａｔｏｏｌ

 Thus, if it is successively indicated with a conversion for new coordinates, multiply the

conversion matrix of each joint on the right.

 To summarize: the finally created Ｔｔｏｏｌ（
０Ｔｔ）matrix indicates the position / direction of

the mechanical interface coordinate (included the tool) seen from the base coordinate.

Using this matrix, it also makes the conversion from the mechanical interface coordinate

to the base coordinate.

 nx ox ax px

TTOOL = N O A P = ny oy ay py

 nz nz az pz

 0 0 0 1

 Tip Orientation Tip position

 This is the 7-axis arm composition. For 6-axis arm, there is no A3.

P

Y

Z

X

N

0
A

Remark

Chapter 2. ARM DESIGNATION AND MOTION

２－8

２．４ ROTATION DIRECTION FOR COORDINATE SYSTEMS

 Input values for each coordinate as follows.

 （１）Input values in the base coordinate

 ＜Position＞

 ・Deviation toward X（△Ｘ）

 ・Deviation toward Y（△Ｙ）

 ・Deviation toward Z（△Ｚ）

 ・Velocity toward X（ＶＸ）

 ・Velocity toward Y（ＶＹ）

 ・Velocity toward the V-axis（ＶＺ）

 ＜Orientation＞

 ・Rotation deviation on X（△Ｙaw）

 ・Rotation deviation on Y（△Ｐitch）

 ・Rotation deviation on Z（△Ｒoll）

 ・Rotation velocity on X（ＶＹaw）

 ・Rotation velocity on Y（ＶＰitch）

 ・Rotation velocity on Z（ＶＲoll）

 （２）Input value in the mechanical interface coordinate

 ＜Position＞

 ・Deviation toward X（△ｘ）

 ・Deviation toward Y（△ｙ）

 ・Deviation toward Z（△ｚ）

 ・Velocity toward X（Ｖｘ）

 ・Velocity toward Y（Ｖｙ）

 ・Velocity toward Z（Ｖｚ）

 ＜Orientation＞

 ・Rotation deviation on X（△ｙaw）

 ・Rotation deviation on Y（△ｐitch）

 ・Rotation deviation on Z（△ｒoll）

 ・Velocity toward X（Ｖｙaw）

 ・Velocity toward Y（Ｖｐitch）

 ・Velocity toward Z（Ｖｒoll）

Roll

Yaw

Pitch

X

Z

Y

roll

yaw

pitch

x

z

y

Chapter 2. ARM DESIGNATION AND MOTION

２－9

２．５ CONVERSION

 Space conversion with a 4x4 Matrix can indicate the conversion of translation and rotation.

 Using these conversions and coordinates, they designate the position and orientation of a

manipulator.

 （１）Position designation

Position designation (conversion) is to translate X, Y and Z directions of the basic

coordinate T.

 Trans (x, y, z)＝ 1 0 0 x

 0 1 0 y

 0 0 1 z

 0 0 0 1

 （２）Orientation designation (Roll, Pitch, Yaw)

Roll, pitch and yaw is generally used for the orientation designation

(conversion).

In a standard coordinate T, Yaw is the rotation around X-axis. Pitch is the

rotation around Y-axis. Roll is the rotation around Z-axis.

As these three conversions are based on the original coordinate, pay attention

to the conversion formula, the multiplication order is reversed.

 R P Y (roll, pitch, yaw)

 Processing order

 = Rot (z, roll) Rot (y, pitch) Rot (x, yaw)

 Cr -Sr 0 0 Cp 0 Sp 0 1 0 0 0

 = Sr Cr 0 0 0 1 0 0 0 Cy -Sy 0

 0 0 1 0 -Sp 0 Cp 0 0 Sy Cy 0

 0 0 0 1 0 0 0 1 0 0 0 1

 Cr Cp Cr Sp Sy - Sr Cy Cr Sp Cy + Sr Sy 0

 = Sr Cp Sr Sp Sy + Cr Cy Sr Sp Cy - Cr Sy 0

 -Sp Cp Sy Cp Cy 0

 0 0 0 1

However、Sy = sin (yaw), Cy = cos (yaw)

 Sp = sin (pitch), Cp = cos (pitch)

 Sr = sin (roll), Cr = cos (roll)

Memo

Chapter 2. ARM DESIGNATION AND MOTION

２－10

 Conversions responding to the rotation angle θ around X, Y and Z-axis are:

 1 0 0 0

 Rot (x, θ) = 0 cosθ -sinθ 0

 0 sinθ cosθ 0

 0 0 0 1

 cosθ 0 sinθ 0

 Rot (y, θ) = 0 1 0 0

 -sinθ 0 cosθ 0

 0 0 0 1

 cosθ -sinθ 0 0

 Rot (z, θ) = sinθ cosθ 0 0

 0 0 1 0

 0 0 0 1

Memo

 Chapter 3. CONTROL MODE

３－1

Chapter 3. CONTROL MODE

 Looking at the nearest point to H/W in the manipulator control, command

values are given to each axis. As the actual operation method, not only makes

each axis move, but also needs complex movements controlling orientation or

the tip position to be straight.

 Chapter 3. CONTROL MODE

３－2

３．１ ACTUATING CONTROL MODE

 Actuating control methods for PA, are provided as follows:

 Also data interpolation will be performed when it operates for all modes.

 ・Axis angle control

 ・Axis speed control

・6 direction deviation control for the RMRC base coordinate system

・6 direction velocity control for the RMRC base coordinate system

・Tip coordinate matrix control for the RMRC base coordinate system

・6 direction deviation control for the RMRC mechanical interface coordinate

system

・6 direction velocity control for the RMRC mechanical interface coordinate system

・Redundant axis control for RMRC control

・Teach data acquisition control

 ・Playback (axis / linear / circle / arc interpolation) control

 ・Coordinate conversion control for playback

 ・redundant axis control for playback

 ・Direct control .. optional function

・Axis angle real-time control

・RMRC real-time control

・Absolute target position / orientation designation control

・others

Direct teaching is optional.

7-axis arm function

 Chapter 3. CONTROL MODE

３－3

 （１）Axis angle Control

 Operation method ordering each axis target angle or previously defined each axis

value, through the operation controller.

 Programming is explained in Section 6-3.

（２）Tip Position /Tip Orientation Control

Method to shift the tip straight or rotate the tip direction by inputting the tip

position/orientation deviation for the defined coordinate axis by the operation

controller.

The Motion controller calculates the linear interpolation for each tip

position/orientation and control position/orientation feedback.

In PA10, tip position/orientation control is called RMRC control.

Programming for the 6 axis arm is explained in section 6-4 and for the axis arm,

in section 6-5.

 （３）Velocity Control

Operation method to select the axis for velocity control and input command value.

Input to each axis or to the coordinate system axis is accessible.

Programming is explained in section 6-6.

 （４）Redundant Axis Control

 For the 7-axis arm, the same as PA, there are several axis values at the same tip

position/orientation. The arm, with these characteristics, is called “Redundant axis

arm”.

By controlling this redundant axis, complex movements can be achieved.

For instance, even if the elbow encounters obstacles, this elbow position can be

shifted, without changing the tip position/orientation.

 The redundant axis control is the mode restricting each axis of the 7-arm axis to any

direction.

There are two types of redundant axis control, as follows:

 ・The control restricts the redundant axis altering the tip position/ orientation.

 ・The control shifts, only, the redundant axis (elbow) position not altering the tip

position/orientation.

Programming is explained in section 6-5.

7-axis arm function

RReeffeerreennccee

RReeffeerreennccee

RReeffeerreennccee

RReeffeerreennccee

６．１１ Playback Control 6-84

６．１１．１ PTP linear interpolation data and playback control 6-85

６．１１．２ PTP arc interpolation data and playback control 6-86

６．１１．３ PTP circle interpolation data and playback control 6-88

６．１１．４ PTP axis interpolation data and playback control 6-89

６．１１．５ Teach data playback control mixed with various data 6-91

６．１１．６ Differences between current point operation and playback control 6-92

６．１１．７ JUMP rules 6-94

６．１２ Tip Offset Control 6-95

６．１２．１ Coordinate conversion matrix control 6-96

６．１２．２ Tip position offset control 6-104

６．１３ Cube interference 6-110

６．１４ Parameter setting 6-112

６．１５ Error Information 6-114

６．１５．１ status transition summary for error occurrence 6-114

Chapter 7 Library Reference 7-1

 Header file for Visual C++ (Windows) 7-2

 Header file for Visual BASIC (Windows) 7-14

 Error list (Common) 7-26

 Function list (Index) 7-34

Chapter 8 PA Library Compilation 8-1

Appendix 1 PA library issuable status table

Appendix 2 On PA library return value (error code)

Appendix 3 On restart control function after momentary stop during playback control

Appendix 4 Sample program instruction

 Chapter 3. CONTROL MODE

３－5

 （７）Real-Time Control

This mode controls the arm in position/orientation or each axis angle, at actual time,

inputting tip position/ orientation or each axis angle every control cyclic time.

The command (tip position/orientation Matrix or each axis angle every control cyclic

time) has to be issued every time-out.

Programming is explained in the section 6.8.
RReeffeerreennccee

 Chapter 3. CONTROL MODE

３－4

 （５）Direct Control (Optional function)

 After switching on the torque control and releasing the brake, this direct control is for

the manually arm operation mode.

This control mode memorizes each axis data as the teach (PTP) data when an arm is

operated manually. It revives the movements through the playback control.

 ・Simple weight compensation control

Programming is explained in section 6-7.

 （６）Playback Control

This playback control is managed by continuous teach data (each axis value or NOAP)

Between a non continuous teach data the playback control will be interpolated

adjusting the data types.

 Teach data 1 （ θＳ１１，θＳ２１，･･･ θＷ２１ ）

 Teach data 2 （ θＳ１２，θＳ２２，･･･ θＷ２２ ）

 ：

 Teach data n （ θＳ１ｎ，θＳ２ｎ，･･･ θＷ２ｎ ）

 The teach data is as follows:

・PTP for axis interpolation each axis（θＳ１～θＷ２）data

・PTP for linear interpolation each axis（θＳ１～θＷ２）data

・PTP for arc interpolation each axis（θＳ１～θＷ２）data

・PTP for circle interpolation each axis（θＳ１～θＷ２）data

・PTP for linear interpolation tip（ＮＯＡＰ）data

・PTP for arc interpolation tip（ＮＯＡＰ）data

・PTP for circle interpolation tip（ＮＯＡＰ）data

 Interpolation methods are as follows:

・Axis angle interpolation

・Tip linear interpolation

・Tip arc interpolation

・Tip circle interpolation

Interpolation methods are explained in the section 3.2 – 3.5.

 Programming is explained in the section 6.10 and 6.7.

 The teaching data is the PTP data. The PTP data is the abbreviation for
“Point to Point”. The trajectory between different data is haphazard. But
when the playback control is operated, the interpolation has to be surely
performed between different PTP data.

RReeffeerreennccee

RReeffeerreennccee

MMeemmoo

 Chapter 3. CONTROL MODE

３－6

３．２ Trajectory Control Mode

How to operate each axis or tip position/orientation of a manipulator:

 In PA10, the interpolation is as follows:

ａ． Trajectory Interpolations

 ・Axis angle interpolation

 ・Tip linear interpolation

 ・Tip arc interpolation

 ・Tip circle interpolation

 ・Tip orientation interpolation

ｂ．Velocity Control

・Constant velocity interpolation

・(Acceleration + Constant velocity) Interpolation

･(Constant velocity + deceleration) Interpolation

･(Acceleration + Constant velocity + deceleration) Interpolation

Control Mode ａ．Trajectory interpolation ｂ．Velocity Control

 Each Axis Control Each Axis Interpolation

 Tip Position Control Tip Linear Interpolation

 Tip Orientation Control Tip Orientation Interpolation

 Each Axis Interpolation

 Tip Linear Interpolation

 Tip Orientation Interpolation

Tip Arc Interpolation

Tip Orientation Interpolation

 Playback Control

 Tip Circle Interpolation

 Chapter 3. CONTROL MODE

３－7

３．３ Axis Angle Interpolation

Here is the explanation for each axis angle control in the trajectory control mode.

Each axis angle control

 ＜Input value＞

 target angle（θrＳ１，θrＳ２，･･θrＷ2）

 ＜Calculation＞

① Calculate deviation angle and subtract the current value from the target one,

at each axis.

 ΔθS1 θrS1 - θcS1

 ΔθS2 ＝ θrS2 - θcS2

 : :

 ΔθW2 θrW2 - θcW2

② From the calculation, dividing each axis deviation by each axis default

velocity, the axis, obtaining the biggest shifting time, is defined as the basic axis

of interpolation.

 ΔTS1 ΔθS1 / VS1

 ΔTS2 ＝ ΔθS2 / VS2

 : :

 ΔTW2 ΔθW2 / VW2

 The axis obtained the biggest ΔＴｉ。is defined as the standard of interpolation.

③ Calculate each axis command angle on the basis of the interpolation basic axis

deviation（Δθｉ）. In the interpolation method, calculate the target trajectory

(command angle) to control the velocity to form the letter “S” shape.

For the velocity control, refer to the section 3.5.

.

RReeffeerreennccee

 Chapter 3. CONTROL MODE

３－8

３．４ RMRC Tip Interpolation

The method to shift a manipulator tip position/orientation to the next target

position/orientation in the trajectory control mode is explained here.

Tip position/orientation interpolation methods currently provided in PA10 are three as

follows:

･Linear Interpolation ･･･The tip trajectory is straight. The tip orientation is

concurrently interpolated, too.

 ･Arc Interpolation ･･･The tip trajectory is an arc. The tip orientation is

concurrently interpolated, too.

 ・Circle Interpolation ･･･The tip trajectory is a circle.

The target tip position/orientation “Ｔr ｎ ” is calculated from interpolation every

sampling period to shift on the trajectory to the target position/orientation from the

current position/orientation.

For the 7-axis arm, when the redundant axis control modes – “S3-axis restriction”

and “S3-axis interpolation” – are selected and the interpolation above is operated,

the S3-axis angle deviation (difference between the current angle and the target

angle) is simultaneously interpolated and target “S3-axis” angles are calculated every

sampling period.

For trajectory interpolation methods, the target tip position/orientation trajectory

(command angle) is calculated for velocity to form the letter “S” shape.

Refer to the section 3.5 for velocity control.

7-axis arm function

RReeffeerreennccee

 Chapter 3. CONTROL MODE

３－9

 （１）Linear interpolation

 ＜When the redundant axis control mode is NOT “S3-axis restriction” and “S3-axis

interpolation mode in 6-axis and 7-axis arm＞

 OUTLINE PROCEDURE FOR LINEAR INTERPOLATION

1. Calculate the current tip position and the tip orientation (Tc).

2. Calculate the target tip position and the tip orientation (Tr).

3. Calculate the tip moving distance (L) from the current tip position and the target

position.

4. Calculate the tip orientation/rotation angle (θ) from the current orientation and the

target tip orientation.

5. To simultaneously operate the position and the orientation, the standard must be

chosen.

6. Following the selected velocity control method, interpolate and calculate the target tip

position/target orientation (Ｔr１，･･･ ，Ｔrｎ－１，Ｔrｎ，･･･ Ｔr) of each sampling.

7. If the work coordinate conversion Matrix is designated, multiply “Ｔ r ｎ ” by the

coordinate conversion Matrix.

 ＜When the redundant axis control mode is “S3-axis restriction” and “S3-axis

interpolation mode＞

 OUTLINE PROCEDURE FOR LINEAR INTERPOLATION

1. Calculate the current tip position and the tip orientation (Tc).

2. Calculate the target tip position and the tip orientation (Tr).

3. Calculate the tip moving distance (L) from the current tip position and the target

position.

4. Calculate the tip orientation/rotation angle (θ) from the current orientation and the

target tip orientation.

5. Calculate the S3-axis angle/rotation angle(θＳ３) from the current S3-axis angle and

the target S3-axis angle.

6. To operate the position and the orientation, the standard for interpolation must be

chosen from the position, the orientation or the S3-axis.

7. Following the selected velocity control method, interpolate and calculate the target tip

position, the target orientation and the S3-axis of each sampling.

8. If the work coordinate conversion Matrix is designated, multiply “Ｔrｎ” by the coordinate

conversion Matrix.

interpolation

Pc

Pr

Tip position shifting value: L

Tip orientation rotation angle: e

7-axis arm function

 Chapter 3. CONTROL MODE

３－10

 （２）Arc & Circle Interpolation

 Arc Interpolation Circle Interpolation

 ＜When the redundant axis control mode is NOT “S3-axis restriction” and

“S3-axis interpolation mode in 6-axis and 7-axis arm＞

 OUTLINE PROCEDURE FOR ARK & CIRCL INTERPOLATION

1. Calculate the current tip position (P1) and the tip orientation (T1).

2. Calculate the tip position and the tip orientation (T2) of the passing point (P2).

3. Calculate the tip position and the tip orientation (T3) of the target value (P3). In the

case of the circle, P3-point is also the passing point.

4. Calculate the center point (O), the semi-diameter (r) and the normal vector (Vec) of

the circle trajectory from three points.

5. Calculate the angle of the tip accurate motion (θ1) from the tip position of the current

value P1 and P3. For the circle,θ1 = 2π.

6. Calculate the rotation angle of the tip orientation (θ2) from the tip position of the

current value P1 and P3. For the circle,θ2 = 0 (current orientation maintained.)

7. To simultaneously operate the position and the orientation, the standard must be

chosen.

8. Following the selected velocity control method, interpolate and calculate the target tip

position/target orientation (Ｔr１，･･･ ，Ｔrｎ－１，Ｔrｎ，･･･ Ｔr) of each sampling.

9. If the work coordinate conversion Matrix is designated, multiply “Ｔ r ｎ ” by the

coordinate conversion Matrix.

 ＜When the redundant axis control mode is “S3-axis restriction” and “S3-axis
interpolation mode＞

 OUTLINE PROCEDURE FOR LINEAR INTERPOLATION

1. Calculate the current tip position (P1) and the tip orientation (T1).

2. Calculate the tip position and the tip orientation (T2) of the passing point (P2).

3. Calculate the tip position and the tip orientation (T3) of the target value (P3). In the

case of the circle, P3-point is also the passing point.

4. Calculate the center point (O), the semi-diameter (r) and the normal vector (Vec) of the

circle trajectory from three points.

5. Calculate the angle of the tip accurate motion (θ1) from the tip position of the current

value P1 and P3. For the circle,θ1 = 2π.

6. Calculate the rotation angle of the tip orientation (θ2) from the tip position of the

current value P1 and P3. For the circle,θ2 = 0 (current orientation maintained.)

Tip Shifting Direction

P1

P2

P3r

θ1

Vec

0

P3
Orientation Rotation A

θ

P3

Vec r

θ1

0

P1

P2

Orientation rotation Angle:θ2 = 0
Position Shifting rotation Angle: θ1 = 2π

P1

7-axis arm function

 Chapter 3. CONTROL MODE

３－11

7. Calculate rotation angle (θＳ３) if S3-axis orientation from the S3-axis

angle, of the current value (P1) and the S3-axis angle of the target value

(P3). In the case of the circle, it is (θＳ３) = 0.0 [rad] (in the case of

circle interpolation, S3-axis DOES NOT move and make the same motion as

“S3-axis fixed”.
8. To operate the position and the orientation, the standard for interpolation

must be chosen from the position, the orientation or the S3-axis.

9. Following the selected velocity control method, interpolate and calculate the

target tip position/target orientation/target S3-axis angle of each sampling.

10. If the work coordinate conversion Matrix is designated, multiply “Ｔrｎ” by
the coordinate conversion Matrix.

 Chapter 3. CONTROL MODE

３－12

３．５ Velocity Control

When a manipulator plus a machine operator perform, if, command value is given

intermittently, it causes undesirable mechanical oscillation. For this reason, the

command speed at the start has to be controlled, to gradually accelerate and at stop to

gradually decelerate.

On manipulator trajectory, velocity is generally controlled to make a trapezoid wave.

With this trapezoid wave, the acceleration wave becomes non continuous. It causes

acceleration shock and mechanical oscillation. In PA10, to create a target trajectory to

reduce acceleration shock, interpolation methods are employed to create the letter “S”

shaped target trajectory for velocity.

This satisfies conditions to keep each curve continuity and hold the maximum velocity,

lower. The most reliable curve, even if used in a situation when the load characteristic

is unpredictable, the maximum velocity is lowered

These options below are available for a velocity control type.

 ０：Uniform velocity

 １：with Acceleration

 ２：with Deceleration

 ３：with Acceleration and Deceleration

For position change, the trapezoid control is available. Not available for velocity

change. When in a continuous movement as:(ex)p1→p2 is v1[mm/s], p2→p3 is

v2[mm/s], velocity command is intermittently changed at p2 point. In this case,

velocity command intermittent change has to be lowered and controlled at the

servo driver side.

Start (Acceleration) Start (deceleration) Uniform Velocity

Accelelation:

Velocity:ｖ

Angle:θ

Angle
Interpolation
 Target Angle: θ
Position

MMeemmoo

Chapter 4 Motion & Operation Control Section

4-1

Chapter 4. Motion & OperationControl Section

The PA controller consists of two sections shown below:

 • Motion Control Section

 • Operation Control Section (man-machine controller)

Chapter 4 Motion & Operation Control Section

4-2

４．１ Motion Control Section

The motion control section – the controller handles the basic control for PA –

operates following each control mode explained in chapter 3. The limitation cycle is

2ms.

 Regarding the program for this section, as long as PA is employed, even if the

operation contents are changed, the program remains the same.

Chapter 4 Motion & Operation Control Section

4-3

４．２ Operation Control Section

The operation control section – the controller handles the operation procedures. The

program for this section changes depending on the operation: (on each application: weddings,

painting, etc)

 The standard software for PA: the operation support program (man- machine) and PA

Library (the motion and control section and interface section) are provided.

The motion control board is compatible with PCI bus. Employ a PC with PCI bus sold in

the market.

Application development

To develop and implement an application a device driver is needed besides PA library.

With PCI bus sold in the market, using “WinnRT” (created by bSQUARE Co.).

 The PA Library is created through the DLL form. The program will be kinetically linked

when it is employed. The standard Windows version “PA library is created by Compiler

Visual C ++ Ver. 6.0. Some application samples, created by Visual C++ and Visual BASIC,

are attached.

Operation Control PC

Operation Control Section

Operation
support program

PA library

PCI bus Driver

Motion Control Board

I/F Implemented
with DLL

device
Driver

Motion Control Section: control cycle : 2ms

Written by C,
basic language

PCI bus

Chapter 4 Motion & Operation Control Section

4-4

４．３ Operation & Motion Control Section Interface

 The Operation section and the Motion Control section are connected by PCI bus.

 The memory area is shared at the PCI space.

The operation control section sets the target command (event) to this memory area. The

motion control section operates following a event. The arm movement can be observed at

actual time.

Using this memory area, the one provided to ease the motion control section from the

operation one, is: the “PA library.”

Chapter 5 Program Development & Processing Conditions

 5- 1

Chapter5 Program Development & Processing Conditions

Chapter 5 Program Development & Processing Conditions

 5- 2

５．１ Development & Processing Conditions

 For processing conditions, if you intend to provide your own operation control section

(Personal Computer), you must need the following:

 ・OS ：Windows NT/2000/XP

 ・Memory ：More than 128 MB

 Further more, for development, the following are needed.

 ・Compiler：Visual C++ Compiler Ver.6.0 or

 Visual BASIC Compiler Ver.6.0

５．２ PA Library Status

The PA library stands for:

・A library to develop an application program for the operation control section.

・ The interface library to ease the operation of all actuating functions for the motion

control section. To access the motion control CPU, besides the PA library, a driver

for PCI bus created by the device driver – WinRT – sold in the market, is needed.

・ The PA library is the DLL (Dynamic-link library) model created employing Visual C++

ver.6.0.

PCI bus

driver WinRT

PA library

(Papci.DLL)

 Visual C++

Motion Control
Software

Operation Support
Parameter setting

(WPRM)

 Visual Basic

WPRM Operation Support
Operation

Mode

 Visual Basic

WRUN

 PCI bus

Simple
Simulator

(３D)

 Visual C++

 ３D

Application
Program

Operation
control Section

Chapter 5 Program Development & Processing Conditions

 5- 3

５．３ PA library Directory Composition

 The PA library is provided by the CD-ROM.

When the CD-ROM is set, installation starts automatically. (For further information,

refer to the installation manual.)

The PA library compositions provided in PA are as follows:

\ WinPApci (Default name of installation destination)

BIN ••• Execution file
 Passage.exe
 Wprm.exe
INCLUDE ･･･ Header file of PA library

PA.H PA library prototype declaration (for development employing Visual C++)
 PAERR.H PA library error information declaration (for development employing Visual C++)
PACMD.H
PACTL.H File needed for PA library construction
PAMMC.H
PA.BAS
PAERR.BAS for development with Visual BACIS

HELP ･･･ Online help file
PAHELP.HLP

 SRC LIB ･･･ PA library source file
 PA_CUB.C CUBE information
 PA_DIO.C Digital I/O
 PA_DIR.C Direct control mode
 PA_DPD.C Real-time T-matrix control
 PA_EGT.C Relatedto additional functions (information acquisition)
 PA_ETC.C VMEinterface connected to the motion control section
 PA_EXT.C Related to additional functions (control)
 PA_GET.C Arm information acquisition
 PA_JMP.C JUMP data
 PA_JOU.C Redundant axis/velocity control
 PA_MOD.C Related to teach mode
 PA_MOV.C initial setting/each axis control/RMRC
 PA_MTX.C Coordinate conversion matrix setting
 PA_PNT.C Teach/playback control
 PA_PRM.C Parameter alteration
 PA_PRV.C Related to parameter loading/saving
 PA_SET.C Basic orientation registration
 PA_VEL.C Velocity mode selection

 PCI ･･･ PA library (for PCI) project file

 PA_PCI.C related to PCI-bus access
 PCI.DEF Default definition file
 PCI.DSW Project work space
 PCI.DSP project file

RReeffeerreennccee

Chapter 5 Program Development & Processing Conditions

 5- 4

 SAMPLE MFC EX1 ••• Sample program employing MFC

 EX1.CPP EX1.ICO
 EX1.H EX1.RC2
 EX1.RC EX1DLG.CPP
 EX1DLG.H RESOURCE.H
 STDAFX.CPP STDAFX.H
 EX1.DSW EX1.DSP

 VC EX1•••Sample program employing VisualC++

 DLGPROC.CPP MAIN.CPP
 RESOURCE.H EX1.RC
 EX1.DSW EX1.DSP
 EX1.EXE

 EX2•••Sample program employing VisualC++
 DLGPROC.CPP MAIN.CPP
 RESOURCE.H EX2.RC
 EX2.DSW EX2.DSP
 EX2.EXE

 VB EX1•••Sample program-1 employing VisualBasic

 MAIN.BAS DEFINE.BAS
 FUNC.BAS AXISOPE.FRM
 EX1MAIN.FRM EX1.VBP
 EX1.EXE

 EX2•••Sample program-2 employing VisualBasic

 MAIN.BAS DEFINE.BAS
 FUNC.BAS EX2MAIN.FRM
 EX2.EXE EX2.VBP

 EX3 •••Sample program-3 employing VisualBasic
 EX3.VBP EX3.FRM
 JS.BMP EX3.EXE

 DLLJS
 PAJS.DEF PAJS.DSP
 PAJS.DSW PAPAJS.C

 OCXJS
 PAJS.VBP MODULE1.BAS
 PAJS.LIB PAJS.CTL

WINDOWS SYSTEM
PAPCI.LIB PA library (for PCI-bus) – Import library
PAPCI.DLL PA library (for PCI-bus) – DLL

Asycfilt.DLL CMDLGJP.DLL COMCAT.DLL
FLGDJP.DLL Msvbvm60.DLL oleaut32.DLL
olepro32.DLL VB6JP.DLL mfc42.DLL
SPR32X30.ocx Comdlg32.ocx MSFLXGRD.ocx
Stdole2.tlb

Chapter 5 Program Development & Processing Conditions

 5- 5

 Additionally, if the operation support software is purchased together, the following files
are installed into the system directory.

CMCTLJP.DLL MSSTDFMT.DLL msvcrt.DLL scrrnjp.DLL
Scrrun.DLL STDFTJP.DLL MSCMCJP.DLL MSCOMJP.DLL
MSCOMM32.ocx MSCOMCTL.ocx

・ Files needed to develop an application program for the operation control section

employing Visual C++ (Ver.6.0) are the following, indicated on gray background:

 PA.H

PAERR.H

PAPCI.LIB

PAPCI.DLL（needed for implementation）

・ Files needed to develop an application program for the operation control section

employing Visual BASIC (Ver.6.0) are the following, indicated on gray background:

 PA.BAS

PAERR.BAS

PAPCI.DLL（needed for implementation）

Remark

Chapter 5 Program Development & Processing Conditions

 5- 6

５．４ Notes for application development employing Visual C++

 （１）Header files are needed to be included.

 Using the PA library, if an application program is developed employing Visual C++ ver.6.0,

the following header files have to be included. (using MFC, likewise.)

 PA.H ････ PA library prototype declaration is described.

 PAERR.H ････ PA library error code declaration is described.

<Setting method> Choose “Setting…” inside “Project” of the menu bar, then, choose

“the preprocessor” in the category of C/C++, then, set the path (c:¥winpapc¥include)
to the header file of the PA library.

 （２）Needed library files to be linked.

 As far as developing an application employing Visual C++ Ver.6.0, using the PA library,

the following import library files have to be linked.

 PAPCI.LIB ････ The import library file including the PA library.

<Setting Method> Choose “Setting…” inside “Project” of the menu bar, then, choose

“general” in the link category, then, set the PA library intended to be linked.

Windows2000 or NT c:\winnt\system32\papci.lib

Windows XP c:\windows\system32\papci.lib

Chapter 5 Program Development & Processing Conditions

 5- 7

 （３）Structural Member Alignment Alteration

Structural member alignment has to be set for 2 bytes. (default is 8 bytes)

<Setting Method> Choose “Setting…” inside “Project” of the menu bar, then choose

“code creation” in the C/C++ category, then, change the structural

member alignment for 2 bytes.

 （４）Needed DLL file for processing

 To process the application program the following DLL is needed to be located in the

designated place:

Windows2000/NT： \WINNT\SYSTEM32,

Windows XP： \WINDOWS\SYSTEM32.

(There is no need to operate any linking or such.)

 PAPCI.DLL ････ The file keeping the PA library processing module.

Chapter 5 Program Development & Processing Conditions

 5- 8

５．５ Notes for application development employing Visual BASIC

 （１）Necessary header files to include

 Using the PA library, if develop an application program employing BASIC ver.6.0, add the

following header files. (the standard module file) to the “project.”

 PA.BAS ････ The prototype declaration is described when load the PA

library created with C-programming language employing BASIC.

<Setting method> Choose “Add the standard module” inside “Project” of the menu bar,

then, add “ps.bas.”

 （２）Necessary DLL file for implementation

 To process the application program the following DLL is needed to be located in the

designated place:

Windows2000/NT： \WINNT\SYSTEM32

Windows XP： \WINDOWS\SYSTEM32.

(There is no need to operate any linking or such.)

 PAPCI.DLL ････ The file keeping the PA library processing module.

Chapter 6 Programming

6-1

Chapter 6 Programming

How to create an application using the PA library.

Chapter 6 Programming

6-2

６．１ Control Arm

 （１）6-axis and 7-axis arm

 The PA library for 6-axis and 7-axis is described as the same.

Some libraries can only be used for the 7-axis arm, not for the 6-axis one. A

processable library inter-lock is checked at the motion control side.

 For the 6-axis arm, on command values to each axis, the S3-axis

(configuration [2]) value becomes invalid.

(example) Type Declaration 6-axis arm 7-axis arm

Axis value ANGLE axis

 ａｘｓ.S1 1st axis：S1 1st axis：S1

 ａｘｓ.S2 2nd axis：S2 2nd axis：S2

 ａｘｓ.S３ （not used） 3rd axis：S3

 ａｘｓ.E1 3rd axis：E1 4th axis：E1

 ａｘｓ.E2 4th axis：E2 5th axis：E2

 ａｘｓ.W1 5th axis：W1 6th axis：W1

 ａｘｓ.W2 6th axis：W2 7th axis：W2

Velocity command Value ｆｌｏａｔ ｓｐｅｅｄ[7]

 speed[0] 1st axis：S1 1st axis：S1

 speed[1] 2nd axis：S2 2nd axis：S2

 speed[2] （not used） 3rd axis：S3

 speed[3] 3rd axis：E1 4th axis：E1

 speed[4] 4th axis：E2 5th axis：E2

 speed[5] 5h axis：W1 6th axis：W1

 speed[6] 6th axis：W2 7th axis：W2

 （２）Plural Arm Control

For one operation control PC (Personal Computer), plural motion control boards can

be inserted. Besides, two arms can be controlled with one motion control board. In

the case of plural arms, the controlled arm is classified with its own number.

For the PA library, all arm numbers are needed.

 pa_opn_arm（ARM armno,……..）

 ARM =ARM０

 =ARM１

 =ARM2

 ：

 =ARM16

 For arm number settings, refer to “the PROGRAMING MANUAL （ADDITIONAL

EDITION）.”

RReeffeerreennccee

Chapter 6 Programming

6-3

６．２ Common Items

 On the control programming using the PA library, there are some that must be

known and followed through.

 （１）Synchronization between controllers

One command is issued for one PA library from the operation control section to

the motion control section. The motion control section performs the

motion/processing, responding to this command.

Synchronization between controllers is operated by the control counter. When the

motion/processing is completed, the count value of the control counter will be

increased one counter value.

During processing, if any error occurs, it stops processing, adds one counter value,

then, returns an error code.

If the return value (error code) of the library shows “ERROR-OK.” It means the

control is normally terminated.

 （２）Minimum required programming procedures

 If controlling the motion control section using the PA library, the following

descriptions are needed:

①PA Library Initialization ：pa_ini_sys

 Declaration to use the PA library.

②Open Arm (Control Arm Selection) ：pa_opn_arm

 Plural motion control sections (arm) can be controlled by one operation control

section. The control arm and the number of the arm (ARMO ~ ARM15) have to be

designated by the motion control section.

For the arm number setting, refer to the section 4.3 – the operation & motion

control interface.

③Control Start (Motion Control Section) ： pa_sta_arm or pa_sta_sim

If issuing the “pa_sta_arm” library, the communication with the servo driver will be

started. If issuing the “pa_sim_arm” library, the simulation mode starts. In this

mode, regarding all commands issued from hereafter, the motion and the program

can be confirmed without operating any actual machine.

④Control Stop (Motion Control Section) ： pa_ext_arm or pa_ext_sim

 If issuing the “pa_ext_arm” library, the communication with the servo driver will be

terminated. If issuing the “pa_ext_arm” library, the simulation mode will be

terminated.

⑤Close the arm ： pa_cls_arm

 Separates the selected arm from the motion control section.

⑥PA library Exit ： pa_ter_sys

RReeffeerreennccee

Chapter 6 Programming

6-4

Explanation on the programming employing samples.

・ Example: for Visual C++ – the one written with the visual C++6.0
programming language is indicated.

・ It is the same as other C-programming language (either Windows or not)

・ Example: for Visual BASIC – the one written with the visual BASIC
programming language is indicated.

In the sample, making easier to understand the description method, function return

values ARE NOT checked. When you actually make programming, check any error

shown by a return value.

Depending on the error type, the motion control section terminates the control

automatically.

Regarding errors, refer to the error table.

Program Description:

Example: for Visual C++

 pa_ini_sys(); ... PA library initialization

 pa_opn_arm(ARM0); ... 1st arm open

 pa_sta_arm(ARM0); ... Control Start

 :

 Motion Description Section

 :

 pa_ext_arm(ARM0); ... Control Stop

 pa_cls_arm(ARM0); ... 1st arm close

 pa_ter_sys(); ... PA library termination

Example: for Visual BASIC

 Dim ret As Long

 ：

 ret = pa_ini_sys() ... PA library initialization

 ret = pa_opn_arm(ARM0) ... 1st arm open

 ret = pa_sta_arm(ARM0) ... Control Start

 :

 Motion Description Section

 :

 ret = pa_ext_arm(ARM0) ... Control Exit

 ret = pa_cls_arm(ARM0) ... 1st arm close

 ret = pa_ter_sys() ... PA library termination

This is the minimum necessary description library.

Remark

RReeffeerreennccee

Chapter 6 Programming

6-5

 （３）Processing during a library performance

 Explaining processing methods while a library describing motion is performing.

 func = WM_WAIT ：Wait until the arm motion is terminated.

 = WM_NOWAIT：No wait until the arm motion is terminated.

func = WM_WAIT ： Wait until the arm motion is terminated

 ＜Library Processing Contents＞

 ・Issues command to the motion control section.

 ・Observes the motion termination.

 ・If any error occurs, terminates processing. An error number is shown as a

return value.

 Example: for Visual C++

 if(pa_exe_hom(ARM0, WM_NOWAIT) != ERR_OK)

 Error termination

 else

 Normal termination

 Example: for Visual BASIC

 Dim ret As Long

 ret = pa_exe_hom(ARM0, WM_NOWAIT)

 If ret <> ERR_OK Then

 Error termination

 Else

 Normal termination

 End If

Chapter 6 Programming

6-6

func = WM_NOWAIT ： No wait until the arm motion is terminated

 ＜Library Processing Contents＞

･Issues commands to the motion control section.

･If any error occurs, terminates processing. An error number is shown as a

return value.

･Confirmation and error observation are not performed at the motion

termination.

 Example: for Visual C++

 long new, old;

 long err;

 :

 pa_get_cnt(ARM0, &old); ...Control counter setting before the command issue

 pa_exe_hom(ARM0, WM_NOWAIT);

 while(1){

 if((err=pa_get_cnt(ARM0,&new))!=ERR_OK){

 An error occurrence processing

 break;

 }else if(new != old){

 Motion termination processing

 break;

 }else{

 Processing during performance (Example; axis indication)

 }

 }

 Example: for Visual BASIC

Dim new As Long

Dim old As Long

Dim err As Long

 :

 err = pa_get_cnt(ARM0, old) ...Control counter setting before the command issue

 err = pa_exe_hom(ARM0, WM_NOWAIT)

 Do While 1

 err = pa_get_cnt(ARM0, new)

 If err <> ERR_OK Then

 An error occurrence processing

 Exit Do

 Else

If new <> old Then

 Motion termination processing

 Exit Do

 Else

 Processing during performance (Example; axis indication)

 End If

 End If

 Loop

Chapter 6 Programming

6-7

６．３ Axis Angle Control

 Method to control from the operation control section providing axis target angle.

The motion control section calculates each axis interpolation and controls angle

feedback.

The method to provide target values is as follows:

 ＜Method to input angles＞

 Axis angle control（ θS1，θS2，･･･ θW2 ）

 ＜Axis Angle Control＞ The method to use a orientation previously registered.

 ・Basic Orientation Control

 ・Escape orientation control

 ・Safety Orientation Control

Axis Angle Interpolation Method

This method to control the selected axis to the target angle, calculating axis

interpolation.

This method interpolates the velocity command to form a letter “S” shape.

The motion velocity is interpolated adjusting to the default velocity.

Start-up (acceleration) time
Uniform Velocity

Acceleration:ω

Velocity：ｖ

Angle:θ

Shutdown (deceleration) time

Target Angle (command value)

Axis default velocity

 Each angle gain
KS1 0

 KS2

 0 KW2

 Ｋθ

 －

＋

 Current angle of axis
 θ=［θS1･･θW2］

 Angle deviation
 Δθ=［ΔθS1･･ΔθW2］

 θ

 ・

 θ Joint axis
Velocity command

 Current value
Current angle of axis
After interpolation
 θ=［θS1･･θW2］

Chapter 6 Programming

6-8

６．３．１ Axis Angle Control

 Designates axes to be controlled and provides target angles.

Program Description::

 Example: for Visual C++ To control only S1,S2 and E1 at 90 [deg]

 :

 ANGLE angle;

 :

 angle.s1 = 1.57; (= 90.0 * M_PI / (double)180.0)

 angle.s2 = 1.57;

 angle.e1 = 1.57;

 pa_exe_axs(ARM0, S1|S2|E1, & angle, WM_NOWAIT);

 Example: for Visual BASIC

 ：

 Dim ret As Long

 Dim axs As Long

 Dim agl As ANGLE

 ：

 agl.s1 = 1.57

 agl.s2 = 1.57

 agl.ｅ1 = 1.57

 axs = S1 Or S2 Or E1

 ret = pa_exe_axs(ARM0, axs, agl, WM_NOWAIT)

The motion speed is adjusted to the default one and interpolated forming a letter “S”

shape.

Chapter 6 Programming

6-9

６．３．２ Axis Orientation Control

 This control method is the same as the axis control.

・Basic Orientation

All Axes ：0 [deg]

・Escape Orientation

 Ｓ２ ：３０[deg]

 Ｅ１ ：９０[deg]

 Ｗ１ ：６０[deg]

 Others： ０[deg]

・safety Orientation

 Ｓ２ ： ４５[deg]

 Ｅ１ ： ９０[deg]

 Ｗ１ ：-４５[deg]

 Others ： ０[deg]

Alteration methods for each orientation angle are:

 ・Method to input the angle. (ex) pa_set_hom

 ・Method to replace with a current angle. (ex) pa_def_hom

These values are erased when the power is off. To change the arm parameter

default value, use the parameter setting program.

Program Description:

 Example: for Visual C++

 ANGLE angle;

 :

 pa_exe_esc(ARM0, WM_NOWAIT); to default escape orientation.

 :

 angle.s1 = 1.57; [rad](= 90.0[deg]*M_PI/(double)180.0)

 angle.s2 = 1.57;

 angle.e1 = 1.57;

 :

 angle.w2 = 1.57;

 pa_set_esc(ARM0, & angle); escape orientation alteration

 pa_exe_esc(ARM0, WM_NOWAIT); all axes to 90[deg]

 :

 angle.s1 = 0.785;

 angle.s2 = 0.785;

 pa_exe_axs(ARM0, S1|S2, & angle ,WM_NOWAIT); to S1,S2 = 45[deg]

 :

 pa_def_esc(ARM0); loading as escape orientation

Chapter 6 Programming

6-10

 Example: for Visual BASIC

 Dim agl As ANGLE

 Dim ret As Long

 Dim axs As Long

 ret = pa_exe_esc(ARM0, WM_NOWAIT) to the default escape orientation.

 agl.s1 = 1.57

 agl.s2 = 1.57

 agl.e1 = 1.57

 :

 agl.w2 = 1.57

 ret = pa_set_esc(ARM0, agl) escape orientation alteration

 ret = pa_exe_esc(ARM0, WM_NOWAIT) all axes to 90[deg]

 :

 agl.s1 = 0.785

 agl.s2 = 0.785

 axs = S1 Or S2

 ret = pa_exe_axs(ARM0, axs, agl ,WM_NOWAIT)

 :

 ret = pa_def_esc(ARM0) loading as escape orientation

 It would be useful to register angles often used following operation purposes.

(*1) The arm parameter is the file setting data needed for a control, located in the

motion control section.

For further information, refer to “parameter setting” in the section 6.13.

The contents can be seen with the command – pa_get_prm – from the operation

control section. They cannot be directly changed in the program.

But, the operation support program (parameter setting) for alteration is provided.

For the alteration method, refer to the operation support program (parameter

setting) instruction.

RReeffeerreennccee

RReeffeerreennccee

Chapter 6 Programming

6-11

６．４ Tip Position/Orientation (RMRC) Control: 6-axis arm

The following explanation about the tip position/orientation control for the 6-axis arm

is the summarized one. For the 7-axis arm, it is explained in the section 6.5.

６．４．１ Tip Position/Orientation (RMRC) Control

 PA10 tip position/orientation (RMRC) control is the method to control arm

providing its tip position/orientation as the target value from the operation control

section. The motion control section calculates interpolation of each tip

position/orientation and controls the position feedback.

 In PA10, the tip position/orientation control is called RMRC control.

As target value, there are input values below:

 ・Tip Position Deviation（ ΔＸ，ΔＹ，ΔＺ ）

 ・Tip Orientation Deviation（ ΔＹaw，ΔＰitch，ΔＲoll ）

 ・Tip Position/Orientation ｎx ｏx ａx ｐx

 ｎy ｏy ａy ｐy

 ｎz ｏz ａz ｐz

Tip position/orientation (RMRC) control are as follows:

 ・Tip position deviation control

 ・Tip position orientation control

 ・Absolute position/orientation designation control

 ・Tip position/orientation/velocity control

 ・Current point motion control (Tip linear motion)

 ・Playback control (Except data for PTP axis interpolation)

 ・RMRC real-time control mode

Position control gain

KＸ 0

 KＹ

 0 KＲｏｌｌ

 ＫP

 －

＋

Current position/orientation

At the base coordinate system

Ｔ =［ｎｏａｐ］

Position orientation

deviation

 θ

 ・

 θ Joint axis
Velocity command

 Current valueTarget position orientation

At the base coordinate

After interpolation

Ｔ =［ｎｏａｐ］
 Joint angle

Coordinate conversion

Position coordinate

conversion

 ・
 θ = J＃・Vpw

MMeemmoo

Chapter 6 Programming

6-12

Tip Position/Orientation Interpolation Method

 This method calculates the tip position/orientation interpolation and controls the

tip to the input target position/orientation.

This method interpolates the velocity command to form a letter “S” shape.

The motion velocity, adjusting to the position/orientation default velocity, is

interpolated to form a letter “S” shape.

Start-up (acceleration) time
Uniform Velocity

Acceleration:ω

Velocity:ｖ

Position/orientaion

T=[NOAP]

Shutdown (deceleration) time

Target Position/Orientation

Position/Orientation Default Velocity

Chapter 6 Programming

6-13

 （１）Tip Position Deviation Control

Position deviations (ΔＸ，ΔＹ，ΔＺ) from the current tip position are provided to

each axis in the selected coordinate system.

・Base coordinate tip position control：pa_mov_XYZ(ARM0, dX, dY, dZ, WM_WAIT)

・Mechanical interface coordinate tip position control：pa_mov_xyz(ARM0, dx, dy, dz,

WM_WAIT)

 （ Visual BASIC: pa_mov_XYZ0(ARM0,dx,dy, dz, WM_WAIT) ）

In Visual BASIC, there is no distinction between capital and small letters.

Control Method:

・ The target position is defined by adding the current tip position to the input

position deviation.

・ The tip position is interpolated linearly.

・ The arm parameter default tip linear velocity is interpolated to form the letter

“S” shape

 ・The tip orientation does not change.

Program Description:

 ① Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

 The possible start range for RMRC control is limited.

 The entry to the RMRC control is not allowed when Ｅ１＝０[deg].

 The entry to the RMRC control from the basic orientation is not allowed. One of

the ways to enter the RMRC control is to shift to the escape orientation.

 ② Chooses the coordinate system and provides deviation. ： pa_mov_XYZ

 It moves 100 (mm) toward X (axis) in the base coordinate.

A coordinate system selection depends on the intended direction to shift. The

one to be applied should be chosen.

 Example: for Visual C++

 :

 pa_exe_esc(ARM0, WM_WAIT); ･･･to RMRC controllable orientation

 pa_mov_XYZ(ARM0, 100.0, 0.0, 0.0,WM_WAIT);

 : ･･･Proceed X=100.0 in the base coordinate.

 Example: for Visual BASIC

 Dim ret As Long

 ：

 ret = pa_exe_esc(ARM0, WM_WAIT)

 ret = pa_mov_XYZ(ARM0, 100.0, 0.0, 0.0,WM_WAIT)

Chapter 6 Programming

6-14

 （２）Tip Orientation Deviation Control

Orientation deviations (ΔＹaw，ΔＰitch，ΔＲoll) from the current tip orientation are

provided to each axis in the selected coordinate system.

・Base coordinate tip orientation control：

 pa_mov_YPR(ARM0, dYaw,dPitch,dRoll,WM_WAIT)

・Mechanical interface coordinate tip orientation control：

 pa_mov_ypr(ARM0,dyaw,dpitch,droll, WM_WAIT)

 (In the case of Visual BASIC: pa_mov_YPRO(ARM0,dyaw,dpitch, droll, WM_WAIT))

Control Method:

・The tip position does not change.

・The target orientation is defined by adding the current tip orientation to the input

orientation deviation.

・The rotation angle deviation of the tip orientation is interpolated.

・The arm parameter default tip rotational velocity – the rotational velocity – is

i nterpolated to form the letter “S” shape

 ・

Program Description:

 ① Adjusts the axis value to the RMRC controllable one.： pa_exe_esc

 The possible start range for RMRC control is limited.

 The entry to the RMRC control is not allowed when Ｅ１＝０[deg].

 The entry to the RMRC control from the basic orientation is not allowed. One of

the ways to enter the RMRC control is to shift to the escape orientation.

 ② Chooses the coordinate system and provides deviation.： pa_mov_ypr

 It moves around an axis in a mechanical interface coordinate. The tip position

does not change. If tool information/offset values are set, it rotates around the tip.

A coordinate system selection depends on the intended direction to shift. The one

to be applied should be chosen.

Chapter 6 Programming

6-15

 Example: for Visual C++

 :

 pa_exe_esc(ARM0,WM_WAIT);

 pa_mov_ypr(ARM0,0.0,20.0*PI/180.0,0.0,WM_WAIT); ･･･ (a)

 : A 20[deg] rotation on Y-axis in the mechanical interface coordinate system

 :

 pa_set_tol(ARM0,0.0,0.0,0.0,0.0); ･･･ Set tool offset (float type)

 pa_mov_ypr(ARM0,0.0,20.0*PI/180.0,0.0,WM_WAIT); ･･･ (b)

 : A 20[deg] rotation on y-axis in the mechanical interface (tool) coordinate

system

 Setting tool information/offset values, the position will be changed even with

the tip orientation conversion function. If to shift the tip to the work face is

to be applied, use “pa_set_tol.”

 Example: for Visual C++

 Dim ret As Long

 ret = pa_exe_esc(ARM0,WM_WAIT)

 ret = pa_mov_YPRO(ARM0,0.0,20.0*PAI/180.0,0.0,WM_WAIT)

 :

 :

 ret = pa_set_tol(ARM0,0.0,0.0,0.0,0.0)

 ret = pa_mov_YPR0(ARM0,0.0,20.0*PAI/180.0,0.0,WM_WAIT)

(b)
(a)

θ

θ

z x

y y-axis in the mechanical interface (tool) coordinate system

y y-axis in the mechanical interface coordinate

The arm tip before shifting
 θ = Rotation on y-axis (pitch)

off

Chapter 6 Programming

6-16

 （３）Designated Absolute Position/Orientation Control

 The tip matrix (T-matrix) on the base coordinate system and each axis value for

restriction data are provided.

 ｎx ｏx ａx ｐx

 T-matrix ： ｎy ｏy ａy ｐy

 ｎz ｏz ａz ｐz

Target matrixes are as follows:

・Absolute position target matrix: controls only positions and orientation does not

change.

・Absolute orientation target matrix: controls only orientation and positions do not

change.

・Absolute position/orientation matrix: controls positions and orientations.

Control methods:

・The input tip position/orientation becomes the target position/orientation.

・The tip position is interpolated linearly.

・The rotation angle of the tip orientation is interpolated.

・Calculates the motion and the rotational velocity from a default tip motion and

rotational velocity of the arm parameter.

 Vxyz : Default tip linear velocity

 Vypr : Default tip rotational velocity

 △xyz : Tip position motion value

 △ypr : Tip orientation rotation angle

 Txyz = △xyz／Vxyz : Time taken for tip motion.

 Typr = △ypr／Vypr : Time taken for rotation.

 If Txyz ≧ Typr, “Vxyz” becomes the standard.

 If Txyz ＜ Typr. “Vypr” becomes the standard.

Chapter 6 Programming

6-17

Program Description:

 ① Adjusts the axis value to the RMRC controllable one.： pa_exe_saf

 The possible start range for RMRC control is limited.

 The entry to the RMRC control is not allowed when Ｅ１＝０[deg].

 The entry to the RMRC control from the basic orientation is not allowed. One of

the ways to enter the RMRC control is to shift to the safety orientation.

 ② The tip position/orientation matrix described in the base coordinate system is

provided.：pa_mov_mat

 It moves toward the tip matrix (T-matrix) indicated in the base coordinate.

A coordinate system selection depends on the intended direction to shift. The

one to be applied should be chosen.

 MOVEMODE types are:

 MM_XYZ ： Absolute position target matrix

 MM_NOA ：Absolute orientation target matrix

 MM_XYZNOA ：Absolute position/orientation matrix

 Example: for Visual C++

MATRIX mat;

ANGLE an;

：

 pa_exe_saf(ARM0，WM_WAIT);

 :

 Tip T-matrix :mat set

 Set 0.0 for “an” which is not used for 6-axis arm.

 :

 pa_mov_mat(ARM0,MM_XYZNOA,mat,&an,WM_WAIT);

 From the current position, perform the RMRC interpolation and shift to the tip

position/orientation indicated by “mat.”

 Example: for Visual BASIC

 Dim mat As MATRIX

 Dim an As ANGLE

 Dim ret As Long

 :

 ret = pa_exe_saf(ARM0)

 :

 ret = pa_mov_mat(ARM0,MM_XYZNOA,mat,an,WM_WAIT)

Chapter 6 Programming

6-18

 （４）Tip Position/Orientation/velocity Control

 Method to control providing linear motion velocity (Vx, Vy, Vz) and rotational

velocity (Vyaw, Vpitch, Vroll.) on each coordinate axis in the selected coordinate

system

For further information, refer to “Velocity Control” in the section 6.6

 （５）Current Point Motion Control (Tip Linear motion)

 Shifts, interpolating the tip position/orientation linearly with the RMRC control to

the current point.

For further information, refer to “shift to the current point” in the section 6.10.3

 （６）Playback Control

 The playback control is performed using teach data acquired in various control

situations.

For further information, refer to “Playback Control” in the section 6.10 ~ 6.11

 （７）RMRC Real-Time Control Mode

 The control method providing target axis angles and T-matrix indicating the target

tip linear motion and rotation in the maximum 1000msec cycle.

For further information, refer to “Real-Time Control” in the section 6.8

RReeffeerreennccee

RReeffeerreennccee

RReeffeerreennccee

RReeffeerreennccee

Chapter 6 Programming

6-19

６．４．２ Motion at the singular posture (singularity)

Awareness on RMRC control operation.

In RMRC control, arm is usually actuated by providing commands to the tip position

and orientation of the manipulator, calculating joint angle velocity to actualize.

 When the tip takes a position/orientation called a singularity,

to maintain a consistent tip trajectory and motion velocity, it is

needed to instantly increase some joint velocity.

THIS OPERATION, IF ACTUALIZED, CAUSES ENORMOUS

DANGER, CREATING UNCONTROLABLE POSITION/ORIENTATION.

CAUTION

Chapter 6 Programming

6-20

６．４．２．１ Singularity types
On singularity, there are three inner singularities (wrist, elbow and shoulder

singularity) and the outer singularity located out of the arm movable range.

＜Inner Singularity＞

Inside the arm movable range, the position/orientation cannot be controlled when a

joint angle is exceeded, or lowers the control accuracy.

Wrist Singularity…Rotational axes of E2 and W2-axis are linear. = W1-axis is 0

 (E2 and W2-axis are indeterminate.)

Shoulder Singularity…the intersecting point of E2,W1 and W2 rotational axis is on the

S1 rotational axis. (the tip cannot be moved to left or right.)

Elbow Singularity…the intersecting point of E2,W1 and W2 rotational axis is on the

plane including the S2 and E1 rotational axis.

＜Outer Singularity＞

 the target position/orientation are designated outside the movable range. It is

impossible to actuate the arm. It usually stops motion with an error indication or

cuts the target value.

Ｓ２

Ｅ１

Ｗ１

Ｗ２

Ｓ２

Ｅ１

Ｗ１
Ｗ２

Target Value

Ｓ１

Ｓ２

Ｅ２

Ｗ１

Ｗ２ Ｅ１ (the tip cannot be moved to left or right.)

(When the wrist is at foreground position, the arm

configuration cannot be performed which side it

should be.)

Ｅ２

Ｗ１

Ｗ２

Chapter 6 Programming

6-21

６．４．２．２ Singularity Avoidance Motion

 Singularity avoidance algorism in PA10 customized on the basis of the SC

(singularity – Consistency) method discoursed by Professor Tsumaki, Tohoku

university. Its outline is explained below.

 If needed exceeding velocity to any axis during RMRV control, the SC method –

the algorism – lowers the tip velocity and maintains its position and posture. During

RMRC control, in PA10, the operation is always controlled by the SC method. If any

axis exceeds the rated velocity, the tip velocity is decelerated without any alert. It

is not good for the operations needed to maintain velocity.

Conditions Contents

Wrist Singularity

 W1 axis angle 0

 singularity

If the W1-axis passes through around 0 degree, the E2 and the

W2-axis are laid in a straight line. It creates an enormous reverse

velocity command.

To previously find this singularity, the W1-axis angle is always

observed. If entering into the range designated by the parameter, a

limit velocity defined by the SC method is lowered. The lowering range

is designated in the separated section “Parameter.”
(As the result of lowering a limited velocity, the arm tip motion velocity

is affected. But, the position and the posture are maintained.)

Shoulder Singularity

 W1 axis position

 singularity

If the W1-axis locates around the S1-axis position, it is needed to

actuate the S1-axis to alter the posture. The low velocity S1-axis

becomes the standard for motion velocity.

To previously find this singularity, W1-axis angle is always observed.

If entering into the range designated by the parameter, a limit velocity

defined by the SC method is lowered. The lowering range is designated

in the separated section “Parameter.”
(As a result of lowering a limit velocity, the arm tip motion velocity is

affected. But, the position and the posture are maintained.)

Elbow Singularity

 E1 axis angle 0

 singularity

If the E1-axis passes through 0 degree, it creates an enormous

velocity command for the E1-axis.

By restricting the arm movable range in the RMRC control, this

singularity can be avoided. It stops in error with “exceeded arm length

(*1).”

 The singularity avoidance processing acs avoiding an undesirable emergency

such as arm hazardous motion. If arm motion is in teach and playback mode, it

is most important NOT TO TAKE those positions and posture.

Remark

Chapter 6 Programming

6-22

 Around a singularity it is not always possible to make all avoidance motions. At a

singularity below, arm stops in error.

＜Wrist Singularity＞
 Around the wrist singularity, in unstable areas, the velocity command sends an error

signal to the brake to stop.

＜Elbow Singularity＞ Exceeded arm length:

 If E1-axis passes through 0[deg] (the length from S2 rotation origin to W1 rotation

origin: 930 [mm],) the RMRC control is not allowed to enter.

For RMRC control, when creating the current value and the target one, it is checked

whether arm length is exceeded or not.

When acquiring teach data other than PTP axis interpolation data, if arm length is

exceeded, data cannot be obtained.

In the error message, LENGTH is indicated as “Arm Length.”

 ・ERR_NOT_ENUGH：The arm length target value is exceeded more than 925 [mm].

In this case, in interpolation calculation, the target values are automatically

corrected. The arm does not stop.

 ・ERR_OVER900 ： During operation, when the arm length becomes 930 [mm],

the brake stops it.

 ・ERR_CANT_MOVE： If the arm length current value is exceeded more than 925

[mm], the RMRC control is not allowed to enter.

 (Example) at the basic orientation, E1 = 0. The RMRC control is not allowed to

enter.

LENGTH (arm length)

Chapter 6 Programming

6-23

６．４．２．３ Control around Angle Limit

Entry protection to the angle limit:

 The SC method is the algorism built-in originally for singularity avoidance. In PA10,

using this algorism, processing to decelerate the whole motion of a manipulator just

before the angle limit.

Conditional analyses are performed to all moving axes. If any of them approaches to

the angle limit, it is forcefully decelerated following SC method.

The deceleration range is from 3 degrees before axis angle limit, where starts

decelerating linearly, to the angle limit where the velocity is reduced up to 10% (the

rated velocity.)

Teach mode motion

 In teach mode the velocity limit is lowered by force. As the velocity limit in the SC

method is basically lowered.

Chapter 6 Programming

6-24

６．５ Tip Position/Orientation (RMRC) Control: 7-axis arm

The tip position/orientation control for the 7-axis arm is as follows:

６．５．１ Tip Position/Orientation (RMRC) Control

 PA10 tip position/orientation (RMRC) control method to control arm providing its

tip position/orientation as the target value from the operation control section. The

motion control section calculates interpolation of each tip position/orientation and

controls the position feedback.

 In PA10, the tip position/orientation control is called RMRC control.

As target value, there are input values below:

 ・Tip position deviation（ ΔＸ，ΔＹ，ΔＺ ）

 ・Tip orientation deviation（ ΔＹaw，ΔＰitch，ΔＲoll ）

 ・Tip position/orientation ｎx ｏx ａx ｐx

 ｎy ｏy ａy ｐy

 ｎz ｏz ａz ｐz

Axis value for restriction data during a redundant axis control（ θS1，θS2，･･･ θ

W2 ）

 In the 7-axis arm, when the RMRC control, chooses a redundant axis control mode,

a redundant axis (elbow) can be controlled.

Position control gain

KＸ 0

 KＹ

 0 KＲｏｌｌ

 ＫP

 －

＋

Current position/orientation

At the base coordinate system

Ｔ =［ｎｏａｐ］

Position orientation

deviation

 θ

 ・

 θ Joint axis
Velocity command

Current value Target position orientation

At the base coordinate

After interpolation

Ｔ =［ｎｏａｐ］
 Joint angle

Coordinate conversion

Position coordinate

conversion

 ・
 θ = J＃・Vpw+（I－J＃・J）ξ(θ)・Kｐ

MMeemmoo

Chapter 6 Programming

6-25

In 7-axis arm, the tip position/orientation (RMRC) control can be classified in two on

a large scale.

 ① Elbow control changing the tip position/orientation.

 ・Tip position deviation control

 ・Tip orientation deviation control

 ・Designated absolute position/orientation control

 ・Designated position/orientation/velocity control

 ・Current point motion control (tip linear motion)

 ・Playback control (except data for PTP axis interpolation)

 ・RMRC real-time control mode

 ② Elbow control not changing the tip position/orientation.

 ・Redundant axis velocity control

 ・Redundant axis restriction parameter control

 ・Redundant axis motion control

Tip Position/Orientation Interpolation Method:

This method calculates the tip position/orientation interpolation and controls the tip

to the input target position/orientation.

This method interpolates the velocity command to form a letter “S” shape.

The motion velocity, adjusting to the position/orientation default velocity, is

interpolated to form a letter “S” shape.

Start-up(acceleration)
Uniform Velocity

Acceleration:ω

Velocity：ｖ

Linear/rotational

T=[NOAP]

Shutdown (deceleration)

Target osition/Orientation

Linear/rotationalDefault

Chapter 6 Programming

6-26

６．５．２ Elbow Control changing the tip position/posture

 （１）Tip Position Deviation Control

Position deviations (ΔＸ，ΔＹ，ΔＺ) from the current tip position are provided to

each axis in the selected coordinate system.

・Base coordinate tip position control：pa_mov_XYZ(ARM0, dX, dY, dZ, WM_WAIT)

・Mechanical interface coordinate tip position control：pa_mov_xyz(ARM0, dx, dy, dz,

WM_WAIT)

 （ Visual BASIC: pa_mov_XYZ0(ARM0,dx,dy, dz, WM_WAIT) ）

In Visual BASIC, there is no distinction between capital and small letters.

Control Method:

・The target position is defined by adding the current tip position to the input

position deviation.

・The tip position is interpolated linearly.

・The arm parameter default tip linear velocity is interpolated to form the letter “S”

shape

・The tip orientation does not change.

Program Description:

 ① Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

 The possible start range for RMRC control is limited.

 The entry to the RMRC control is not allowed when Ｅ１＝０[deg].

 The entry to the RMRC control from the basic orientation is not allowed. One of

the ways to enter the RMRC control is to shift to the escape orientation.

 ② Chooses the coordinate system and provides deviation. ： pa_mov_XYZ

 It moves 100 (mm) toward X (axis) in the base coordinate.

A coordinate system selection depends on the intended direction to shift. The

one to be applied should be chosen.

 Example: for Visual C++

 :

 pa_exe_esc(ARM0, WM_WAIT); ･･･to RMRC controllable orientation

 pa_mov_XYZ(ARM0, 100.0, 0.0, 0.0,WM_WAIT);

 : ･･･Proceed X=100.0 in the base coordinate.

 Example: for Visual BASIC

 Dim ret As Long

 ：

ret = pa_exe_esc(ARM0, WM_WAIT)

ret = pa_mov_XYZ(ARM0, 100.0, 0.0, 0.0,WM_WAIT)

Chapter 6 Programming

6-27

 （２）Tip Orientation Deviation Control

 Orientation deviations (ΔＹaw，ΔＰitch，ΔＲoll) from the current tip orientation are

provided to each axis in the selected coordinate system.

・Base coordinate tip position control：pa_mov_YPR(ARM0, dYaw,dPitch,dRoll,WM_WAIT)

・Mechanical interface coordinate tip orientation control：

 pa_mov_ypr(ARM0,dyaw,dpitch,droll, WM_WAIT)

 (In the case of Visual BASIC: pa_mov_YPRO(ARM0,dyaw,dpitch, droll, WM_WAIT))

Control Method:

・The tip position does not change.

・The target orientation is defined by adding the current tip orientation to the input

orientation deviation.

・The rotation angle deviation of the tip orientation is interpolated.

・The arm parameter default tip rotational velocity – the rotation velocity – is

 interpolated to form the letter “S” shape

Program Description:

 ① Adjusts the axis value to the RMRC controllable one.： pa_exe_esc

 The possible start range for RMRC control is limited.

 The entry to the RMRC control is not allowed when Ｅ１＝０[deg].

 The entry to the RMRC control from the basic orientation is not allowed. One of

the ways to enter the RMRC control is to shift to the escape orientation.

 ② Chooses the coordinate system and provides deviation.： pa_mov_ypr

 It moves around an axis in a mechanical interface coordinate. The tip position

does not change. If tool information/offset values are set, it rotates around the

tip.

A coordinate system selection depends on the intended direction to shift. The

one to be applied should be chosen.

Chapter 6 Programming

6-28

 Example: for Visual C++

 :

 pa_exe_esc(ARM0,WM_WAIT);

 pa_mov_ypr(ARM0,0.0,20.0*PI/180.0,0.0,WM_WAIT); ･･･ (a)

 : A 20[deg] rotation on Y-axis in the mechanical interface coordinate system

 :

 pa_set_tol(ARM0,0.0,0.0,0.0,0.0); ･･･ Set tool offset (float type)

 pa_mov_ypr(ARM0,0.0,20.0*PI/180.0,0.0,WM_WAIT); ･･･ (b)

 : A 20[deg] rotation on y-axis in the mechanical interface (tool) coordinate system

 Setting tool information/offset values, the position will be changed even with

the tip orientation conversion function. To shift the tip to the work face

intended, use

 “pa_set_tol.”

 Example: for Visual C++

 Dim ret As Long

 ret = pa_exe_esc(ARM0,WM_WAIT)

 ret = pa_mov_YPRO(ARM0,0.0,20.0*PAI/180.0,0.0,WM_WAIT)

 :

 :

 ret = pa_set_tol(ARM0,0.0,0.0,0.0,0.0)

 ret = pa_mov_YPR0(ARM0,0.0,20.0*PAI/180.0,0.0,WM_WAIT)

(b)
(a)

θ

θ

z x

y y-axis in the mechanical interface (tool) coordinate system

y y-axis in the mechanical interface coordinate system

Arm tip before shifting
 θ = Rotation on y-axis (pitch)

off

Chapter 6 Programming

6-29

 （３）Designated Absolute Position/Orientation Control

 The tip matrix (T-matrix) on the base coordinate system and axis value for

restriction data is provided for the target tip orientation.

 ｎx ｏx ａx ｐx

 T-matrix ： ｎy ｏy ａy ｐy

 ｎz ｏz ａz ｐz

axis value for restriction data ：（ θS1，θS2，･･･ θW2 ）

Target matrixes are as follows:

・Absolute position target matrix: controls only positions. Orientations do not

change.

・Absolute orientation target matrix: controls only orientation. Positions do not

change.

・Absolute position/orientation matrix: controls positions and orientations.

Axis value for restriction data

Due to the redundant axis control mode selected before performing the designated

absolute position/orientation control, axis value for restriction data will be effective

as follows:

Redundant axis

control mode

(JOUMODE)

Relation between each mode and axis value for restriction data

No restriction

(JM_OFF)
Not depending on provided axis values for restriction data at all.

All axes restricted

(JM_ON)
All axes are restricted by provided axis values for restriction data

S3-axis restricted

(JM_S3ON)

At first, interpolates the S3-axis restriction value, then, the S3-axis is

restricted by the interpolated target S3-axis value as the restriction

axis value.

S3-axis interpolation

(JM_S3DIV)
S3-axis is interpolated to come to the input S3-axis restriction value.

S3-axis fixed

(JM_S3HOLD)

Not depending on provided axis values for restriction data at all.

Keep the S3-axis angle when the designated absolute

position/orientation control is issued. It is controlled by other

6-axes, only.

 For further information, refer to “Redundant axis control.”

RReeffeerreennccee

Chapter 6 Programming

6-30

Control method:・・・

＜NOT S3-axis Interpolation Mode＞

 ・The input tip position/orientation becomes the target position/orientation

 ・The tip position trajectory is interpolated linearly.

 ・The tip orientation/rotation angle is interpolated.

 ・Calculates the shifting and rotation velocity from the arm parameter default tip

linear/ rotational velocity.

 Vxyz :Default tip linear velocity

 Vypr : Default tip rotational velocity

 △xyz :Tip position shifting value

 △ypr :Tip orientation/rotation angle

 Txyz = △xyz／Vxyz : Time taken for tip shifting.

 Typr = △ypr／Vypr : Time taken for tip rotation.

 If “Txyz ≧ Typr”, “Vxyz” becomes the standard.

 If “Txyz ＜ Typr”, “Vypr” becomes the standard.

＜S3-axis interpolation mode＞

 Interpolates, taking into account of S3-axis rotation angle as the interpolation

standard.

 ・The input tip position/orientation becomes the target position/orientation

 ・The tip position trajectory is interpolated linearly..

 ・The tip orientation/rotation angle is interpolated.

 ・The S3-axis rotation angle is interpolated linearly..

 ・Calculates the shifting and rotation velocity from the arm parameter default tip

linear/ rotational velocity.

 ・Calculates S3-axis shifting angle from the default S3-axis angle velocity.

 Vxyz :Default tip linear velocity

 Vypr : Default tip rotational velocity

 VS3 : Default S3-axis angle velocity

 △xyz :Tip position shifting value

 △ypr :Tip orientation/rotation angle

△s3 :S3-axis rotation angle

 Txyz = △xyz／Vxyz : Time taken for tip shifting.

 Typr = △ypr／Vypr : Time taken for tip rotation.

 Ts3 = △s3 ／Vs3 : Time taken for S3-axis rotation.

 If “Txyz“ is the maximum, “Vxyz” becomes the standard.

 If “Typr” is the maximum, “Vypr” becomes the standard.

If “Ts3is” is the maximum, “Vs3” becomes the standard.

Chapter 6 Programming

6-31

Program Description:

① Adjusts the axis value to the RMRC controllable one.： pa_exe_saf

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when Ｅ１＝０[deg].

The entry to the RMRC control from the basic orientation is not allowed. One

of the ways to enter the RMRC control is to shift to the safety orientation.

② sets the redundant axis control mode： pa_mod_jou

A default is not restricted.

③ The tip position/orientation matrix described in the base coordinate system is

provided.：pa_mov_mat

It moves toward the tip matrix (T-matrix) indicated in the base coordinate.

A coordinate system selection depends on the intended direction to shift.

The one to be applied should be chosen.

 MOVEMODE types are:

 MM_XYZ ： Absolute position target matrix

 MM_NOA ：Absolute orientation target matrix

 MM_XYZNOA ：Absolute position/orientation matrix

 Example: for Visual C++

MATRIX mat;

ANGLE an;

:

pa_exe_saf(ARM0);

:

Tip T-matrix : mat set

Axis value for restriction data :an set

:

pa_mod_jou(ARM0,JM_ON);

••• the redundant axis control mode setting (all axes are restricted)

pa_mov_mat(ARM0,MM_XYZNOA,mat,&an,WM_WAIT);

Shifts from the current position to the tip position/orientation indicated in

“mat” with RMRC interpolation in the selected redundant axis control

mode (all axes are restricted).

 Example: for Visual BASIC

Dim mat As MATRIX

Dim an As ANGLE

Dim ret As Long

:

ret = pa_exe_saf(ARM0)

:

ret = pa_mod_jou(ARM0,JM_ON)

ret = pa_mov_mat(ARM0,MM_XYZNOA,mat,an,WM_WAIT)

Chapter 6 Programming

6-32

 （４）Tip linear/rotational velocity Control

 Method to control linear motion velocity (Vx, Vy and Vz) and rotational velocity

(Vyaw, Vpitch and Vroll.) on each coordinate axis in the selected coordinate system

For further information, refer to “Velocity Control” in the section 6.6

 （５）Current Point Motion Control (Tip Linear Motion)

 Shifts, interpolating the tip position/orientation linearly with the RMRC control to

the current point.

For further information, refer to “shift to the current point” in the section 6.10.3

 （６）Playback Control

 The playback control is performed using teach data acquired in various control

situations.

For further information, refer to “Playback Control” in the section 6.10 ~ 6.11

 （７）RMRC Real-Time Control Mode

 The control method providing target axis angles and T-matrix indicating the target

tip linear motion and rotation in the maximum 1000msec cycle.

For further information, refer to “Real-Time Control” in the section 6.8

RReeffeerreennccee

RReeffeerreennccee

RReeffeerreennccee

RReeffeerreennccee

Chapter 6 Programming

6-33

６．５．３ Elbow Control NOT changing the tip position/orientation

 （１）Redundant Axis Velocity Control

 One of the methods to control elbow position without changing the tip position/

orientation. In this PA10 link composition, the S3-axis is the KEY axis for elbow

control. In this control, the rotation shift velocity (Ｖθs3) is provided to the S3-axis

to actuate the elbow.

For further information, refer to “Redundant axis Control” in the section 6.6

 （２）Redundant Axis Restriction Parameter Control

 The control method is as similar as (1).

For further information, refer to “Redundant axis Control” in the section 6.5.5

 （３）Redundant Axis Shifting Control

The control method is as similar as (1).

For further information, refer to “Redundant axis Control” in the section 6.5.5

RReeffeerreennccee

RReeffeerreennccee

RReeffeerreennccee

Chapter 6 Programming

6-34

６．５．４ Notes on RMRC Control

 Precautions on the RMRC control are described below.

Exceeded Arm Length:

 Regarding the RMRC control in PA, there are uncontrollable areas. When the

current and target value exist out of the motion area, if the E1-axis passes through

the 0[deg] point (the length from S2 rotation origin to W1 rotation origin: 930 [mm]),

called a singularity, the RMRC control is not allowed to enter.

In the case of RMRC control, when creating the current value and the target one, the

RMRC checks whether arm length is exceeded or not.

When acquiring teach data other than PTP axis interpolation data, if arm length

exceeds, data cannot be obtained.

In the error message, LENGTH is indicated as “Arm Length.”

・ERR_NOT_ENUGH：The arm length target value exceeds more than 925 [mm]. In

this case, in interpolation calculation, the target values are automatically corrected.

The arm does not stop.

・ERR_OVER900：During operation, when the arm length becomes 930 [mm], the brake

stops.

・ERR_CANT_MOVE：If the arm length current value exceeds more than 925 [mm],

the RMRC control is not allowed to enter.

 (Example) at the basic orientation, E1 = 0. The RMRC control is not allowed to

enter.

LENGTH (arm length)

Chapter 6 Programming

6-35

６．５．５ Redundant Axis Control

 The redundant axis control is the restriction mode to control each 7-axis value to a

certain direction in the RMRC and playback control.

There are two meanings in these redundant controls below.

① Redundant axis No restriction (Tip position/orientation restricting control)

 control mode

 All axes restricted (All axes control)

S3-axis restricted (S3-axis restricting control)

 S3-axis interpolation (S3-axis interpolation control)

 S3-axis fixed (S3-axis fixing control)

 The mode to choose how much restriction should be made or not make it at all for

a redundant axis (elbow) while in operation.

② Redundant axis Redundant axis velocity control

operation control (The redundant axis control mode changes into

S3-axis interpolation.)

 Redundant axis parameter alteration

 (The redundant axis control mode changes into

S3-axis restriction.)

Redundant axis parameter reset

 (The redundant axis control mode is changed

without restriction.)

S3-axis angle control

 (The redundant axis control mode changes into

S3-axis interpolation.)

 Control to actuate the redundant axis (elbow) without changing the tip position and

posture.

Chapter 6 Programming

6-36

６．５．５．１ redundant Axis Control Mode

The redundant axis control mode is available for the controls below:

 ・When in the RMRC position/orientation control

 ・When in the designated absolute position/orientation control

 ・when in the playback control (except data for PTP axis interpolation)

Redundant axis control mode restriction is as follows:

Restriction None Low High Fixation

Redundant axis

control mode

No

restriction

All axes S3-axis S3-axis

Restriction Restriction Interpolation

S3-axis

Fixed

The following are advantages and disadvantages of each mode.

(a) Redundant Axis Control – No Restriction

This control creates the most stable angles for all 7 axes (reliable orientation for

the arm)

Advantages: On account of no axis restriction, it has a more tip

position/orientation motion ability than other redundant axis control mode.

Disadvantages: If this mode is chosen even though the target axis angle or axis

value for restriction data is input, the target axis angle and axis value for

restriction data are ignored.

(b) Redundant Axis Control – All Axes Restriction Mode

This controls for all 7 axes to approach the target axis angle as much as

possible.

Advantages: Restriction is not strict. It has a tip position/orientation motion

ability.

Disadvantages: As this control restricts the 7 axes, all axes usually do not move

to the target axis angle. (especially when the target orientation shows arm

malfunction.)

(c) Redundant Axis Control – S3-axis Restriction Mode

This control has some strong restrictions for the S3-axis to move to the target

angle.

Advantages: As this control has some strong restrictions, the axis has much

possibility to approach the target orientation. This is most balanced control

method among these five modes.

Disadvantages: The arm might be shifted faster toward the target angle. If the

S3-axis angle deviation is large, the tip position/orientation and the S3-axis

are interpolated with the interpolation value calculated by “S3-axis deviation

divided by S3-axis default velocity.” The tip position/orientation/velocity

becomes invalid.

Chapter 6 Programming

6-37

(d) Redundant Axis Control – S3-axis Interpolation Mode

Interpolating the S3-axis deviation (difference between the current and the

target angle), when the tip position/orientation is reached the target value, the

S3-axis is controlled to reach the target angle at the same time. This

restriction is stricter than (c).

Advantages: The S3-axis surely arrives to the target angle. This gives much

possibility for all seven axes to get to the target angle. To

summarize, arm can obtain the target posture and can be controlled

holding its posture following exactly the teach data.

Disadvantages: As this mode has rather strict restriction, the tip

position/orientation motion capability is low. If the S3-axis angle

deviation is significant, the tip position/orientation and the S3-axis

are interpolated with the interpolation quantity calculated by

“S3-axis deviation divided by S3-axis default velocity.” The tip

position/orientation/velocity becomes invalid.

(e) Redundant Axis Control – fixed S3-axis Restriction Mode

Fixing the S3-axis angle is controlled by the axes, except the S3-axis, as a 6

axes manipulator. Choosing the fixed mode, keeps the S3-axis at the angle of

the RMRC control starting.

Advantages: It is available when chosen to control the elbow without changing

its position

Disadvantages: One (S3-axis) of the 7 axes is fixed to use as the 6 axes

manipulator. It loses the advantages of the 7 axes manipulator.

Chapter 6 Programming

6-38

 （１）Redundant axis control mode as of RMRC position/orientation/deviation control

Selects to restrict the input axis value for restriction data or not when in the

RMRC position control. In the S3-axis fixed mode, regardless of input axis value for

restriction data, fix the S3-axis at the angle of the RMRC position/orientation

deviation control start. The arm is controlled as the 6 axes manipulator.

In other redundant axis control mode, axis value at the RMRC position/orientation

deviation control starting is defined as a value for restriction data. Therefore, the

S3-axis interpolation mode used only the restricted S3-axis value and the S3-axis

fixed mode make the same motion.

 （２）Redundant axis control mode as of designated absolute position/orientation/ deviation

control

Selects to restrict the input axis value for restriction data or not, when in the

designated absolute position/orientation control. In the S3-axis fixing mode,

however, regardless of input axis value for restriction data, fixes the S3-axis at the

angle of the designated absolute position/orientation control starting, the arm is

controlled as the 6 axes manipulator.

The S3-axis restriction mode and the S3-axis interpolation mode are controlled

using only axis value for restriction data. Other axis value for restriction data

becomes invalid.

Chapter 6 Programming

6-39

 （３）Redundant axis control mode as of playback control

Selects whether or not to restrict teach data axis value when in playback control.

In S3-axis fixing mode, however, regardless of input axis value for teach data, fix the

S3-axis at the angle of the playback control start or when axis angle control changed

to the RMRC control during playback. The arm is controlled as the 6 axes manipulator,

not using the S3-axis.

The S3-axis interpolation mode controls, using only each S3-axis value for

restriction data. Other axis values for restriction data become invalid.

Program Description:

① Choose the redundant axis control mode ： pa_mod_jou

 JOUMODE of pa_mod_jou uses the macro-definitions below:

 JM_OFF No restriction

 JM_ON All axes restriction

 JM_S3ON S3-axis restriction

 JM_S3DIV S3-axis interpolation

 JM_S3HOLD S3-axis fixation

 The default is JM_OFF (no restriction)

In any mode, each tip trajectory is the same. However, each elbow makes a

different motion.

② Shifts to the current point with axis angle control.： pa_axs_pnt

③ Performs the playback control.: pa_ply_pnt

 Example: for Visual C++

pa_mod_jou(ARM0, JM_S3ON); redundant axis control mode setting (S3-axis restriction

pa_axs_pnt(ARM0, WM_WAIT); Shifts to the current point with axis angle control.

pa_ply_pnt(ARM0, PB_FORE, WM_WAIT); Starting forward playback

 Example: for Visual BASIC

Dim ret As Long

ret = pa_mod_jou(ARM0, JM_S3ON)

ret = pa_axs_pnt(ARM0, WM_WAIT)

ret = pa_ply_pnt(ARM0, PB_FORE, WM_WAIT)

Chapter 6 Programming

6-40

When to alter the redundant axis control mode during the playback control:

 During the playback control, makes the temporary stop (pa_sus_arm), then, sets the

redundant axis control mode with pa_mod_jou. It can be altered.

 Except the case explained below, after mode alteration, if a temporary stop is put

in motion (pa_rsm_arm), the control is restarted.

 The reason why a temporary-stop-release does not work after a mode alteration is

on account of altering the redundant axis control mode to the “S3-axis restriction

mode” or the “S3-axis interpolation mode” during performing playback in RMRC

feedback control, After the mode alternation, the playback control is terminated.

 Why the playback control stops when changes to “S3-axis restriction/interpolation

mode” during playback performance in RMRC feedback control? There are two:

 First of all, the redundant axis control mode can be employed for RMRV feedback

control. During a playback performance of axis feedback control, any redundant axis

control mode is invalid. Next, for example, as explained in the section 6.5.5, if the

“S3-axis interpolation mode” is chosen, not only the tip position/orientation target

value, but also the S3-axis target value at every controlling cycle are provided. So

that this mode is more strict than others. If changes suddenly to the “S3-axis

interpolation mode,” the playback cannot be performed as the current and target

S3-axis value are not equivalent.

To perform the playback control again, alter the current point (if needed), shift

(pa_mov_pnt) to the current point, then, start (pa_ply_pnt) the playback.

Chapter 6 Programming

6-41

６．５．５．２ Redundant Axis Operation Control

The redundant axis control has the advantage of a 7-axis manipulator. It controls

elbow position, only, without changing the tip position/orientation.

To shift the redundant axis control, choose JMMODE in “pa_mod_jouin,” use the

macro-definition as follows:

 JM_VSET Redundant axis velocity control

 JM_SET Redundant axis parameter alteration

 JM_RESET Redundant axis parameter resetting

 （１）Redundant axis velocity control

 The parameter of the redundant axis control is operated at a constant velocity

 The parameter operation method uses “pa_odr_vel.”

 For further information, refer to “velocity Control” in the section 6.6

 In this control, redundant axis control mode is automatically shifted to the S3-axis

interpolation mode.

 Example: for Visual C++

 float spd[7];

 pa_mod_jou(ARM0, JM_VSET); Shifts to the redundant axis velocity control

 spd[0] = 20.0 * M_PI / (double)180.0; ･･･Unit [rad/sec]

 In the case of the redundant axis velocity control, “spd[0]” can be

 used. Control the redundant axis at 20 [deg/sec] velocity.

 pa_odr_vel(ARM0, spd); Velocity alteration

 Example: for Visual BASIC

 Dim spd(6) As Single

 Dim ret As Long

ret = pa_mod_jou(ARM0, JM_VSET)

spd(0) = 20.0 * PAI / 180.0

ret = pa_odr_vel(ARM0, spd(0))

 In this control, after “pa_mod_jou” is issued, “pa_odr_vel” has to be issued every

1000msec. at maximum.

 For further information, refer to “velocity control” in the section 6.6 and “(4)

 Redundant axis velocity control.)

RReeffeerreennccee

RReeffeerreennccee

Chapter 6 Programming

6-42

 （２）redundant axis parameter alteration

 Here, operates the redundant axis control parameter.

 (Axis value needed to be restricted is operated. In the case here, the S3-axis value

for restriction data is operated.)

 In this control, redundant axis control mode is automatically shifted to the S3-axis

interpolation mode.

 Example: for Visual C++

pa_mod_jou(ARM0, JM_SET); Shifts to the redundant axis parameter alteration

pa_odr_jou(ARM0, JM_RIGHT); Swings the redundant axis to the right

：

：

pa_odr_jou(ARM0, JM_HOLD); maintains the redundant axis position

 Example: for Visual BASIC

Dim ret As Long

ret = pa_mod_jou(ARM0, JM_SET)

ret = pa_odr_jou(ARM0, JM_RIGHT)

 ：

 ：

 ret = pa_odr_jou(ARM0, JM_HOLD)

 （３）Redundant axis parameter reset

 If resets, parameter value in the redundant axis control returns to the default value.

When the elbow position is strongly restricted, if resets, the elbow position get

stable and might happen to slowly approach the arm moving range center.

If issues parameter reset, the redundant axis control mode is automatically shifted

to the non restriction mode.

Chapter 6 Programming

6-43

 （４）S3-axis angle control

 Method to shift the elbow without changing the tip position/orientation commanding

S3-axis absolute angle [rad] – the “KEY” of the redundant axis (elbow) control.) It

is interpolated with the provided angle command and S3-axis angle deviation using

the S3-axis default velocity, and controlled.

 In this S3-axis angle control, the redundant axis control mode is automatically

shifted to the S3-axis interpolation mode.

 Example: for Visual C++

 float S3;

S3 = 80.0 * M_PI / (double)180.0;

pa_mov_jou(ARM0, S3, WM_WAIT); Move the elbow until 80[deg]

：

：

pa_mov_xyz(ARM0, 0.0, 100.0, 0.0 WM_WAIT);

S3-axis moves maintaining 80 [deg] angles in the S3-axis interpolation mode without

changing modes.

 Example: for Visual BASIC

 Dim axsS3 As Single

 Dim ret As Long

axsS3 = 80.0 * PAI / 180.0

ret = pa_mov_jou(ARM0, axsS3, WM_WAIT)

 ：

 ：

ret = pa_mov_XYZ0(ARM0, 0.0, 100.0, 0.0 WM_WAIT)

Chapter 6 Programming

6-44

６．６ Velocity Control

Velocity controls are as follows:

・Axis velocity control（ ＶS1，ＶS2，･･･ ＶW2 ）

・Tip linear velocity（ Ｖx，Ｖy，Ｖz ）

・Tip rotational velocity（ Ｖyaw，Ｖpitch，Ｖroll ）

・Tip position/orientation velocity（ Ｖx, Ｖy, Ｖz ）,(Ｖyaw，Ｖpitch，Ｖroll)

・Redundant axis velocity control（ VS3 ）

Pay attention to initialize the velocity command value before

entering the velocity control mode.

 During the velocity control, from the entry to the end of the mode, the velocity

command library (pa_odr_vel) has to be issued every time-out (set with “pa_set_tim”.)

The default value of the time-out is 1000 msec.

CAUTION

Chapter 6 Programming

6-45

６．６．１ Axis Velocity Control

 Choosing the control axis from S1 to W2, the velocity command (v) is provided.

Program Description:

 ① Sets time-out ：pa_set_tim

 The default time-out is 1000 msec. This time can be issued only when it needs

to be altered.

 ② Initializes velocity command: pa_odr_vel

 All has to be set “ 0 ” using “spd[0]～spd[6]” located in “float spd[7]” inside

“pa_odr_vel.”

 ③ Chooses “motion axis = S1, W2” in the axis velocity control mode. ：pa_mod_vel

 “VELMODE” in “pa_mod_vel” has to be set in “VM_ONE” (the axis velocity

control mode). Plural axes can be controlled simultaneously.

If this PA library is issued, only the control mode is changed. The arm does not

move. ATTENTION! Within a set time-out, if the velocity command (“pa_odr_vel”

and “pa_chk_cnt” can be used) is not issued until the velocity control termination,

after issuing Pa library. It causes a brake-stop, responding as if an accident

occurred during control.

 ④ Input velocity command: pa_odr_vel

 “spd[0]～spd[6]” located in “float spd[7]” inside “pa_odr_vel” is used.

 S1 axis － rotates at 5［deg/sec］velocity.

 W2 axis －rotates at 10［deg/sec］velocity.

 The velocity command value has to be designated with［rad/sec］.

 COVERS1 -1070 S1axis Velocity Control Angle exceeded

 COVERS2 -1071 S2 axis Velocity Control Angle exceeded

 COVERE1 -1073 E1 axis Velocity Control Angle exceeded

 COVERE2 -1074 E2 axis Velocity Control Angle exceeded

 COVERW1 -1075 W1 axis Velocity Control Angle exceeded

 COVERW2 -1076 W2 axis Velocity Control Angle exceeded

 ⑤ Input velocity command: pa_odr_vel

 S1 axis － rotates at 10［deg/sec］velocity.

 W2 axis －rotates at 5［deg/sec］velocity.

 ⑥ Terminates velocity control: pa_sus_arm

 This command terminates velocity control with a brake-stop (pa_stp_arm) or

temporary-stop （pa_sus_arm）.

Remark

Chapter 6 Programming

6-46

Example: for Visual C++

 float spd[7];

：

pa_set_tim(ARM0, 20); Time-out setting（200msec）

：

for(i=0;i<7;i++) spd[i] = 0.0;

pa_odr_vel(ARM0, spd); Velocity command initialization

pa_mod_vel(ARM0, VM_ONE, S1｜W2); M motion axis selection (S1 & W2-axis)

：

From here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200

msec cycle.

：

spd[0] = -5.0 * M_PI / (double)180.0;

spd[6] = -10.0 * M_PI / (double)180.0;

pa_odr_vel(ARM0, spd); Velocity command input

spd[0] = 10 * M_PI / (double)180.0;

spd[6] = 5 * M_PI / (double)180.0;

pa_odr_vel(ARM0, spd(0)); Velocity command input

：

pa_sus_arm(ARM0, WM_WAIT); Velocity control termination

Example: for Visual BASIC

 Dim spd(6) As Single

 Dim ret As Long

 ret = pa_set_tim(ARM0, 20)

 For i=0 To 6 Step 1

 spd(i) = 0.0

 Next i

 ret = pa_odr_vel(ARM0, spd(0)) Velocity command initialization

 ret = pa_mod_vel(ARM0, VM_ONE, S1+W2)

 ：

 spd(0) = -5 * PAI / 180.0

 spd(6) = -10 * PAI / 180.0

 ret = pa_odr_vel(ARM0, spd(0))

 ：

 spd(0) = 10 * PAI / 180.0

 spd(6) = 5 * PAI / 180.0

 ret = pa_odr_vel(ARM0, spd(0))

 ret = pa_sus_arm(ARM0, WM_WAIT)

Chapter 6 Programming

6-47

６．６．２ Tip linear velocity Control:

 In this control, tip linear motion velocity (Vx, Vy, Vz) on each coordinate axis, in

the selected coordinates, is provided. The tip posture does not change.

 For Visual C++

・Base coordinates tip linear velocity control： pa_mod_vel(ARM0, VM_XYZ, 0)

・Mechanical Interface coordinate tip linear velocity control

 ：pa_mod_vel(ARM0, VM_xyz, 0)

 For Visual BASIC

 ・Base coordinates tip linear velocity control： pa_mod_vel(ARM0, VM_XYZ1, 0)

 ・Mechanical Interface coordinate tip linear velocity control

 ：pa_mod_vel(ARM0, VM_XYZ2, 0)

Program description:
 ① Sets time-out ：pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs

to be altered.

 ② Initializes velocity command： pa_odr_vel

All has to be set “ 0 ” using “spd[0]～spd[3]” located in “float spd[7]” inside

“pa_odr_vel.”

 ③ Chooses the base coordinate linear velocity control mode.： pa_mod_vel

“VELMODE” in “pa_mod_vel” has to be set in “VM_XYZ*” (the base

coordinate linear velocity).

If this PA library is issued, only the control mode is changed. The arm does

not move. ATTENTION! Within a set time-out, if the velocity command

(“pa_odr_vel” and “pa_chk_cnt” can be used) is not issued until the velocity

control termination, after issuing Pa library. It causes a brake-stop, responding

as if an accident occurred during control.

 ※ For Visual Basic, “VM_XYZ1” it has to be set.

 ④ Input command orders： pa_odr_vel

 “spd[0]～spd[2]” located in “float spd[7]” inside “pa_odr_vel” Is used.

This order controls the tip position moving linearly at the velocity of

X=10.0[mm/s], Y=-20.0[mm/s], Z=30.0[mm/s].

Velocity command values have to be set with [mm/sec].

 ⑤Input velocity command orders.： pa_odr_vel

This order controls the tip position moving linearly at the velocity of

Y=-20.0[mm/s]. Velocity command values have to be set with [mm/sec].

 ⑥ Terminates a velocity control.： pa_sys_arm

This command terminates the velocity control with a brake-stop (pa_stp_arm)

or temporary-stop （pa_sus_arm）.

 As this method is the RMRC control, regarding errors, refer to “RMRC control

(6-axis arm)” in the section 6.4 and “RMRC control (7-axis arm)” in the section 6.5.

Remark

RReeffeerreennccee

Chapter 6 Programming

6-48

 Example: for Visual C++

float spd[7];

：

pa_set_tim(ARM0, 20); Time-out setting（200msec）

for(i=0;i<7;i++) spd[i] = 0.0;

pa_odr_vel(ARM0, spd); Velocity command initialization

pa_mod_vel(ARM0,VM_XYZ,0); Velocity mode Base position selection

：

From here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200 msec. cycle.

：

spd[0] = 10.0;

spd[1] = -20.0;

spd[2] = 30.0;

pa_odr_vel(ARM0, spd); Velocity command input

：

spd[0] = 0.0;

spd[1] = 20.0;

spd[2] = 0.0;

pa_odr_vel(ARM0, spd); Velocity command input

：

pa_sus_arm(ARM0, WM_WAIT); Velocity control termination

 Example: for Visual BASIC

 Dim spd(6) As Single

Dim ret As Long

ret = pa_set_tim(ARM0, 20)

 For i=0 To 6 Step 1

 spd(i) = 0.0

 Next i

 ret = pa_odr_vel(ARM0, spd(0)) Velocity command initialization

ret = pa_mod_vel(ARM0,VM_XYZ1,0)

 ：

spd(0) = 10.0

spd(1) = -20.0

spd(2) = 30.0

ret = pa_odr_vel(ARM0, spd(0))

 ：

spd(0) = 0.0

spd(1) = 20.0

spd(2) = 0.0

ret = pa_odr_vel(ARM0, spd(0))

 ：

ret = pa_sus_arm(ARM0, WM_WAIT)

Chapter 6 Programming

6-49

６．６．３ Tip rotational velocity control:

 In this control, the tip linear motion velocity (Ｖyaw，Ｖpitch，Ｖroll) on each

coordinate axis in the selected coordinates, is provided. The tip position does not

change.

For Visual C++

 ・Base coordinates tip rotational velocity control：pa_mod_vel(ARM0, VM_YPR, 0)

 ・Mechanical Interface coordinate tip rotational velocity control

：pa_mod_vel(ARM0, VM_ypr, 0)

For Visual BASIC

 ・Base coordinates tip rotational velocity control：pa_mod_vel(ARM0, VM_YPR1, 0)

・Mechanical Interface coordinate tip rotational velocity control

：pa_mod_vel(ARM0, VM_YPR2, 0)

Program description:

 ① Sets time-out ：pa_set_tim

 The default time-out is 1000 msec. This time can be issued only when it needs

to be altered.

 ② Initializes velocity command： pa_odr_vel

 All has to be set “ 0 ” using “spd[0]～spd[3]” located in “float spd[7]” inside

“pa_odr_vel.”

 ③ Chooses the base coordinate rotational velocity control mode.： pa_mod_vel

“VELMODE” in “pa_mod_vel” has to be set in “VM_XPR*” (the base coordinate

rotational velocity control mode).

If this PA library is issued, only the control mode is changed. The arm does not

move. ATTENTION! Within a set time-out, if the velocity command (“pa_odr_vel”

and “pa_chk_cnt” can be used) is not issued until the velocity control, termination,

after issuing Pa library. It causes a brake-stop, responding as if an accident

occurred during control.

 ※ For Visual Basic, “VM_YPR1” it has to be set.

 ④ Input command orders： pa_odr_vel

 “spd[0]～spd[2]” located in “float spd[7]” inside “pa_odr_vel” is used.

The tip position is, for instance, controlled to rotate on the Y-axis at the velocity

of pitch=0.5[rad/s]. Velocity command values have to be set with [rad/sec].

 ⑤ Input velocity command orders.： pa_odr_vel

 The tip position is, for instance, controlled to rotate on the Y-axis at the velocity

of pitch=1.0 [rad/s]. Velocity command values have to be set with [rad/sec].

 ⑥ Terminates a velocity control.： pa_sus_arm

 This command terminates the velocity control with a brake-stop (pa_stp_arm) or

temporary-stop （pa_sus_arm）.

 As this method is the RMRC control, regarding errors, refer to “RMRC control

(6-axis arm)” in the section 6.4 and “RMRC control (7-axis arm)” in the section 6.5.

Remark

RReeffeerreennccee

Chapter 6 Programming

6-50

 Example: for Visual C++

 float spd[7];

pa_set_tim(ARM0, 20); Time-out setting（200msec）

 for(i=0;i<7;i++) spd[i] = 0.0;

pa_odr_vel(ARM0, spd); Velocity command initialization

pa_mod_vel(ARM0,VM_YPR,0); Velocity mode Base position/orientation selection

 ：

From here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200 msec. cycle.

 ：

spd[0] = 0.0;

spd[1] = 0.5;

spd[2] = 0.0;

pa_odr_vel(ARM0, spd); Velocity command input

spd[0] = 0.0;

spd[1] = 1.0;

spd[2] = 0.0;

pa_odr_vel(ARM0, spd); Velocity command input

 ：

pa_sus_arm(ARM0, WM_WAIT); Velocity control termination

 Example: for Visual BASIC

 Dim spd(6) As Single

 Dim ret As Long

ret = pa_set_tim(ARM0, 20)

 For i=0 To 6 Step 1

 spd(i) = 0.0

 Next i

 ret = pa_odr_vel(ARM0, spd(0)) Velocity command initialization

ret = pa_mod_vel(ARM0,VM_YPR1,0)

：

spd(0) = 0.0

spd(1) = 0.5

spd(2) = 0.0

ret = pa_odr_vel(ARM0, spd(0))

spd(0) = 0.0

spd(1) = 1.0

spd(2) = 0.0

ret = pa_odr_vel(ARM0, spd(0))

：

ret = pa_sus_arm(ARM0, WM_WAIT)

Chapter 6 Programming

6-51

６．６．４ Tip linear/rotational velocity control

 In this control, tip linear motion velocity (Vx, Vy and Vz) and rotational velocity

(Vyaw, Vpitch and Vroll) on each coordinate axis in the selected coordinates system

are simultaneously provided.

for Visual C++

・Base coordinate system tip linear velocity control：

pa_mod_vel(ARM0, VM_XYZYPR, 0)

・Mechanical Interface coordinate tip linear/rotational velocity control：

pa_mod_vel(ARM0, VM_xyzypr, 0)

for Visual BASIC

・Base coordinate system tip linear velocity control：

pa_mod_vel(ARM0, VM_XYZYPR1, 0)

・Mechanical Interface coordinate tip linear/rotational velocity control：

pa_mod_vel(ARM0, VM_XYZYPR2, 0)

Program description:

 ① Sets time-out ：pa_set_tim

The default time-out is 1000 msec. This time can be issued only when it needs

to be altered.

 ② Initializes velocity command： pa_odr_vel

All has to be set “ 0 ” using “spd[0]～spd[5]” located in “float spd[7]” inside

“pa_odr_vel.”

③ Chooses the base coordinate linear motion/rotational velocity control mode.：

pa_mod_vel

“VELMODE” in “pa_mod_vel” has to be set in “VM_XYZYPRI*” (the base

coordinate linear motion/rotational velocity control mode).

If this PA library is issued, only the control mode is changed. The arm does

not move. ATTENTION! Within a set time-out, if the velocity command

(“pa_odr_vel” and “pa_chk_cnt” can be used) is not issued until the velocity

control termination, after issuing Pa library. It causes a brake-stop,

responding as if an accident occurred during control.

For Visual Basic, “VM_XYZYPRI” it has to be set.

 ④ Input a velocity command orders.： pa_odr_vel

 “spd[0]～spd[5]” located in “float spd[7]” inside “pa_odr_vel” Is used.

The tip is controlled at the linear motion velocity: X=100.0[mm/s],

Z=50.0[mm/s] and the rotation velocity: pitch=0.5[rad/s]. Velocity command

values have to be set with [rad/sec].

 ⑤ Terminates a velocity control.： pa_sus_arm

 This command terminates the velocity control with a brake-stop (pa_stp_arm)

or temporary-stop （pa_sus_arm）.

 As this method is the RMRC control, regarding errors, refer to “RMRC control

(6-axis arm)” in the section 6.4 and “RMRC control (7-axis arm)” in the section 6.5.

Remark

RReeffeerreennccee

Chapter 6 Programming

6-52

 Example: for Visual C++

 float spd[7];

pa_set_tim(ARM0, 20); Time-out setting（200msec）

 for(i=0;i<7;i++) spd[i] = 0.0;

pa_odr_vel(ARM0, spd); Velocity command initialization

pa_mod_vel(ARM0,VM_XYZYPR,0);Velocity mode Base position/orientation selection

 ：

From here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200 msec. cycle.

 ：

spd[0] = 100.0; Base coordinate system toward X [mm/s]

spd[2] = 50.0; 〃 toward Z [mm/s]

spd[4] = 0.5; 〃 toward Pitch [rad/s]

pa_odr_vel(ARM0, spd); Velocity command input

：

pa_sus_arm(ARM0, WM_WAIT); Velocity control termination

 Example: for Visual BASIC

Dim spd(6) As Single

ret = pa_set_tim(ARM0, 20)

 For i=0 To 6 Step 1

 spd(i) = 0.0

 Next i

 ret = pa_odr_vel(ARM0, spd(0)) Velocity command initialization

ret = pa_mod_vel(ARM0,VM_XYZYPR1,0)

：

spd(0) = 100.0

spd(2) = 50.0

spd(4) = 0.5

ret = pa_odr_vel(ARM0, spd(0))

：

ret = pa_sus_arm(ARM0, WM_WAIT)

Chapter 6 Programming

6-53

６．６．５ Redundant axis velocity control

 The S3-axis rotation velocity (Ｖs3) is provided for the S3-axis. At this moment,

the tip position/orientation does not change.

Program description:

 ① Sets time-out ：pa_set_tim

 The default time-out is 1000msec. This time can be issued only when it needs to

be altered.

 ② Initializes velocity command： pa_odr_vel

 In the case of the redundant axis velocity control, only “spd[0]” in “float spd[7]”

can be used and has to be set “ 0. “

 ③ Chooses the control axis in the redundant axis velocity control mode.：

pa_mod_jou

 “VELMODE” in “pa_mod_vel” has to be set in “VM_XPR*”

If this PA library is issued, only the control mode is changed. The arm does not

move. ATTENTION! Within a set time-out, if the velocity command

(“pa_odr_vel” and “pa_chk_cnt” can be used) is not issued until the velocity

control termination, after issuing Pa library. It causes a brake-stop, responding

as if an accident occurred during control.

 ④ Input command orders ： pa_odr_vel

 For the redundant axis velocity control, only “spd[0]” in “float spd[7]” can be

used. Without changing the tip position/orientation, the redundant axis is

controlled at –5 ［deg/sec］ (S3-axis motion velocity).

 Velocity command values have to be set with [rad/sec].

 ⑤ Input velocity command orders. ： pa_odr_vel

 Without changing the tip position/orientation, the redundant axis is controlled at

30 ［deg/sec］ (S3-axis motion velocity).

 ⑥ Terminates a velocity control. ： pa_sus_arm

 This command terminates the velocity control with a brake-stop (pa_stp_arm) or

temporary-stop （pa_sus_arm）.

7-axis arm function

Remark

Chapter 6 Programming

6-54

 Example: for Visual C++

 float spd[7];

：

pa_set_tim(ARM0, 20); Time-out setting（200msec）

 for(i=0;i<7;i++) spd[i] = 0.0;

pa_odr_vel(ARM0, spd); Velocity command initialization

pa_mod_jou(ARM0, JM_VSET); Redundant axis velocity control mode selection

：

From here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200

msec. cycle.

 ：

 ：

spd[0] = -5.0 * M_PI / (double)180.0;

pa_odr_vel(ARM0, spd); Velocity command input

：

spd[0] = 30.0 * M_PI / (double)180.0;

pa_odr_vel(ARM0, spd); Velocity command input

：

pa_sus_arm(ARM0, WM_WAIT); Velocity command termination

 Example: for Visual BASIC

 Dim ret As Long

 Dim spd(6) As Single

ret = pa_set_tim(ARM0, 20)

 For i=0 To 6 Step 1

 spd(i) = 0.0

 Next i

 ret = pa_odr_vel(ARM0, spd(0)) Velocity command initialization

ret = pa_mod_jou(ARM0, JM_VSET)

：

spd(0) = -5.0 * PAI / 180.0

ret = pa_odr_vel(ARM0, spd(0))

：

spd(0) = 30.0 * PAI / 180.0

ret = pa_odr_vel(ARM0, spd(0))

：

ret = pa_sus_arm(ARM0, WM_WAIT)

Chapter 6 Programming

6-55

６．７ Direct Control ….Optional function

 This mode is to control playback performance reviving memorized each axis data, as

teach data, when in a manual operation. If “pa_chk_cnt” is not issued every 1000

msec. (time-out) during direct control, it is recognized as malfunction. The brake

stops the operation.

Program Description:

 ① Sets time-out. ： pa_set_tim

The default time-out is 1000 msec. This time can be issued only when itneeds

to be altered.

 ② Switchs to the direct control. ： pa_mod_dir

 DM_START ： It becomes at servo-stop status

③ Chooses the axis to be controlled, starts the self weight compensated control ：

pa_wet_ded

For the control axis selection, choose the axis of pa_wet_ded, then, use

macro-definitions below:

For the 6-axis, it is: “LOCKAXIS_S3 ： S1｜S2｜E1｜E2｜W1｜W2.”

 In the case of Visual BASIC:

 LOCKAXIS_S3 ： S1＋S2＋E1＋E2＋W1＋W2

 The default is: LOCKAXIS_S3.

After issuing this library, if “pa_chk_cnt” is not issued every 1000 msec.

(time-out), it is recognized as malfunction. The brake stops the operation.

If axis angle limit is exceeded during direct control, the following errors occur

and the brake stops the operation. The direct control is automatically

terminated.

 DOVERS1 -2030 Direct control S1 axis angle exceeded

 DOVERS2 -2031 Direct control S2 axis angle exceeded

 DOVERS3 -2032 Direct control S3 axis angle exceeded

 DOVERE1 -2033 Direct control E1 axis angle exceeded

 DOVERE2 -2034 Direct control E2 axis angle exceeded

 DOVERW1 -2035 Direct control W1 axis angle exceeded

 DOVERW2 -2036 Direct control W2 axis angle exceeded

 ④ Terminate the direct control. ： pa_mod_dir

 DM_STOP： It terminates the direct control.

Remark

Chapter 6 Programming

6-56

 Example: for Visual C++

 ：

 pa_set_tim(ARM0, 20); Time-out setting（200msec）

 pa_mod_dir(ARM0, DM_START); Direct control mode selection

 pa_wet_ded(ARM0, LOCKAXIS_S3); Control axis selection

 ：

 (The arm, except S3-axis, is operated with a self weight compensated control.

 The arm is manually operated. Acquires PTP data.

 In the meantime, “pa_chk_cnt” has to be issued less than every 200msec.

 ：

 pa_mod_dir(ARM0, DM_STOP); terminates the direct control.

 Example: for Visual C++

 Dim ret As Long

 ret = pa_set_tim(ARM0, 20)

 ret = pa_mod_dir(ARM0, DM_START)

 ret = pa_wet_ded(ARM0, LOCKAXIS_S3)

 ：

 ：

 ret = pa_mod_dir(ARM0, DM_STOP)

Chapter 6 Programming

6-57

６．８ Real-time Control

 This control is for complex applications. As it is explained below, if the tip position/

orientation and each axis angle in every control cycle are provided, the arm performs

exactly as it is mentioned. With this method, interpolation and coordinate conversion, not

used in the motion control section, can be freely employed in the operation control

section.

In a real-time control, if PA library (pa_odr_axs or pa_odr_dpd), providing command value

every 1000msec (time-out) maximum, is not issued, the brake stops the operation as if an

accident occurred during control. The default time-out is 1000 msec. This time can be

set with “pa_set_tim” when it is needed.

 There are two real control modes as follows:

・Axis real-time control mode・・・controls arm providing axis target angle more than 2msec

cycle without interpolation.

・RMRC real-time control mode・・・controls arm providing T-matrix indicating the target

tip position/orientation in every cycle (more than 2msec.)

and axis value for restriction data without interpolation.

 Taking into account the limit value to, to maintain motion, the providing value cannot

exceed the control cycle (2msec) of the motion control CPU.

 Limit value Maximum command value

 Tip position 1000 mm/sec 2 mm/ 2 msec

 Tip orientation 0.785 rad/sec 0.00157 rad/ 2 msec

Axis velocity (each axis has a different value)

S1 axis
S2 axis

1.0 rad/sec

0.002 rad/ 2msec

S3 axis
W1 axis

2.0 rad/sec

0.004 rad/ 2msec

E2 axis
W1 axis
W2 axis

6.28 rad/sec

0.01256 rad/ 2msec

Remark

Chapter 6 Programming

6-58

６．８．１ Axis Real-time Control Mode

 If the target axis value is issued as the command, every 2msec or more cycles, the axis

angle (feedback) control is performed without interpolation.

Axis Real-time Control Mode

Program description:

 ① Sets the time-out. ：pa_set_tim

 The default time-out is 1000 msec. This time can be issued only when it needs to be

altered.

 ② Designates the current angle to the target angle. ：pa_odr_axs

Sets the target angle acquiring current target angle or current angle.

If the target angle is beyond the limit, errors below occur and the brake automatically

stops the arm.

 ③ Sets the axis real-time control mode. ：pa_mod_axs

It shifts to the real axis control mode. After this PA library is issued, until terminating

axis real-time control mode, the command (pa_odr_axs or pa_chk_cnt) has to be issued

within time-out.

If it is longer than time-out, an error occurs and the brake stops the operation as if an

accident happened during control.

 ④ Designates the target axis angle. ：pa_odr_axs

 As it becomes the 2msec cycle target value, the command should be taken into

account the axis limit angle. If the target axis angle is beyond the limit, the following

errors occur and the brake might, automatically, stop the arm.

 ERR_SYNC_S1 S1-axis sychronization error in axis control

 ERR_SYNC_S2 Ｓ２

 ： ：

 ERR_SYNC_W2 Ｗ２

 ④ terminates the axis real-time control mode.

 The axis real-time control mode is terminated by the brake-stop (pa_stp_arm) or the

temporary stop (pa_sus_arm).

Target Axis
Value or
Playback
Axis Data

Target Axis
Angle

Interpolation
Processing

Target
Axis
Angle

Axis
Command

Orders

Current
Axis Angle

+

-

< Motion Control ><Operation control> <ServoDriver>

Control Period = 2[ms]

When in Axis Real-time Control

ＫＰ

Chapter 6 Programming

6-59

 Example: for Visual C++

 ANGLE an;

pa_set_tim(ARM0, 20); Time-out setting（200msec）

pa_get_agl(ARM0,&an); Current angle acquisition

 pa_odr_axs(ARM0, &an); Target initial axis angle setting

pa_mod_axs(ARM0); Axis real-time control mode selection

 ：

From here to “pa_sus_arm,” “pa_odr_axs” or “pa_chk_cnt” has to be issued within

200 msec. cycle.

 ：

while (Conditional text){

 ：

 an.s1 = ...

 an.s2 = ...

 an.s3 = ... Creates a target axis angle here.

 an.e1 = ...

 an.e2 = ...

 an.w1 = ...

 an.w2 = ...

 pa_odr_axs(ARM0, &an); Target axis angle setting

 }

pa_sus_arm(ARM0, WM_WAIT); Axis angle real-time control mode termination

 Example: for Visual BASIC

 Dim ret As Long

 Dim an As ANGLE

ret = pa_set_tim(ARM0, 20)

ret = pa_get_agl(ARM0, an) Current angle acquisition

ret = pa_odr_axs(ARM0, an) Target initial axis angle setting

ret = pa_mod_axs(ARM0)

：

Do While Conditional text

：

an.s1 = ...

an.s2 = ...

an.s3 = ...

an.e1 = ...

an.e2 = ...

an.w1 = ...

an.w2 = ...

ret = pa_odr_axs(ARM0, an)

 Loop

ret = pa_sus_arm(ARM0, WM_WAIT)

Chapter 6 Programming

6-60

６．８．２ RMRC Real-time Control Mode

 Providing each axis value for restriction data and T-matrix indicating the target position/

orientation every 2msec or more cycles, the axis angle (feedback) control is performed

without interpolation.

RMRC Axis Real-time Control Mode:

The advantage of this real-time control mode is to receive a 2 msec command. To send

this command every 2 msec, it is needed to take into account the timing when the PA

library (pa_odr_axs、pa_odr_dpd) is issued and when the motion control section should

obtain the PA library.

RMRC
Deviation

 or Playback
Teach Data

Tool
offsetCoordinate

conversion

Target
Position/

Orientation

Target value
calculation

Interpolation
Processing

Target
Position/

Orientation

Joint Angle

Coordinate

conversion

Axis
Velocity

Command

Current
Axis Angle

Current
Position/
orientation

+

-

< Motion Control> ><Operation Control> <ServoDriver>

Control cycle = 2[ms]

When in RMRC Real-time Control

Remark

Chapter 6 Programming

6-61

Current timings are as follows:

 ① When PA library is issued just before the calculation in motion control section is

completed.

With this processing, the motion control section acquires the target value. When

“count-up” is on time in the final processing (count-up data is reflected on the memory

in the final processing.) , with this “ ● ” timing PA library is released from

“count-up-wait.” The target value ① acquired at this moment is reflected on the

control in the period 2.

 ② When PA library is issued just after the calculation in motion control section is

completed.

 As target value ① acquisition is completed at this ● timing in the period 2 and

reflected on the control, count-up can be confirmed in the PA library, only after final

processing is completed.in the cycle 2.

Target value① ▲

Period 1 (2msec) Period 2 (2msec)

Target value② ▲

● ●

Motion control
section

 Communication ...

 Calculation ...

 Real-time control mode
Command value acquisition ...

Operation control section
 Real-time control mode
 PA library performance ...

▲ ： PA library issuing
● ： Release from issued PA library

▲ ： PA library issuing
● ： Release from PA library issuing

●

Target value①

Period 1 (2msec) Period 2 (2msec)
Motion control
section

 Communication...

 Calculation...

Real-time control mode
Command value acquisition ...

Operation control section
 Real-time control mode
 PA library performance...

Chapter 6 Programming

6-62

Program Description: for 6-axis arm

 ① Sets the time-out. ：pa_set_tim

 The default time-out is 1000 msec. This time can be issued only when it needs to be

altered.

 ② Controls to the RMRC controllable position/orientation (each axis angl).：pa_exe_saf

 ③ Initializes the target position/orientation.： pa_odr_dpd

 If there is not a current target position/orientation, loads and sets the current ones.

 ④ Sets the RMRC real-time control mode.： pa_mod_dpd

 Here comes the RMRC real-time control mode.

After issuing this PA library, until the RMRC real-time control mode is completed, the

command (pa_odr_dpd or pa_chk_cnt) has to be issued.

 ⑤ Designates the target tip position/orientation： pa_odr_dpd

 For the target value is 2msec cycle, commands should be taken into account the

RMRC limit velocity (both position and orientation).

 ERR_RMRC_X X-axis synchronization error in RMRC control

 ERR_RMRC_Y Y-axis synchronization error in RMRC control

 ERR_RMRC_Z Z-axis synchronization error in RMRC control

 ⑥ Terminates the RMRC real-time control mode.

 The RMRC real-time control mode is terminated by the brake-stop (pa_stp_arm) or the

temporary stop (pa_sus_arm).

Chapter 6 Programming

6-63

 Example: for Visual C++

 MATRIX mat;

ANGLE an;

pa_set_tim(ARM0, 20); Time-out setting（200msec）

pa_exe_saf(ARM0, WM_WAIT); Moves to safe orientation

 an.s1=0.0; Restricted axis value intialization

 ： (Initialize “an” to “0” in the case of the 6-axis)

pa_get_noa(ARM0, mat); Current position/orientation loading

 pa_odr_dpd(ARM0, mat, &an); Target position/orientation initialization

 pa_mod_dpd(ARM0); RMRC real-time control mode selection

 ：

From here to “pa_sus_arm,” “pa_odr_axs” or “pa_chk_cnt” has to be issued within

200 msec. cycle.

 ：

while (Conditional text){

 ：

 Target position/orientation T-matrix creation ：mat

 “0” initialization or

creation of axis value for the redundant axis restriction data ：an

 ：

 pa_odr_dpd(ARM0, mat, &an);

 Setting for Target position/orientation T-matrix and axis value for the

restriction data

 }

 pa_sus_arm(ARM0, WM_WAIT); RMRC real-time control mode termination

 Example: for Visual BASIC

 Dim mat(3,2) As Single

 Dim an As ANGLE

 Dim ret As Long

ret = pa_set_tim(ARM0, 20)

ret = pa_exe_saf(ARM0, WM_WAIT)

ret = pa_get_noa(ARM0, mat(0,0))

ret = pa_odr_dpd(ARM0, mat(0,0), an) Target position/orientation initialization

 ： (Initialize “an” to “0” in the case of the 6-axis)

ret = pa_mod_dpd(ARM0)

：

Do While (Conditional text){

：

ret = pa_odr_dpd(ARM0, mat(0,0), an)

Loop

ret = pa_sus_arm(ARM0, WM_WAIT)

Chapter 6 Programming

6-64

 The redundant axis control mode can be chosen on account of RMRC control. But,

depending on a redundant axis control mode to choose, each axis value for the restriction

data

– a parameter of “pa_odr_dpd” – has a different significance.

＜Redundant axis control mode＞

 [No restriction] ：For all axes restrictively controlled by 0.0[deg], a provided axis value

for the restriction data is ignored.

 [All axes restriction] ：All axes are restrictively controlled by a provided axis values for

the restriction data.

 [S3-axis restriction]：In this mode, axis value means the one for the restriction data

when “pa_odr_dpd” is issued. The S3-axis is controlled by a S3 restriction axis value

inside the axis values for restriction data. For this reason, a movable angle issued within

a cycle has to be taken into account. Other axis values (except S3 axis value) for

restriction data are ignored and restricted to 0.0[deg].

 [S3-axis interpolation]：In this mode, axis value means the target angle of S3-axis when

“pa_odr_dpd” is issued. The S3-axis is controlled by a S3 restriction axis value inside

the axis values for restriction data. For this reason, a movable angle issued within a

cycle has to be taken into account. Other axis values (except S3 axis value) for

restriction data are ignored.

 [S3-axis fixation]：S3 axis angle is maintained as it is when RMRC real-time control was

started. For this reason, provided axis value for the restriction data is ignored.

Program Description: For 7-axis arm

 ① Sets the time-out. ：pa_set_tim

 The default time-out is 1000 msec. This time can be issued only when it needs to be

 altered.

 ② Controls to the RMRC controllable position/orientation (each axis angl).：pa_exe_saf

 ③ Initializes the target position/orientation.： pa_odr_dpd

 If there is not a current target position/orientation, loads and sets the current ones.

 ④ Chooses the redundant axis control mode.： pa_mod_jou

 If not setting this mode, the prior set redundant axis control mode becomes available.

 ⑤ Sets the RMRC real-time control mode.： pa_mod_dpd

 Here comes the RMRC real-time control mode.

After issuing this PA library, until the RMRC real-time control mode is completed, the

command (pa_odr_dpd or pa_chk_cnt) has to be issued within time-out.

7- axis arm function

Chapter 6 Programming

6-65

 ⑥ Designates the target tip position/orientation.： pa_odr_dpd

 As the target value becomes 2msec cycle, commands should be taken into account

RMRC limit velocity (both Linear and rotational velocity). If the target axis angle comes

off- limits, following errors occur and the brake, might automatically stop arm.

 ERR_RMRC_X X-axis synchronization error in RMRC control

 ERR_RMRC_Y Y-axis synchronization error in RMRC control

 ERR_RMRC_Z Z-axis synchronization error in RMRC control

 ⑦ Terminates the axis real-time control mode.

 The axis real-time control mode is terminated by the brake-stop (pa_stp_arm) or a

temporary stop (pa_sus_arm).

 Example: for Visual C++

 MATRIX mat;

ANGLE an;

pa_set_tim(ARM0, 20); Time-out setting（200msec）

pa_exe_saf(ARM0, WM_WAIT); Move to safe orientation

 pa_get_agl(ARM0,&an); Current angle loading

pa_get_noa(ARM0, mat); Current position/orientation loading

 pa_odr_dpd(ARM0, mat, &an); Target position/orientation initialization

 pa_mod_jou(ARM0, JM_ON);Redundant axis control mode setting (all axes restriction)

pa_mod_dpd(ARM0); RMRC real-time control mode selection

 ：

From here to “pa_sus_arm,” “pa_odr_axs” or “pa_chk_cnt” one has to be issued

within 200 msec. cycle. 。

 ：

while (Conditional text){

 Target position/orientation T-matrix creation ：mat

 Creation of axis value for the redundant axis restriction data ：an

 ：

 pa_odr_dpd(ARM0, mat, &an);

 Setting for Target position/orientation T-matrix and

axis value for the restriction data

 }

 pa_sus_arm(ARM0, WM_WAIT); RMRC real-time control mode termination

Chapter 6 Programming

6-66

 Example: for Visual BASIC

 Dim mat(3,2) As Single

 Dim an As ANGLE

 Dim ret As Long

ret = pa_set_tim(ARM0, 20)

ret = pa_exe_saf(ARM0, WM_WAIT)

ret = pa_get_noa(ARM0, mat(0,0))

ret = pa_get_agl(ARM0, an)

ret = pa_odr_dpd(ARM0, mat(0,0), an) Target position/orientation initialization

 ：

ret = pa_mod_jou(ARM0, JM_ON)

ret = pa_mod_dpd(ARM0)

：

Do While Conditional sentence

：

ret = pa_odr_dpd(ARM0, mat(0,0), an)

Loop

ret = pa_sus_arm(ARM0, WM_WAIT)

Chapter 6 Programming

6-67

６．９ DIO control

 The Digital Input/Output (DI/O) board is equipped as the standard system for PA. The

PA library is provided only for the DI/O control of this board. Channel numbers are as

follows:

The Digital Input/Output (DI/O) board is directly controlled by the motion control section.

Its input/output control can be performed by setting data in the designated area, from the

operation control section.

Port No. channel No.

DP_PORT1 DC_CH1
DC_CH2
DC_CH3
DC_CH4
DC_CH5
DC_CH6
DC_CH7
DC_CH8

 System Reservation

DP_PORT2 DC_CH1
DC_CH2
DC_CH3
DC_CH4
DC_CH5
DC_CH6
DC_CH7
DC_CH8

Tool 1

DP_PORT3 DC_CH1
DC_CH2
DC_CH3
DC_CH4
DC_CH5
DC_CH6
DC_CH7
DC_CH8

Tool 2

DP_PORT4 DC_CH1
DC_CH2
DC_CH3
DC_CH4
DC_CH5
DC_CH6
DC_CH7
DC_CH8

Tool 3

Input/output libraries are as follows:

 pa_inp_dio Digital input (Input with 32 ch.units)

 pa_oup_dio Digital output (Output with 32 ch.units)

 pa_get_dio Digital input (Input with 1 ch.unit)

 pa_set_dio Digital output (Sets with 1 ch.unit)

 pa_rst_dio Digital output (Resets with 1 ch.unit)

Chapter 6 Programming

6-68

Program description:

 Example: for Visual C++

The output channel 4 of tool1 (port 1) has to be switched ON.

When the input channel 3 turns ON, channel 4 has to be OFF.

UBYTE io;

 pa_set_dio(ARM0, DP_PORT1, DC_CH4);

 while(1){

 ｐa_get_dio(ARM0, DP_PORT1, DC_CH3, &io);

 if(io<>0) break;

 }

 pa_rst_dio(ARM0, DP_PORT1, DC_CH4);

 Example: for Visual BASIC

 Dim io As Byte

 Dim ret As Long

 io = 0

 ret = pa_set_dio(ARM0, DP_PORT1, DC_CH4)

 Do While io = 0

 ret = pa_get_dio(ARM0, DP_PORT1, DC_CH3, io)

 Loop

 ret = pa_rst_dio(ARM0, DP_PORT1, DC_CH4);

Chapter 6 Programming

6-69

《Playback control teach point “DO” status selection》

 Setting “DO” data attribution at the teaching point, this can be performed by choosing

its DO information (valid/invalid) or (stop/non-stop) when the arm is stopped.

Setting & acquisition of teach point “DO” output – valid/invalid –

while in playback control.

 pa_swt_dio(ARM armno, long sw)

 pa_get_pdo(ARM armno, long* stat)

 Choose to make valid (output) or invalid (no output) for DO data attribution set at teach

point, while in playback control.

Setting & acquisition of teach point “DO” output – valid/invalid – when the arm is stopped

while in playback control.

 pa_set_dlc(ARM armno, long data)

 pa_get_dlc(ARM armno, long* stat)

 The pre-condition is: the teach point DO output in the playback control, has to be set to

be valid. When DO information is output while in playback control, if the arm is

temporarily stopped or brake-stop, choose to stop output DO information or continue.

Program description:

 Example: for Visual C++

While in playback control, make teach point DO information valid. When an arm is not

in motion, stop DO output.

 DIOSTATUS dis, dio;

pa_swt_dio(ARM0, 1); Teach point DO information available

pa_set_dlc(ARM0, 1); When in arm-stop, DO-stop available.

 Example: for Visual BASIC

 Dim dis As DIOSTATUS

 Dim dio As DIOSTATUS

 Dim ret As Long

ret = pa_swt_dio(ARM0, 1)

ret = pa_set_dlc(ARM0, 1)

Chapter 6 Programming

6-70

６．１０ Teach/Playback Motion

 Playback motion is performed using teach data acquired in various control conditions.

To perform playback motion it usually needs the following four step procedures.

・1st….Teach data creation

 Acquires teach points and creates a set.

・2nd….Current teach point shifting

 The moment when teach point is acquired, it instantly becomes the current point.

For this reason, the teach point where intended to start the motion, has to be

shifted to the current teach point.

・3rd….Shiftin g to the current point

 Actuates arm to the position (angle) indicated at the current point.

・4th….Playback starts

 Starts the playback motion.

Chapter 6 Programming

6-71

Teach Data Keｙ : 1

・JUMP condition
・JUMP destination
（Teach data Key
（Teach point ID）

 etc

JUMP Data No.

Active teachdata
 pointer

Teach point
Teach point attribute

 To acquire teach data and actualize playback motion (replay), all data and information

are managed by the motion control program.

Before starting the control method, see important terms below:

Technical Terms

Terms Explanation

Teach point Minimum data unit retaining arm angles and motion data, etc.

Teach data Work unit to set to work one operation linking plural teach data.

Teach data Key Integer that never overlaps, provided to distinguish plural teach

data.

Active teach data Teach data to operate playback and edition (addition, insertion,

deletion and data alteration).

Teach point attribute Significant data in teach point.

JUMP Method to actuate arm through plural data as if the motion

were created through one teach data.

JUMP data Teach data attribution information to perform JUMP motion

between teach data.

JUMP data number Integer that never overlaps, set to control plural JUMP data.

It is also set as attribute in the teach point to be referred

when in playback.

JUMP condition Command group to be set to actualize JUMP.

 Teach point:1 Teach point:1
 Teach point:2 Teach point:2
 Current
teach point

 Teach point:3 Teach point:3

 pointer Teach point:4 ６ Teach point:4
 Teach point:5 Teach point:５
 Teach point:6 ８
 Teach point:７

 JUMP condition No,

8
 JUMP condition No.:

6

 JUMP
condition：１

 JUMP
condition：１

 JUMP
condition：2

 JUMP
condition：2

 ： ：
 JUMP

condition：8
 JUMP

condition：8

Teach Data Keｙ : 2

Chapter 6 Programming

6-72

６．１０．１ Teach Point & Teach Data Control
How to manage teach data in the teach data structure and the motion control

program:

（１） Teach point attribute

The teach point is the minimum unit of arm data needed to perform playback processing.

Its attributes are shown below. Teach point data is initialized with appropriate value

when teach points. are created. Then, it is processed and corrected by users.

Teach point attribute ： Structure PNTDAT

Structure Model Name Contents

 float S1 angle S1 axis angle [rad]

 float S2 angle S2 axis angle [rad]

 float S3 angle S3 axis angle [rad]

 float E1 angle E1 axis angle [rad]

 float E2 angle E2 axis angle [rad]

 PLAY float W1 angle W1 axis angle [rad]

 float W2 angle W2 axis angle [rad]

 float Linear motion velocity Linear motion velocity [mm/sec]

 float Orientation、angle

Motion velocity

Angular motion velocity when in axis

control, orientation velocity when in

RMRC control [rad/sec]

 long Data type PTP：１、PTP（with NOA）：２

 long Interpolation method Axis, linear, circle, arc

 long Velocity type Rated velocity, acceleration,

deceleration, acceleration/deceleration

 long Waiting hour Motion-start delay time [msec]

 long Serial numbers Serial numbers setting the primary teach point as

1.

 long ID number User setting discrimination number

 long JUMP data Number Numbers specified JUMP conditions

 long DO output Digital output for outer operation

 long Accuracy Arm-stop accuracy＊２

 long Start-up time Acceleration time designation＊３

 long Shutdown time Deceleration time designation＊３

 long Spare Not yet used

 char*32 comment Comment with muximum 32 letters

 NOAP float*3 Position＊１ Arm XYZcoordinate system [mm]

 float*3*3 Orientation＊１ Arm NOA

＊１ Position and orientation data are created, only, when data type is PTP (with NOA).
＊２ On arm-stop accuracy, lower 16bit for axis motion attribution teach point and for

upper 16bit motion attribution teach point, are used.
＊３ If velocity type is acceleration & deceleration/acceleration/deceleration, each type

refers to a necessary start-up and shut-down time attributions. If this attribute is “0”,

start-up time and shut-down time in parameter are used.

Chapter 6 Programming

6-73

Teach data types are as follows:

・Each axis (θＳ１～θＷ２) data

・Tip position/orientation (NOAP) data

（２）JUMP Data

 JUMP data is the annexed information related to the teach point. It has attributes

such as JUMP condition and JUMP destination, etc.

 JUMP information numbers in the teach point attribute are referred when in playback.

If its value is more than 1, JUMP condition search is performed. If the JUMP condition

can be found, then, condition check will be performed.

 When the condition is established, JUMP destination (teach data “Key” and teach point

ID) indicated in JUMP condition is searched. If its destination is found, the interval from

the current teach point to the discovered one is interpolated and motion starts. This

status is called motion between teach points (RMRC) or motion between teach points

(each axis).)

 If motion between teach points is completed, the active teach data is replaced by the

arrived teach data “Key.” Hereafter, motion is controlled by its teach data.

JUMP condition data composition is as follows:

JUMP conditional data composition

Structure Type Designations Details

 long JUMP condition Number Numbers designating JUMP conditions

 long JUMP condition JUMPcondition (refer to the next

page (5))

 long Spare Not used

ＪＵＤＧＥ long DI data DI data for condition appraisal

 long Time-out Time-out when in wait

No time-out with 0

 long Teach data Key JUMP destination teach data Key

 long Teach point ID JUMP destination teach point ID

 long Reservation Employed by a system

 Omitted. （ There are 8 (eight) data from JUMP condition to the

reservation.）

 long JUMP condition JUMPcondition (refer to the next

page (5))

 long Spare Not yet used

 long DI data DI data for condition appraisal

ＪＵＤＧＥ long Time-out Time-out when in wait

No time-out with 0

 long Teach data “Key” JUMP destination teach data “Key”

 long Teach point ID JUMP destination teach point ID

 long Reservation Employed by a system

Chapter 6 Programming

6-74

（３）JUMP Condition

 JUMP condition divides 32bit positive numbers into four and gives them significance.

MSB

LSB

31 24 23 16 15 8 7 0

Valid flag JUMP command Logic Reference destination DI

 JUMP condition consists of four: valid flag, JUMP command, logic and reference

destination DI. See below: these instructions are not automatically set at the motion

control side. All are performed by setting orders from the upper point.

VALID FLAG ： JUMPENABLEDISABLE

Designation Value Function

JMP_ON 0x01000000 Condition check performance (valid)

JMP_OFF 0x00000000 No condition check performance (invalid)

JUMP COMMAND ：JUMPORDER

Designation Value Function

NO_JUMP 0x00010000
JUMP to the designated teach data and ID

number. (Unconditional JUMP)

DI_JUMP 0x00020000
If DI condition is checked and established, JUMP.

If not, playback has to be continued.

DI_WAITJUMP 0x00030000
If DI condition is checked and established, JUMP.

If not, waits and rechecks at the next cycle.

DI_WAIT 0x00040000

Waits until DI condition is checked and

established. (ATTENTION! This function does

not perform the motion between teach points

JUMP.)

LOGIC ： JUMPDILOGIC

Designation Value Function

LEVEL_ON 0x00000100 DI condition is established when designated bit input is 1.

LEVEL_OFF 0x00000200 DI condition is established when designated bit input is 0.

EDGE_ON 0x00000400
DI condition is established when designated bit

input is changed from 0 to 1.

EDGE_OFF 0x00000800
DI condition is established when designated bit

input is changed from 1 to 0.

REFFERENCE DI ： DIOKIND

Designation Value Function

DIO_INTERNAL 0x00000000 DI condition test is performed in the system DI.

DIO_EXTERNAL 0x00000001 DI condition test is performed in the extension

DI.

One teach data can obtain plural JUMP conditions. But, one JUMP condition cannot be

obtained by plural teach data. For this reason, the same JUMP condition number 1 of

two different teach data “Key” is recognized as a completely different one.

Chapter 6 Programming

6-75

 （４）Teach Point Control

 How to control teach data in the motion control program:

One teach data consists of plural teach points. Here it is shown how each point

composes teach data.

・Teach data consists of six teach points.

・Three of these points have circle or arc attribute.

Top teach point Teach point attribute

 Circle & arc address

 Prior point address

 Next point address

 Teach point attribute

 Circle & arc address Teach point attribute

 Prior point address Circle & arc address Teach point attribute
 Next point address Prior point address Circle & arc address

 Next point address Prior point address

 Teach point attribute Next point address

 Circle & arc address

 Prior point address

 Next point address

Last teach point Teach point attribute

 Circle & arc address

 Prior point address

 Next point address

 Teach data control provides address data of before/after teach point to create smooth

motion between points. On this address data, for top teach point, the prior point address

is 0. For the last teach point, the next point address is 0.

 On circle and arc, to pass through the second and third teach point, these are linked

adjacent to the first point.

 The current teach point can be set at the top and the last teach point, or at the place

indicated with .

(For this reason, the circle and arc second and third point cannot be the current point.)

Remark

Chapter 6 Programming

6-76

 （５）Teach Data Control

 Plural teach data is controlled by “teach data control list” as follows:

If there is no next list, “0” is set.

Teach data numbers, able to be controlled by teach data control list, are not particularly

defined. As far as memory space allows, plural teach data can be created.

List control data:

DATA DETAILS

Numbers of teach data Indicates how many teach data (not teach point) is controlled

Active teach data (ARM 0) Teach data related to ARM 0 motion.＊

Active teach data (ARM 1) Teach data related to ARM 1 motion.＊
＊In active teach data, the same teach data can be obtained by ARM 0 and ARM 1.

Teach data control data:

DATA DETAILS

Teach data “Key” The control number for teach data manages not to let

each teach data overlap.

Numbers of teach data Numbers of teach point retained by this teach data.

Top teach point Teach point indicating the top position in the teach data.

Last teach point Teach point indicating the last position in the teach data.

Current teach point Teach point indicated currently by the program in the

teach data.

Temporary teach point Supplemental area used for teach data research, etc.

JUMP data control address It is the top in JUMP data list and is incidental to teach

data.

 To control each teach data, it is needed to have some information to not let each teach

data overlap. This non-overlap data is called “teach data Key.” Teach data “Key” is

32 bit integer. But, for practical use, only a positive value can be used.

List control data

List top address

Teach data control data

Next list address

Teach data control data

Next list address

Teach data control data

Next list address

Chapter 6 Programming

6-77

６．１０．２ Teach Data Operation

Some libraries for teach data operation are as follows:

Teach data operation library:

Pointer operation

Active teach data “Key” alteration pa_chg_key

Current point alteration at the teach point pa_chg_pnt

Addition

Active teach data “Key” addition pa_act_pnt

Teach point addition pa_add_pnt

Deletion

Active teach data deletion

Current teach point deletion

Project deletion

pa_del_pnt

JUMP data deletion pa_del_jmp

Replacement

Current teach data replacement pa_rpl_pnt

Active teach data “Key” point:

 Among plural teach data, the one indicated by the active teach data “Key” point is the

active teach data one.

 All teach data operation (acquisition, deletion and replacement) and playback control are

performed for active teach data.

Teach point:

 A teach point indicated by teach point pointer is called a current point.

All teach data operation (acquisition, deletion and replacement) and playback control are

performed for teach point data indicated by this teach pointer.

Teach pointer is automatically renewed when:

・After acquiring teach data.

・when in playback control.

・After deleting teach data (deleting current point.)

Chapter 6 Programming

6-78

６．１０．２．１ Current Point Alteration

 （１）Active teach data alteration

 Among plural teach data, to choose the teach data intended to work, the active teach

data has to be altered as follows:

Active teach data alteration ： pa_chg_key

Designation Instructions

Active teach data

alteration

The teach data retaining the designated teach data “Key”

is defined as the active teach data.

Important exception:

 Teach data is usually created from 1. If teach data is

newly created, active teach data has to be set 0. Later

on, if teach data is acquired, the motion control creates

teach data “Key” which does not overlap with this

acquired one (one point teach data). Then, it is added to

the teach data control list.

 （２）Current teach data alteration

 If each teach point attribution is altered or intending to designate playback starting point,

its operation has to be performed after altering the current teach point. Methods to alter

the cuurent teach point are as follows:

 (With the current teach point alteration, the real machine cannot be actualized. Also,

this teach point cannot be changed during playback performance.)

 On the current point shifting, for parameter: “PNTMOVE” of “pa_chg_pnt”, there are the

following types:

Current teach point alteration ： pa_chg_pnt（，PNTMOVE、）

Designations Details

PM_TOP

（Top teach point）

Teach point placed at the top of teach data is defined as the

current teach point.

PM_BTM

（Last teach point）

Teach point placed at the bottom of teach data is defined as

the current teach point.

PM_NEXT

（Next teach point）

Teach point placed next to the current teach point is defined

as the current teach point.

PM_PRIV

（Prior teach point）

Teach point placed prior to the current teach point is defined

as the current teach point.

PM_JMP

（Designated ID）

Teach point retaining the designated teach point ID is defined

as the current teach point.

(Designated

comment)

Teach point retaining the designated comment is defined as the

current teach point.

Chapter 6 Programming

6-79

＜＜Current Teach Point Alteration＞＞

Now, the teach point is at <2>. Here, if the command is issued in the next parameter,

the current pointis moved to →< >.

 (a) PM_TOP : to Top Data →<1>

(b) PM_NEXT : to the next data of the current point. →<3>

(c) PM_PRIV : to the prior data of the current point →<1>

(d) PM_BTM : to the last data →<n>

(e) PM_JMP : to the designated number by .jmp jmp=4 →<4>

(f) PM_CIR : the circle teach data first placed from the current

point in forward direction →<9>

(g) PM_ARC : the arc teach data first placed from the current

point in forward direction →<5>

Arc/circle data is processed in each block.

Teach pointer

PTP straight line

PTP each axis

PTP each axis

PTP straight line

PTP arc 3 PTP arc 2 PTP arc 1

PTP straight line

PTPcircle 3PTPcircle 2PTPcircle 1

PTP straight line

To prior data (PM_PRIV)
PTP straight line

To next data (PM_NEXT)

<PM_TOP> <1>

<2>

<3>

<4>
7 6

<5>

<8>
11 10

<9>

<12>

<PM_BTM> <n>

Numbers which can
be a current point

Top

Last

.

.

Remark

Chapter 6 Programming

6-80

６．１０．２．２ Teach Point Addition

For teach point acquisition one of following methods has to be employed:

Teach point addition ： pa_add_pnt（ ,PNTTYPE）

Designation Details

PTP- axis attribute addition Adds teach data with each axis attribute in PTP.

PTP- axis attribute insertion Inserts teach data with each axis attribute in PTP.

PTP-RMRC attribute addition Adds teach data with RMRC straight-line attribute

in PTP.

PTP-RMRC attribute insertion Inserts teach data with RMRC straight-line

attribute in PTP

PTP- Circle 1st point addition Adds teach data with RMRC circle attribute in

PTP

PTP- Circle 2nd point addition If the current teach point has circle attribute,

creates the second point in the circle /arc link

area of its teach point.

PTP- Circle 3rd point addition

If the current teach point has circle attribute,

creates the third point in the circle /arc link area

of its teach point.

PTP- Arc 1st point addition Adds teach data with RMRC arc attribute in PTP.

PTP- Arc 2nd point addition If the current teach point has arc attribute,

creates the second point in the circle /arc link

area of its teach point.

PTP- Arc 3rd point addition If the current teach point has arc attribute,

creates the third point in the circle /arc link area

of its teach point.

PTP-RMRC attribute addition (with NOA) Acquires also NOAP data, when adding PTP –

RMRC attribute.

PTP-RMRC attribute insertion (with NOA) Acquires also NOAP data, when inserting PTP –

RMRC attribute.

PTP- Circle 1st point addition (with NOA) Acquires also NOAP data, when adding PTP – circle 1st point.

PTP- Circle 2nd point addition (with NOA) Acquires also NOAP data, when adding PTP – circle 2nd point.

PTP- Circle 3rd point addition (with NOA) Acquires also NOAP data, when adding PTP – circle 3rd point.

PTP- Arc 1st point addition (with NOA) Acquires also NOAP data, when adding PTP – arc 1st point.

PTP- Arc 2nd point addition (with NOA) Acquires also NOAP data, when adding PTP – arc 2nd point.

PTP- Arc 3rd point addition (with NOA) Acquires also NOAP data, when adding PTP – arc 3rd point.
＊”addition” and “insertion” meanings in the chart:

 Addition － creates new teach point after the current teach point.

 Insertion － creates new teach point before the current teach point.

 If a current teach point does not exist, only, a new teach point is created.

Chapter 6 Programming

6-81

６．１０．２．３ Teach point (Teach data) Deletion

 （１）Teach point (teach data) Deletion

Teach point and teach data deletion are provided.

Teach point (teach data) Deletion ： pa_del_pnt（ ,PNTDEL）

Designations Instructions

PD_CUR

(Teach point deletion)

Deletes the current teach point.

PD_ALL

(Teach data deletion)

Deletes the active teach data. If the active teach data is deleted,

active teach data number becomes the top point in the first

discovered teach data. To activate other remaining teach data,

the active teach data has to be altered.

PD_ALLDATA

(Project deletion)

Deletes all teach data (project.)

 （２）JUMP data delition

 JUMP data deletion has two ways: the teach data and JUMP data deletions. Each is

performed to the active teach data.

JUMP data delition ： pa_del_jmp

Designations Instructions

Teach data deletion Delets the active teach data. Therefore, all JUMP data

incidental to the active teach data are deleted.

JUMP data deletion

Designates JUMP condition number (JUMP data) incidental to

the active teach data, then, deletes it.

Chapter 6 Programming

6-82

６．１０．３ Moving to the current point (teach point)

 Before starting playback, it is needed to adjust the current point and the arm position.

This is called the “current teach point shifting motion.”

Current teach point shifting motions are as follows:

Current teach point shifting motions

Designations Instructions

Axis shifting motion

 ：pa_axs_pnt

Current teach point and arm position are adjusted through

interpolation processing using current ideal target angle and

angle attribute inside teach data. For PTP data (with NOA),

this method cannot be employed to operate. (Angle data is

not reliable as the data is automatically created at the upper

point.)

RMRCshifting motion

 ：pa_mov_pnt

Current teach point and arm position are adjusted through

interpolation processing using the position/orientation

calculated from current ideal target angle and angle attribute

inside teach data.

 RMRC shifting motion is controlled by RMRC. If the current position out of moving

range or E1 axis angle is 0, RMRC control cannot be performed. First, move to RMRC

control area, then, issue.

Chapter 6 Programming

6-83

６．１０．４ Playback motion (step operation) start

 Four methods for a playback control (check-up operation) start are as follows:

Playback starting methods ： pa_ply_pnt（ ,PLAYBACK,, ）

Designations Instructions

PB_FORES

(Forward step operation)

Motion is created using teach point attributes (velocity,

velocity pattern etc.) of the current teach point, from the

current teach point to the next one.

When this motion is completed, the current teach point is

changed to the next one.

PB_BACKS

(Reverse step

operation)

Motion is created using teach point attributes (velocity,

velocity pattern etc.) of the prior teach point from the current

teach point to the prior one.

When this motion starts, the current teach point is changed to

the previous one.

PB_FORE

(Forward consecutive

 operation)

Motion is created backwards from the current teach point.

This motion continues until returning again to the top teach

point after passing through at certain designated times. The

current teach point is changed every time when the teach

point is passed through while in motion.

For example, if teach points are ①, ② and ③, the current

point is ①, the designated time is once:

 ①－②－③－①

if the designated times are twice:

 ①－②－③－①－②－③－①

if the current teach point is ② and the designated times are

twice:

 ②－③－①－②－③－①

(ATTENTION! The top ① point is passed through only once.)

Teach data playback is always completed at the top teach

point. For more, refer to “JUMP rule” in the section 8.8.

PB_BACK

(Forward check-up

 operation)

Playback is performed with forward consecutive operation

from the current teach point to the last teach point. If

JUMP condition is established, not only JUMP performs, but

also this operation is completed at the last teach point of

each teach data.

Chapter 6 Programming

6-84

６．１１ Playback Control

Playback controls according to teach points are as follows:

・Playback straight line interpolation control employing PTP straight line interpolation data

・Playback arc interpolation control employing PTP arc interpolation data

・Playback circle interpolation control employing PTP circle interpolation data

・Playback axis interpolation control employing PTP axis interpolation data

Chapter 6 Programming

6-85

６．１１．１ PTP straight line interpolation data and playback control

When teach data is acquired, if PTP straight line interpolation data is chosen, teach

data is memorized as PTP straight line interpolation data.

 Playback control of PTP straight line interpolation data is RMRC feedback control.

Between two PTP straight line interpolation data, the tip is interpolated linearly.

Example: for Visual C++

＜Teach data acquisition＞

 : Arm motion with RMRC control

 pa_add_pnt(ARM0,PT_PTP); PTP data acquisition

 : Arm motion with RMRC control

 pa_add_pnt(ARM0,PT_PTP); PTP data acquisition

 :

 ＜Playback control＞

 :

 pa_chg_pnt(ARM0,PM_TOP,0); Moves the teach pointer to the top teach data.

 pa_mov_pnt(ARM0,WM_WAIT); Moves to the current point.

ｐa_ply_pnt(ARM0,PB_FORE,WM_WAIT); Playback forward motion.

 Trajectory:

 When in acquiring teach data

 When in playback

 PTP straight line interpolation data

 Interpolation data

<PTP straight line> <PTP st.> <PTP st.> <PTP st.><PTP st.>

 Example: for Visual BASIC

 Dim ret As Long

:

 ret = pa_add_pnt(ARM0,PT_PTP)

:

 ret = pa_add_pnt(ARM0,PT_PTP)

:

 ret = pa_chg_pnt(ARM0,PM_TOP,0)

 ret = pa_mov_pnt(ARM0,WM_WAIT)

ret = pa_ply_pnt(ARM0,PB_FORE,WM_WAIT)

Chapter 6 Programming

6-86

６．１１．２ PTP arc interpolation data & playback control

 When in acquisition, if teach data type arc is designated, it is memorized as PTP arc

data.

PTP arc data:

 PTP arc 1st point data :<P1>

 PTP arc 2nd point data:<P2>

 PTP arc 3rd point data:<P3>

These three constitute one block.

 In playback control, the tip is interpolated to create the arc trajectory passing through

three points. The motion direction is from <P1> to <P2>, then, <P3>. From <P1> to

<P3>, this interval is interpolated equally for orientation.

 Example: for Visual C++

 ＜Teach data acquisition＞

 : Arm motion with RMRC control

 pa_add_pnt(ARM0,PT_ARC1); PTP arc 1st data acquisition

 : Arm motion with RMRC control

 pa_add_pnt(ARM0,PT_ARC2); PTP arc 2nd data acquisition

 : Arm motion with RMRC control

 pa_add_pnt(ARM0,PT_ARC3); PTP arc 3rd data acquisition

 :

 ＜Playback control＞

 :

 pa_chg_pnt(ARM0,PM_TOP,0); Moves the teach pointer to the top teach data.

 pa_mov_pnt(ARM0,WM_WAIT); Moves to the current point

 pa_ply_pnt(ARM0,PB_FORE,WM_WAIT); Playback forward motion

 Trajectory：

 When in acquiring teach data

 When in playback

 PTP arc interpolation data

 Interpolation data

Tip motion

P2

θ1

P1
r0

P3Vec

Orientation rotation angle: θ2
P3

P1

Chapter 6 Programming

6-87

 Example: for Visual BASIC

 Dim ret As Long

 ：

 ret = pa_add_pnt(ARM0,PT_ARC1)

 ret = pa_add_pnt(ARM0,PT_ARC2)

 ret = pa_add_pnt(ARM0,PT_ARC3)

 :

 ret = pa_chg_pnt(ARM0,PM_TOP,0)

 ret = pa_mov_pnt(ARM0,WM_WAIT)

ret = pa_ply_pnt(ARM0,PB_FORE,WM_WAIT)

Chapter 6 Programming

6-88

６．１１．３ PTP circle interpolation data & playback control

 When in acquisition, if circle is designated for teach data type, it is memorized as PTP

circle data.

 PTP arc data:

 PTP circle 1st point data :<P1>

 PTP circle 2nd point data:<P2>

 PTP circle 3rd point data:<P3>

These three constitute one block.

 In playback control, the tip is interpolated to create the circle trajectory passing through

three points. The motion direction is from <P1> to <P2>, then, <P3>. Posture is fixed

at <P1> orientation.

 Example: for Visual C++

 ＜Teach data acquisition＞

Arm motion with RMRC control

 pa_add_pnt(ARM0,PT_CIR1); PTP circle 1st data acquisition

 : Arm motion with RMRC control

 pa_add_pnt(ARM0,PT_CIR2); PTP circle 2nd data acquisition

 : Arm motion with RMRC control

 pa_add_pnt(ARM0,PT_CIR3); PTP circle 3rd data acquisition

 :

 ＜Playback control＞

 pa_chg_pnt(ARM0,PM_TOP,0); Moves the teach pointer to the top teach data.

 pa_mov_pnt(ARM0,WM_WAIT); Moves to the current point

 pa_ply_pnt(ARM0,PB_FORE,WM_WAIT); Playback forward motion

 Example: for Visual BASIC

 Dim ret As Long

 ret = pa_add_pnt(ARM0,PT_CIR1)

 ret = pa_add_pnt(ARM0,PT_CIR2)

 ret = pa_add_pnt(ARM0,PT_CIR3)

:

 ret = pa_chg_pnt(ARM0,PM_TOP,0)

 ret = pa_mov_pnt(ARM0,WM_WAIT)

ret = pa_ply_pnt(ARM0,PB_FORE,WM_WAIT)

P1

θ1

0 P3

Vec
P2

Trajectory:

 When in playback

 PTP arc interpolation data

 Interpolation data

Orientation rotation angle:θ2 = 0
Linear motion/rotational angle:θ1 = 2π

Chapter 6 Programming

6-89

６．１１．４ PTP axis interpolation data & playback control

 When teach data is acquired, if PTP axis interpolation data is chosen, teach data is

memorized as PTP axis interpolation data. Playback control of PTP axis inerpolation

data is axis angle feedback control. Between adjacent PTP axis interpolation data, each

axis angle is interpolated.

 Example: for Visual C++

 ＜Teach data acquisition＞

 :

 pa_add_pnt(ARM0,PT_AXS); PTP axis inerpolation data acquisition

 :

 pa_add_pnt(ARM0,PT_AXS); PTP axis inerpolation data acquisition

 :

 ＜Playback control＞

 :

 pa_chg_pnt(ARM0,PM_TOP,0); Moves the teach pointer to the top teach data.

 pa_axs_pnt(ARM0,WM_WAIT); Moves to the current point.

pa_ply_pnt(ARM0,PB_FORE,WM_WAIT); Playback forward motion.

 Trajectory:：

 When in acquiring teach data

 When in playback

 PTPaxis interpolation

data

 Interpolation data

 <PTP axis> <PTP axis> <PTP axis> <PTP axis><PTP axis>

 Example: for Visual BASIC

 Dim ret As Long

 ret = pa_add_pnt(ARM0,PT_AXS)

:

ret = pa_add_pnt(ARM0,PT_AXS)

:

:

 ret = pa_chg_pnt(ARM0,PM_TOP,0)

 ret = pa_axs_pnt(ARM0,WM_WAIT)

ret = pa_ply_pnt(ARM0,PB_FORE,WM_WAIT)

Chapter 6 Programming

6-90

NOTE:

As an example, if teach data consisting of PTP axis interpolation data for two points is

acquired:

 1st point target axis angle ： Ｔ1[7]

 2nd point target axis angle ： Ｔ2[7]

When moving to the 1st point, if RMRC control is employed, the tip position/orientation

matches the 1st point target tip position/orientation. But, The possibility for each axis

angle to match is low. (This is the difficulty of the 7-axis manipulator control.)

To summarize, when arm arrived at 1st point, each axis angle cannot match T1[7].

Taking into account of such case, interpolation in axis angle feedback control calculates

the target angle every sampling moment interpolating the current axis angle and the next

target axis angle (T2[7]).

Interpolation processing with axis angle feedback control in the playback control, has a

slight difference from the method explained in the section 3.3.

In the section 3.3, the maximum interpolation number is obtained as the result of

dividing each axis angle deviation by each axis default velocity (θi) of 7 axes. Then,

interpolation processing is performed.

Regarding the axis angle control in playback control, only one axis default velocity can

be memorized as teach data. For this reason, all 7 axes are interpolated using one axis

default velocity (default = ２π[rad/sec]).

Chapter 6 Programming

6-91

６．１１．５ Playback control with teach data and other types.

 As described before, there are four teach data types.

The following explains t playback control type to be performed If these four data are put

together to employ:

① If PTP straight line and PTP axis interpolation data are put together to employ:

 When PTP straight line and PTP axis interpolation data are adjacent, here is how to

know which is RMRC feedback control or axis angle feedback control:

Teach data

 ○：PTP straight line interpolation data

 ●：PTP axis interpolation data

Trajectory

 ：RMRC (feedback) control ［includes position/orientation interpolation］

 ：Axis (feedback) control ［includes axis interpolation］

 ：Data to stop arm motion with step transmission (forward step, reverse step).

Feedback control system depends on an early number data type as follows:

 In this system, forward and reverse obtain the same result.

② If circle and arc are together to employ:

Here, how the arm stops if step transmission (pa_ply_pnt(ARM0, PB_FORES or

PB_BACKS, WMWAIT) is performed when PTP circle and arc interpolation data are

together to employ:

 ： Data to stop arm motion with step transmission

7 4
CircleArc

<6>

8 5<3><2> <1>

<10> <9>

<5>

<4><3><1> <2>

<6>

1 2

1 2

1 2

1 2

Chapter 6 Programming

6-92

６．１１．６ Differences between current point operation and playback control

Here are the differences when the current point is operated with pa_chg_pnt – without

moving arm – and when the current point is operated with pa_ply_pnt – moving arm–.

If the current point is operated with ・pa_chg_pnt:

As described before, the only number (closed with < >) being able to be the current

point can be changed. To summarize, after changing the current point with pa_chg_pnt,

motion control (pa_mov_pnt、pa_axs_pnt) is performed to the current point. Data to stop

arm are the only ones where flags are located below.

If the current poimt is operated with forward and reverse step of ・pa_ply_pnt.

Playback step control

 pa_ply_pnt(ARM0, PB_FORES, WM_WAIT) ：forward

 pa_ply_pnt(ARM0, PB_BACKS, WM_WAIT) ：reverse

Arm motion can be stopped only by data where flags are located.

1210

<11>
Arc Circle

9

Arc

<8>
138`

<16><15> <14>
5

<1>

<7>6
<4>

<3><2>

10 12

<11>
Arc Circle

9

Arc

<8>
13

8`

<16><15> <14>
5

<1>

<7>6
<4>

<3><2>

Chapter 6 Programming

6-93

 Difference whether the circle and arc can be stopped at the last data or not.

With this difference the following happens:

 For example:

 The arc is stopped at teach data 3. Current point <3>

 Issuing “pa_ply_pnt(ARM0, PB_FORES, WM_WAIT” three times. Arm is moved to

teach data 7. Current point <7>

・After issuing “pa_chg_pnt(ARM0, PM_PRIV, 0)” (the current point is returned to the prior

teach data.) or “pa_chg_pnt(ARM0, PM_JMP, 4)” (the current point is changed to the

teach data 4), if arm is moved to the current point with “pa_mov_pnt、pa_axs_pnt”:

 Arm is stopped at the teach data 4. (arc 1st point)

・If “pa_ply_pnt(ARM0, PB_BACKS, WM_WAIT)” (reverse step) is issued:

 Arm is stopped at the teach data 6. (arc 3rd point)

For circle, the same result is obtained.

5

Arc

<7>6<4>

<3>

Remark

Chapter 6 Programming

6-94

６．１１．７ JUMP rule

 When playback is performed, the method to make the arm move between two data not

directly linked as teach data, is called “JUMP rule.” JUMP rule can be broadly divided in

two. “Tacit JUMP”: the one not needing JUMP condition. “Conditional JUMP”: the

one needing JUMP condition.

① Tacit JUMP

 ”Tacit JUMP” interpolates an interval between the last and the top teach point only in

forward motion and actuates the arm. (The last and the top teach point described here

are located inside the same teach data “Key”.) Teach data is never automatically

changed by teach data “Key.” This means: the end of playback performance always

comes to the top teach point when in playback forward motion (Designated times are

performed.)

 For this case, the control method, motion velocity and velocity pattern employ the

last teach data.

② Conditional JUMP

 With JUMP condition inside teach data, teach data route is altered by force. This

method interpolates teach data commanded from the current teach point, or interval

between two teach points with ID designating Key. A playback route can be controlled

by inputting DI on account of employing this conditional JUMP.

 If ”tacit JUMP” and conditional JUMP are employed together, the following set-back

occurs:

 Creating JUMP condition for the teach data “Key 2” (designated ID), inside the teach

data “Key 1,” if no JUMP condition is set inside the teach data “Kwy 2,” motion is as

follows:

 Playback forward consecutive motion starts from teach data “Key１”.

 ↓

 JUMP to teach data “Key 2” (designated ID) with JUMP condition

 ↓ (Conditional JUMP processing)

 Playback teach data “Key 2”.

 ↓

 Arrival to the last teach point of teach data “Key 2”.

 ↓ (Tacit JUMP)

 Playback from the top of teach data “Key 2”.

As long as JUMP condition is not clearly designated, JUMP processing is not reversed

from teach data “Key 2” to teach data “Key 1”.

Remark

Chapter 6 Programming

6-95

６．１２ Tip offset control

 Method control to input offset value to the original playback trajectory when in RMRC

control during playback control.

Tip offset control can be divided broadly in two as follows:

・Coordinate conversion matrix control

 Parallel motiom conversion matrix control

 Rotational motiom conversion matrix control

 Work coordinate system conversion matrix control

・Tip position offset control

 Mechanical interface coordinate system

Absolute deviation offset control

 Mechanical interface coordinate system

Relative deviation offset control

 Base coordinate system

Absolute deviation offset control

 Base coordinate system

Relative deviation offset control

 Trajectory coordinate system

Absolute deviation offset control

 Trajectory coordinate system

Relative deviation offset control

Trajectory coordinate system means the one on the playback tip trajectory.

MMeemmoo

Chapter 6 Programming

6-96

６．１２．１ Coordinate conversion matrix control

 There are three coordinate conversions as follows:

 (a) parallel motion：Add offset (△Ｘ，△Ｙ and △Ｚ) to teach data.

 ：Parallel motion conversion matrix

 (b) Rotational motion：Add offset (△Ｙaw，△Ｐitch and △Ｒoll) to teach data.

 ：Rotational motion conversion matrix

 (c)Coordinate conversion：Replace data of teach data coordinate system on the work

coordinate system.

 ：Work coordination conversion matrix

 (a) and (b) are respectively explained here. If T-matrix including offset of both parallel

and rotational motion is changed to conversion matrix, parallel and rotational motion can

be performed simultaneously.

MMeemmoo

Chapter 6 Programming

6-97

(a) Parallel motion conversion control

 Parallel motion is performed through multiplying tip position/orientation (T-matrix) of

playblack trajectory created from teach data by the conversion matrix including offset

value (toward V, Y and Z) of the base coordinate system.

Program description:

① Acquires playback teach data. ：pa_add_pnt

② Sets parallel motion conversion matrix. ： pa_set_mtx

 Creates T-matrix adding offset (△Ｘ，△Ｙ，△Ｚ) toward X, Y and Z in the base

coordinate system. Unit is [mm].

 １ ０ ０ △Ｘ

 Ｔ ＝ ０ １ ０ △Ｙ

 ０ ０ １ △Ｚ

③ Moves the current point to the top teach data. ： pa_chg_pnt

 pa_mov_pnt

（or pa_axs_pnt）

④ Starts playback control. ： pa_ply_pnt

21

Y
43

65

Base coordinate
X

Z

21

Y
43

65

ΔX = 250.0[mm]

ΔY = -100.0[mm]

Base coordinate

X

Z

Trajectory after conversion

2` 1`

4` 3`

6` 5`

Chapter 6 Programming

6-98

Example: for Visual C++

 MATRIX mat;

 int i,j;

 ：

 pa_add_pnt(ARM0, PT_PTP); PTP linear interpolation data acquisition

 ：

 pa_add_pnt(ARM0, PT_PTP); PTP linear interpolation data acquisition

 for(i=0;i<3;i++){

 for(j=0;j<3;j++){

 if(i==j) mat[i][j] = 1.0;

 else mat[i][j] = 0.0;

 }

 }

 mat[0][3] = 250.0; △Ｘ＝ 250.0

 mat[1][3] = -100.0; △Ｙ＝-100.0

 mat[2][3] = 0.0; △Ｚ＝ 0.0

 pa_set_mtx(ARM0, mat); Conversion matrix setting

 pa_chg_pnt(ARM0, PM_TOP, 0); Current point alternation

 pa_mov_pnt(ARM0, WM_WAIT); Moves to the current point.

 pa_ply_pnt(ARM0, PB_FORE, WM_WAIT);

 Playback control starts

 (Parallel motion conversion matrix control is performed.)

Chapter 6 Programming

6-99

Example: for Visual BASIC

 Dim ret As Long

 Dim i As Integer

 Dim j As Integer

 Dim mat(3,2) As Single

 ：

 ret = pa_add_pnt(ARM0, PT_PTP)

 ：

 ret = pa_add_pnt(ARM0, PT_PTP)

 For i=0 To 2 Step 1

 For j=0 To 2 Step 1

 If i = j Then

 mat(i,j) = 1.0

 Else

 mat(i,j) = 0.0

 End If

 Next j

 Next i

 mat(3,0) = 250.0

 mat(3,1) = -100.0

 mat(3,2) = 0.0

 ret = pa_set_mtx(ARM0, mat(0,0))

 ret = pa_chg_pnt(ARM0, PM_TOP, 0)

 ret = pa_mov_pnt(ARM0, WM_WAIT)

 ret = pa_ply_pnt(ARM0, PB_FORE, WM_WAIT)

Chapter 6 Programming

6-100

(b)Rotational motion conversion matrix control

 Rotational motion is performed through multiplying tip position/orientation (T-matrix) of

playblack trajectory created from teach data by conversion matrix including rotation offset

value (on V, Y and Z axis) of the base coordinate system.

Program description:

① Acquires playback teach data. ：pa_add_pnt

② Sets rotational motion conversion matrix. ： pa_set_mtx

 Creates conversion matrix (T-matrix) adding rotation offset (△Yaw，△Pitch and △

Roll) on X, Y and Z axis in the base coordinate system.

 ｎx ｏx ａx ０

 Ｔ ＝ ｎy ｏy ａy ０

 ｎz ｏz ａz ０

③ Moves the current point to the top teach data. ： pa_chg_pnt

 pa_mov_pnt

（or pa_axs_pnt）

④ Starts playback control. ： pa_ply_pnt

2`

6`
3`

4`

ΔYaw, ΔPitch, ΔRoll

1 2
1`

65
4 3

Base coordinate

5`

Y

X
Z

21

Y
43

65

Base coordinate
X

Z

Chapter 6 Programming

6-101

 Example: for Visual C++

MATRIX mat;

 int i;

 ：

 pa_add_pnt(ARM0, PT_PTP); PTP linear interpolation data acquisition

 ：

 pa_add_pnt(ARM0, PT_PTP); PTP linear interpolation data acquisition

 for(i=0;i<3;i++) mat[i][3] = 0.0;

 ：

 T-matrix (noa section) creation

 ：

 pa_set_mtx(ARM0, mat); Conversion matrix setting

 pa_chg_pnt(ARM0, PM_TOP, 0); Current point alternation

 pa_mov_pnt(ARM0, WM_WAIT); Moves to the current point.

 pa_ply_pnt(ARM0, PB_FORE, WM_WAIT);

 Playback control satrts

 (Rotational motion conversion matrix control is performed.)

 Example: for Visual BASIC

 Dim mat(3,2) As Single

 Dim i As Integer

 Dim ret As Long

：

 ret = pa_add_pnt(ARM0, PT_PTP)

：

 ret = pa_add_pnt(ARM0, PT_PTP)

 For i=0 to 2 Step 1

 mat(3,I) = 0.0

 Next i

ret = pa_set_mtx(ARM0, mat(0,0))

ret = pa_chg_pnt(ARM0, PM_TOP, 0)

 ret = pa_mov_pnt(ARM0, WM_WAIT)

 ret = pa_ply_pnt(ARM0, PB_FORE, WM_WAIT)

Chapter 6 Programming

6-102

(c)Coordinate conversion matrix control

 Providing two matrixes: work coordinate and teach data coordinate matrix, the trajectory

in the teach data coordinate system is converted to the one in the work coordinate

system.

 Teach data coordinate system［NdOdAdPd］：Teach data acquisition coordinate system

 Work coordinate system ［NcOcAcPc］：Actual work coordinate system

 To convert the tip position/orientation [NOAP] of playback trajectory created from

teach data, into the work coordinate position/orientation [NOAP’], the deviation in teach

data coordinate is replaced to the one in the work coordinate.

 A set value is indicated with absolute position matrix [P] and orientation matrix [NOA].

 Only P is designated with a unit [mm]. As [NOA] is vector, it does not have a unit.

 For a set value, the current set conversion matrix is indicated as a default value.

 For resetting, a unit matrix has to be set for both absolute position matrix [P] and

orientation matrix [NOA]..

 For a set [NOA] matrix, the following checks are performed:

 ・Each N, O and A vector have to be a unit vector.

 ・A vector has to be a cross product of N and O vector.

 (N, O and A have to be a vector crossing each other at the right angle.)

教示データ座標系

先端位置[Ｐｎ]

先端姿勢[ＮＯＡｎ]

先端位置[Ｐｎ’]
先端姿勢[ＮＯＡｎ’]

ベース座標系

作業座標系

[Pd]

Y [Pc]

X
Z

Nd

Pn

Od Ad

Pn’Nc

Ac
Oc

0
0
0

0
0
1

0
1
0

1
0
0

[I]＝

Teach data coordinate system

Work coordinate system

Base coordinate system

tip position

tip position

tip orientation

tip orientation

Chapter 6 Programming

6-103

Program description:

① Acquires playback teach data. ：pa_add_pnt

② Sets T-matrix (=mat1) of teach data coordination system and T-matrix (=mat0) of

work coordination system.

： pa_set_mat

 Creates T-matrix (=mat1) of teach data coordination system and T-matrix (=mat0) of

work coordination system.

③ Moves the current point to the top teach data. ： pa_chg_pnt

 pa_mov_pnt

 （or pa_axs_pnt）

④ Starts playback control. ： pa_ply_pnt

 Example: for Visual C++

 MATRIX mat0, mat1;

 ：

 pa_add_pnt(ARM0, PT_PTP); PTP linear interpolation data acquisition

 ：

 pa_add_pnt(ARM0, PT_PTP); PTP linear interpolation data acquisition

 ：

 （Work coordinate matrix creation ：mat0）

 (teach data coordinate matrix creation：mat1)

 ：

pa_set_mat(ARM0, mat0, mat1); Conversion matrix setting

 pa_chg_pnt(ARM0, PM_TOP, 0); Current point alternation

 pa_mov_pnt(ARM0, WM_WAIT); Moves to the current point.

 pa_ply_pnt(ARM0, PB_FORE, WM_WAIT);

 Playback control starts

 (Coordinate conversion matrix control is performed.)

 Example: for Visual BASIC

 Dim mat0(3,2) As Single

 Dim mat1(3,2) As Single

 Dim ret As Long

：

 ret = pa_add_pnt(ARM0, PT_PTP)

：

 ret = pa_add_pnt(ARM0, PT_PTP)

：

ret = pa_set_mat(ARM0, mat0(0,0), mat1(0,0))

 ret = pa_chg_pnt(ARM0, PM_TOP, 0)

 ret = pa_mov_pnt(ARM0, WM_WAIT)

 ret = pa_ply_pnt(ARM0, PB_FORE, WM_WAIT)

Chapter 6 Programming

6-104

６．１２．２ Tip position offset control

 Method to control arm providing offset value in actual time in RMRC feedback control.

 If brake-stop or feedback control is performed, offset cannot be added.

 What is in RMRC feedback control:

 ・RMRC feedback control servo lock status

 ・When in playback control.(except PTP axis interpolation data)

 ・When in RMRC control motion to the current point.

 ・Waiting status for playback start

 There are three coordinate systems able to input offset value. For each of them, absolute

addition and relative addition are provided.

 Mechanical interface coordinate system Absolute deviation offset control

 Mechanical interface coordinate system Relative deviation offset control

 Base coordinate system Absolute deviation offset control

 Base coordinate system Relative deviation offset control

 Trajectory coordinate system Absolute deviation offset control

 Trajectory coordinate system Relative deviation offset control

Trajectory coordinate system means the one on the playback tip trajectory.

 Further, more is explained later.

MMeemmoo

Chapter 6 Programming

6-105

Absolute deviation

 If offset is issued, offset value is added on the basis of playback trajectory.

Relative deviation

 If offset is issued, offset value is added to the trajectory having previously added some

offset value.

Offset Pool method:

 Either absolute or relative deviation offset, offset value has a limit to be added, if needed,

in every cycle. Therefore, the method adopted is: to set the offset limit value added in

every cycle, creating offset pool, add the provided offset value little by little in several

cycle.

 For example, setting a limit value (5.0 mm) when in offset addition with absolute

deviation offset control (the base coordinate system), offset value (toward X +100.0mm) is

provided.

 Adding offset (5.0mm toward X in every cycle), at the twentieth cycle, it reachs 100.0

mm toward X.

+100mm

+20mm-70mm-50mm +50mm

Playback

Offset issued

Playback trajectory
 ＋offset

-100mm

+100mm

+20mm-70mm-50mm +50mm

Playback

Offset issued

Playback
trajectory
 ＋offset

-100mm

Chapter 6 Programming

6-106

《On absolute and relative deviation offset control in the trajectory coordinate system》

 Method to control adding offset value for playback trajectory coordinate system.

The playback trajectory coordinate system is changeable depending on data. Therefore,

the method adopted here is the provided offset value, using trajectory coordinate, when in

adding offset, converts to non changeable base coordinate, then, makes an addition to the

base coordinate system.

How to create playback trajectory coordinate system:

 Three teach points of PTP linear interpolation data are defined as P1, P2 and P3

＜Trajectory coordinate system 1 (ｘw1、ｙw1、ｚw1) from the 1st point P1 to the 2nd point P2＞

 The direction created by linking linearly from the 1st point P1 to the 2nd point P2 is the

direction of trajectory coordinate system 1 (ｘ w1、ｙw1、ｚw1). Solve the direction of

trajectory coordinate ｙ w1 through calculating the direction of mechanical interface

coordinate 1 and vector product of ｘw1 direction. Finally, Solve trajectory coordinateｚw1

from calculatedｘw1 and ｙw1 direction.

＜Trajectory coordinate system 2 (ｘw2、ｙw2、ｚw2) from the 2nd point P2 to the 3rd point P3＞

 Likewise, the direction created by linking linearly from the 2nd point P2 to the 3rd point P3

is the direction of trajectory coordinate system 2 (ｘw2、ｙw2、ｚw2). Solve the direction of

trajectory coordinate ｙ w2 through calculating the direction of mechanical interface

coordinate 1 and vector product of ｘw2 direction. Finally, Solve trajectory coordinateｚw2

from calculatedｘw2 and ｙw2 direction.

zW2

Trajectory
Coordinate 2

Mechanical interface
Coordinate 1

xW2z
P3

yW2
y P2

E1
x

E2

S3
W1W2

P6
z Z Tool

S2

Mechanical interface
Coordinate 1 y x xW1

S1

X P1

zW1 Base coordinate
yW1Trajectory

Coordinate 1
Y

Tool

Chapter 6 Programming

6-107

Program description:

① Starts playback control. ：pa_ply_pnt

 The tip position offset control is available only for the teach data able to control

RMRC feedback.

② Sets a limit value when in offset value addition. ：pa_lmt_xyz

Sets offset limit value being added in every cycle, with a [mm] unit. The upper limit

value is 1/100 (one hundredth) of linear limit velocity [mm/sec]. Its unit is

[mm/10msec]. If this value is exceeded, the following warnings occur. The limit

value is replaced with the upper one.

 ERR_MIS_PARAM –1051 the designated parameter value exceeds the setting

range.

③ Sets offset value and coordinate adding tip position offset. ： pa_odr_xyz

With “trans.Enable” of TRNSMAT structure (TRANSMAT trans) of “pa_odr_xyz”, sets

the designated coordinate and mode (absolute and relative deviation).

 MODE_xyz ：Mechanical interface coordinate system Absolute deviation

 （MODE_XYZ1 for Visual Basic）

Offset has to be set at “trans._xyz[3]”.

 MODEIxyz ：Mechanical interface coordinate system Relative deviation

（MODE_XYZ2 for Visual Basic）

 Offset has to be set at “trans.Ixyz[3]”.

 MODE_XYZ：Base coordinate system Absolute deviation

（MODE_XYZ3 for Visual Basic）

 Offset has to be set at “trans._XYZ[3]”

 MODEIXYZ：Base coordinate system Relative deviation

 （MODE_XYZ4 for Visual Basic）

 Offset has to be set at trans.IXYZ[3].

 MODE_wave：Trajectory coordinate system Absolute deviation

（MODE_WAVE1 for Visual Basic）

 Offset has to be set at trans._wave[3].

 MODEIwave ：Trajectory coordinate system Relative deviation

（MODE_WAVE2 for Visual Basic）

 Offset has to be set at trans.Iwave[3].

 For this example, with the base coordinate system absolute deviation offset control,

offset 10 mm toward X and 25 mm toward Z are added.

 trans.Enable = MODE_XYZ; trans.Enable = MODE_XYZ3

 trans._XYZ[0] = 100.0; trans.xyz21(0) = 100.0

 trans._XYZ[1] = 0.0; trans.xyz21(1) = 0.0

 trans._XYZ[2] = 25.0; trans.xyz21(2) = 25.0

 for Visual C++ for Visual BASIC

Chapter 6 Programming

6-108

 Example: for Visual C++

TRANSMAT trans;

 long data;

 ：

 pa_ply_pnt(ARM0, PB_FORE, WM_NOWAIT);Playback control starts

 data = 5.0; Limit value when in offset addition = 5.0[mm]

 pa_lmt_xyz(ARM0, data); Limit value setting when in offset addition

 trans.Enable = MODE_XYZ; Base coordinate system absolute deviation selection

 trans._XYZ[0] = 100.0; Offset value toward X = 10.0[mm]

 trans._XYZ[1] = 0.0; Offset value toward Y = 0.0[mm]

 trans._XYZ[2] = 25.0; Offset value toward Z = 5.0[mm]

 pa_odr_xyz(ARM0, &trans); Offset value setting

 ：

 Example: for Visual BASIC

Dim trans As TRANSMAT

Dim dat As Long

Dim ret As Long

 ：

ret = pa_ply_pnt(ARM0, PB_FORE, WM_NOWAIT)

dat = 5.0

ret = pa_lmt_xyz(ARM0, dat)

trans.Enable = MODE_XYZ3

trans.xyz21(0) = 100.0

trans.xyz21(1) = 0.0

trans.xyz21(2) = 25.0

ret = pa_odr_xyz(ARM0, trans)

 ：

Chapter 6 Programming

6-109

《Offset trajectory if PTP axis interpolation data is included in teach data》

 As described before, offset control is available when in playback during RMRC feedback

control. At brake-stop status, when in playback during axis feedback control, offset

control is not available. Therefore, if PTP axis interpolation data is together with teach

data, be aware: the trajectory after offset addition will be as follows:

 If PTP axis interpolation data is included in teach data, between forward playback and

reverse control, playback trajectory may be different after offset addition. With teach

data including only PTP axis interpolation data, offset cannot be added.

 Forward playback Reverse playback

Example 1

Example 2

Example 3

Example 4

･･･ Teach data after offset value addition

･･･ Teach data (PTP linear interpolation data)

･･･ Teach data (PTP axis interpolation data)

･･ Playback trajectory + offset value (RMRC feedback control)

 ･･ Playback trajectory

･･ Playback trajectory + offset value (axis feedback control)

･･ Playback trajectory

32 1

32 1

32 1

32 1321

3 2 1

3 2 1

3 2 1

Chapter 6 Programming

6-110

６．１３ Cube Interference

 （１）Cube interference area

Cube interference area is the function to prevent interference from surrounding

machines and tools.

24 (twenty four) cube interference area can be set at maximum.

Cube interference area is set parallel to the base coordinate system.

If the arm interferes with the cube, this arm happens to be automatically in a brake-stop

status. An error is indicated.

 （２）Setting methods:

There are three ways to set cube interference area as follows:

① Input numerically the maximum/minimum value of cube coordinate.

② Move the manipulator to the cube maximum/minimum value position with the axis

operation.

Cube interference

Maximum value

Minimum value

X axis

Z axis

Y axis

X axis

Z axis

Y axis

Maximum value

Minimum value

Chapter 6 Programming

6-111

③ After numerically inputting the cube three side length (axis length), move

the manipulator to the center poimt.

X axis

Z axis

Y axis

Z

Y
X

Center point

Chapter 6 Programming

6-112

６．１４ Parameter setting

 In the motion control section, arm parameter information is as follows:

The details can be seen from the operation control section with “pa_get_prm”. But, It

cannot be altered directly by a program. For alteration, use the operation support

program (parameter setting).

This method can be referred to the operation support program (parameter setting)

instructions.

 If the parameter is altered except the ● marked ones, control cannot

be guaranteed.

Arm parameter outline

 Designations Types Config. Details

●＊１ PUL float [0-6] Ｓ１～W2 axis upper angle limit [rad]

●＊１ PDL float [0-6] Ｓ１～W2 axis lower angle limit [rad]

 VEL float [0-6] Ｓ１～W2 axis velocity limit [rad/sec]

 [7] Linear motion velocity limit [mm/sec]

 [8] Rotational motion velocity limit [rad/sec]

● DEV float [0-6] Ｓ１～W2 axis standard motion velocity [rad/sec]

● [7] Standard Linear motion velocity [mm/sec]

● [8] Standard rotational motion velocity [rad/sec]

 LIM float [0-6] Teach modeＳ１～W2 axis velocity limit [rad/sec]

 [7] Teach mode Linear motion velocity limit [mm/sec]

 [8] Teach mode Rotational motion velocity limit [rad/sec]

● CEH float [0-6] Teach mode Ｓ１～W2 axis fast motion velocity [rad/sec]

● [7] Teach mode fast linear motion velocity [mm/sec]

● [8] Teach mode fast rotational motion velocity [rad/sec]

● CEM float [0-6] Teach mode Ｓ１～W2 axis mid motion velocity [rad/sec]

● [7] Teach mode linear mid motion velocity [mm/sec]

● [8] Teach mode rotational mid motion velocity [rad/sec]

● CEL float [0] Teach mode Ｓ１～W2 axis slow motion velocity [rad/sec]

● [7] Teach mode linear slow motion velocity [mm/sec]

● [8] Teach mode rotational slow motion velocity [rad/sec]

 PG1 float [0-2] Robot coordinate RMRC control X, Y and Z direction gain

 [3-5] Robot coordinate RMRC control X, Y and Z rotational

direction gain

 [6] Position control integral calculus gain

 PG2 float [６] Ｓ１～W2 axis control gain

 VG1 float [0-2] Tip coordinate RMRC control X, Y and Z direction gain (not

used)

 [3-5] Tip coordinate RMRC control X, Y and Z rotational

direction gain (not used)

 [6] Orientation control integral calculus gain

 TG1 float [0-6] Not used

 PCM float [0] Angle control large size (S1, S2) motor angle deviation

anomalous threshold value [rad]

RReeffeerreennccee

WARNING

Chapter 6 Programming

6-113

 [1] Angle control mid size (S3, E1) motor angle deviation

anomalous threshold value [rad]

 [2] Angle control small size (E2, W1, W2) motor angle deviation

anomalous threshold value [rad]

 [3] RMR control position deviation anomalous threshold value

[mm]

 [4] RMR control orientation deviation anomalous threshold

value [mm]

 [5] SC method linear/rotational velocity limit coefficient

(threshold value creation)

 [6] SC method axis velocity limit coefficient (threshold value

creation)

 ： ：

Chapter 6 Programming

6-114

Arm parameter outline

 Designations Types Config. Details

● FCM float [0] RMRC control start-up time [sec]

● [1] RMRC control shut-down time [sec]

● [2] Axis control start-up time [sec]

● [3] Axis control shut-down time [sec]

 [4] Direct control parameter (deceleration ratio)

 [5] Singularity caution W1 axis position

 [6] Singularity caution W1 axis position

 ARL float [0-6] Arm length (S1-S2) ～ (W2-Tool installment position)

[mm]

 ARG float [0-6] Arm gravity center (S1-S2) ～ (W2-Tool installment

position) [mm]

 ARW float [0-6] Arm weight （S1-S2）～（W2-TOOL）[[kg]

● HOM float [0-6] Home position S1～W2 angle [rad]

● SAF float [0-6] Safety position S1～W2 angle [rad]

● ESC float [0-6] Escape position S1～W2 angle [rad]

● TOL float [0-2] Tool length X, Y and Z direction [mm]

 [3-5] Not used

● [6] Tool offset [mm]

 FVL float [0] Position integral calculus element limit

 [1] Orientation integral calculus element limit

 [2] Taper rate when in singularity escape

 [3-6] Not used

 DMY long [0-6] Not used

 SPA long [0] Servo driver type＊２

 [1] Arm controller numbers＊３

 [2] Arm axis numbers＊４

 [3､4] Not used

 [5] RETRAC parameter valid flag ＊５

 [6] RETRAC parameter adjustment mode flag＊６
＊１ Within ranges shown in axis charts below, upper and lower angle limit can be set.

6-axis arm Ｓ１ Ｓ２ Ｓ３ Ｅ１ Ｅ２ Ｗ１ Ｗ２

Upper limit [deg]
１７７ １２４ Not

used

１５８ ２５５ １６５ ２５５

Lower limit [deg]
－１７７ －６４ Not

used

－１０７ －２５５ －１６５ －２５５

7-axis arm Ｓ１ Ｓ２ Ｓ３ Ｅ１ Ｅ２ Ｗ１ Ｗ２

Upper limit [deg] １７７ ９４ １７４ １３７ ２５５ １６５ ２５５
Lower limit [deg] －１７７ －９４ －１７４ －１３７ －２５５ －１６５ －２５５

＊２ Servo driver type ：New type servo =０、Old type 7-axis servo = 7, 8-axis servo = 8
＊３ Possible arm controller numbers : usually 2 controllers
＊４ Arm axis numbers ：6-axis arm = 6, 7-axis arm = 7 (except 6)
＊５ RETRAC parameter valid/invalid：not used ＝０

 (Only one arm can be used. When in valid, RETRAC initialization is processed.)
＊６ RETRACadjustment mode ：not used ＝０

 （It is needed for motion to create ROB and TOL file.）

Chapter 6 Programming

6-115

６．１５ Error Information

 Error information is broadly divided in two, as follows:

・ Errors recognized by a PA library and a driver of the operation control section.

・Errors recognized by the motion control section

 If motion control recognizes an error, control status might be converted.

 More explanation, next page.

・PA library recognition errors;

Error No. Details

-1 The specified file does not exist

-2 File read failure

-3 File write failure

-4 Failed to Interrupt into 486

-5 pa_opn_arm() not executed

-6 Memory allocation failure

-7 Parameters are not allowed to be modified while control

-8 A specified degree of Teaching data is out of range

-20 Designated arm not exist

-21 Designated axis not exist

-22 Designated driver not exist

-23 Incorrect mode of playback motion

-24 Wrong Teaching point deletion type

-25 Wrong modification type for Teaching point attribution

-26 Wrong attribution of registered point velocity profile

-27 Wrong data type for Teaching point

-28 Wrong Teaching point operation type

-29 Incorrect mode of default velocity change

-30 Wrong control mode type for velocity

-31 Wrong control mode type for redundant axis

-32 Wrong operation type for redundant axis

-33 Wrong control mode type for target tip matrix

-34 Wrong direct control type

-35 Wrong digital input/output port designation

-36 Wrong digital input/output channel designation

-37 The error code is not defined

-38 Wrong digital input/output board designation

-39 Wrong digital input/output DI or DO designation

-40 Project is not loaded

・WinRT (driver) recognition errors;

Error No. Details

-100 Error occurred in WinRTUnMapMemory

-101 Error occurred in WinRTUnMapMemory2

-200 Error occurred in WinRTOpenNamedDevice

-201 Error occurred in WinRTGetFullConfiguration

-300 Error occurred in WinRTMapMemory

-301 Error occurred in WinRTMapMemory2

Chapter 6 Programming

6-116

６．１５．１ Status conversion outline when error occurs

 For control section recognition error or control status conversion by warning,

depending on a controller (motion control/servo driver) occurring (recognizing) error, the

difference is as follows:

・warning information →Control status continuing

 Among errors recognized by the motion control section, one identified as “warning,” can

be controlled. The motion control might automatically change command value depending

on the error, but, control continues.

・Error information (level 1) →Brake-stop (Communication status continuing)

 Among errors recognized by the motion control section, one identified as “error (level

1),” cannot be controlled. The motion control sets the command (brake-on) to the servo

driver, its control status shifts to a brake-stop. As the servo driver status is in control

continuing communication, control commands can be issued at the remaining status.

・Error information (level 2) →Brake-stop (Communication-stop)

With an error recognized by a servo driver, the servo driver status shifts to “waiting.”

The motion control status shifts to brake-stop (communication-stop.) Before issuing

control command, communication-start with a servo driver is needed.

Receiving communication-start command, the servo driver clears errors, then shifts to be

in control.

ブレーキ

停止状態

ｻｰﾎﾞ制御中
通信中

ブレーキ
停止状態

ｻｰﾎﾞ待機中
通信停止

運動制御　制御中

ｴﾗｰ発生
(ﾚﾍﾞﾙ１) ﾄﾙｸ制御 ON

ﾌﾞﾚｰｷ停止

制御ＯＮ

ｴﾗｰ発生
(ﾚﾍﾞﾙ１)

ｴﾗｰ発生
(ﾚﾍﾞﾙ２)

通信開始

通信停止 ｴﾗｰ発生
(ﾚﾍﾞﾙ２)

　各軸制御状態
　位置姿勢制御状態
（ｻｰﾎ：速度ｻｰﾎﾞ状態）

ﾀﾞｲﾚｸﾄ制御状態
（ｻｰﾎ：ﾄﾙｸｻｰﾎﾞ状態）

motion control
 control continues

error

(level-1) error

(level-2)

error

(level-1)

error

(level-1)

Brake

stop

Brake

stop

Brake stop

communication

start

communication

stop

control ON torque control ON

servo stop

communication stop

servo continues

communication start

direct control status

(servo:torque status)
axis control status

RMRC control status

(servo:speed status)

MMeemmoo

Chapter 6 Programming

6-117

 （１）Warning information →Control Status continuing

 Warnings occurring in arm motion controller, are as follows:

Control status is not converted.

Error No. Details

-1000 You are not allowed to access the controller

-1001 Format do not match with command

-1002 Unavailable command under the current mode

-1003 Command invalid

-1004 The specified arm No. does not exist

-1005 Download New ROB File

-1006 Download New TOL File

-1010 S1 axis exceeding speed limit

-1011 S2 axis exceeding speed limit

-1012 S3 axis exceeding speed limit

-1013 E1 axis exceeding speed limit

-1014 E2 axis exceeding speed limit

-1015 W1 axis exceeding speed limit

-1016 W2 axis exceeding speed limit

-1018 Exceeding tip position velocity limit

-1019 Exceeding tip orientation velocity limit

-1020 S1 axis exceeding safety angle

-1021 S2 axis exceeding safety angle

-1022 S3 axis exceeding safety angle

-1023 E1 axis exceeding safety angle

-1024 E2 axis exceeding safety angle

-1025 W1 axis exceeding safety angle

-1026 W2 axis exceeding safety angle

-1030 S1 axis exceeding the motion limit of the target angle

-1031 S2 axis exceeding the motion limit of the target angle

-1032 S3 axis exceeding the motion limit of the target angle

-1033 E1 axis exceeding the motion limit of the target angle

-1034 E2 axis exceeding the motion limit of the target angle

-1035 W1 axis exceeding the motion limit of the target angle

-1036 W2 axis exceeding the motion limit of the target angle

-1038 NOA calculation cannot be executed

-1039 Generation not allowed for keeping Teaching data sequence

-1040 Memory allocation failure

-1041 Prior procedure needed to issue this command

-1042 Wrong designation for circle or arc

-1043 Next pointer not exist

-1044 Previous pointer not exists

-1045 End of Playback Data

-1046 Playback data not existed

-1047 Failed to find playback data

-1048 Accepted as replace command

-1049 Accident of pointer management

-1050 Target value is out of control area. (Arm length is not enough.)

Chapter 6 Programming

6-118

Error No. details

-1051 Designated parameter exceeded available setting range

-1060 Designated NOA is not appropriate

-1061 End of CP Data is Retrieved as Each Axis Attribution

-1062 Exceeding RMRC controllable range

-1063 Not Available while retrieving CP Data

-1064 Exceeded max No. of interpolation

-1065 Can not generate circle or arc

-1070 S1 axis exceeding angle limit in velocity control

-1071 S2 axis exceeding angle limit in velocity control

-1072 S3 axis exceeding angle limit in velocity control

-1073 E1 axis exceeding angle limit in velocity control

-1074 E2 axis exceeding angle limit in velocity control

-1075 W1 axis exceeding angle limit in velocity control

-1076 W2 axis exceeding angle limit in velocity control

-1080 Too large or too small designated value

-1081 Can not approached by each axis control

-1098 Continuous operation not allowed in teaching mode

-1099 Changed into teaching mode by external operation

-1100 Teach lock can not be turned on except in teaching mode

-1101 Teaching data for specified key not exist

-1103 Cannot change the key of Teaching data

-1200 Interfere range specified No. error

-1201 Having another cube attribution, side length can not be set to this cube

-1202 Having another cube attribution, upper limit teach can not be given to this cube

-1203 Having another cube attribution, lower limit teach can not be given to this cube

-1205 Having another cube attribution, center value teach can not be given to this

cube

-1206 Unknown cube parameter settings

-1207 Having another cube attribution, can not set the information to this cube

-1249 Wrong designating number of key acquisition

-1250 The Teaching data specified by Key doesn't have the specified ID attribute

-1251 Designated teaching point doesn't have JUMP data

-1252 The Teaching data specified by Key doesn't have the number's JUMP data

-1253 The Teaching point specified by ID attribute doesn't have JUMP data

-1254 JUMP data set in teaching point attribute not found

-1255 Wrong parameter for retrieving and setting JUMP data

-1256 Wrong parameter for retrieving and setting JUMP data

-1300 Socket generation failure

-1311 Failed to bind socket and address

-1312 Listen failure

-1313 Accept failure

-1314 Socket sending failure

-1315 Not used

-1316 Too many connected clients

-1350 The motion velocity of the parameter is exceeding the velocity limit. Invalid

parameter

Chapter 6 Programming

6-119

 （２）Error Information (Level 1) →Brake is active (Communication status continuing)

 Errors occurring when in arm motion controller operation.

With an uncontrollable error, control status changes into a brake-stop status.

Error No. Details

-2017 Exceeding RMRC controllable arm length during the motion

-2020 S1 axis exceeding axis limit angle

-2021 S2 axis exceeding axis limit angle

-2022 S3 axis exceeding axis limit angle

-2023 E1 axis exceeding axis limit angle

-2024 E2 axis exceeding axis limit angle

-2025 W1 axis exceeding axis limit angle

-2026 W2 axis exceeding axis limit angle

-2030 S1 axis exceeding angle limit in direct control

-2031 S2 axis exceeding angle limit in direct control

-2032 S3 axis exceeding angle limit in direct control

-2033 E1 axis exceeding angle limit in direct control

-2034 E2 axis exceeding angle limit in direct control

-2035 W1 axis exceeding angle limit in direct control

-2036 W2 axis exceeding angle limit in direct control

-2051 Can not turn into RMRC control from the current position

-2060 S1 resolver deviation error

-2061 S2 resolver deviation error

-2062 S3 resolver deviation error

-2063 E1 resolver deviation error

-2064 E2 resolver deviation error

-2065 W1 resolver deviation error

-2066 W2 resolver deviation error

-2070 Stopped automatically by exceeding checking time

-2071 Did not reach target value

-2080 S1 Axis Sync. Error (Exceeding deviation limit)

-2081 S2 Axis Sync. Error (Exceeding deviation limit)

-2082 S3 Axis Sync. Error (Exceeding deviation limit)

-2083 E1 Axis Sync. Error (Exceeding deviation limit)

-2084 E2 Axis Sync. Error (Exceeding deviation limit)

-2085 W1 Axis Sync. Error (Exceeding deviation limit)

-2086 W2 Axis Sync. Error (Exceeding deviation limit)

-2087 X axis synchronization error in RMRC control

-2088 Y axis synchronization error in RMRC control

-2089 Z axis synchronization error in RMRC control

-2090 Velocity deviation error

-2091 Tip orientation deviation error in RMRC control

-2100 Interfering to cube

-2200 Motion can not be continued or started at the arm singular point

-2201 Motion can not be continued or started at the arm singular point

-2202 Motion can not be continued or started at the arm singular point

Chapter 6 Programming

6-120

 （３）Error Information (Level 2) →Brake is active（Communication terminated）

Errors occurring in arm servo driver. Control status changes into a brake-stop status.

Error No. Details

-3000 Control not started

-3001 Emergency stop has been pressed

-3002 Arc net communication error

-3003 S1 limit switch error

-3005 Servo driver type doesn't match designated parameter

-3070 Communication integral servo (master) status error

-3071 Servo driver (S1) status error

-3072 Servo driver (S2) status error

-3073 Servo driver (S3) status error

-3074 Servo driver (E1) status error

-3075 Servo driver (E2) status error

-3076 Servo driver (W1) status error

-3077 Servo driver (W2) status error

-3091 Error at issuing communication/control start command

-3092 Error at issuing communication/ control terminate command

-3093 Error at issuing initializing command

-4000 Mode management error

Anomalous servo status is shown when occurring alarm is not 00H.

Refer to each servo status.

RReeffeerreennccee

Chapter 6 Programming

6-121

Communication control (master) CPU status:

bit Error details Movement when

in anomalous

status

15

１：Non control mode
14

Control

Mode ０：Control mode

１：limit switch off
13

Limit switch

status ０：limit switch on

１：Switch on during teaching
12

Switch status

during teaching ０：Switch off during teaching

 0x00 Normal

 0x01

 0x02 Anomalous EEPROM

 0x03 Anomalous ARCNET initialization

Do not convert to

control mode (*1)

11 0x04 Anomalous CPU

| Occurring alarm 0x05 Anomalous upper controller

communication cycle

4 0x06 Anomalous power supply temperature

 0x07 Anomalous 100V output

Converts to

adjustment/ stop

mode. (*1)

 ：

 0x10 Anomalous other CPU

 0x11 Emergency stop switch on

 0x12 Dead man switch off

 0x13 Limit switch on

Converts to

adjustment/ stop

mode.

 ：

１：Emergency stop switch off
3

Emergency stop

switch status ０：Emergency stop switch on

１：Generating 100V power
2

100V

generating status ０：Stop generating 100V power

１：Anomalous power supply temperature

1

power supply

temperature

status

０：Normal

１：Dead man switch on
0

Dead man switch

status ０：Dead man switch off

(*1) If alarm at 0x02～0x07 occurs in communication control CPU, it is different

from any other CPU anomaly. Servo CPU instantly stops arm motion with

“brake on/servo off.”

Chapter 6 Programming

6-122

Servo driver (S1 ～ W2) status:
bit bit Error details

１：Servo OFF（Brake ON）
15

Servo
ON/OFF ０：Servo ON（Brake OFF）

１：Non control mode
14

Control
Mode ０：Control mode

13
12
 0x00 Normal
 0x01 Anomalous shared memory

Do not convert to

control mode
 0x02 Anomalous EEPROM

Do not convert to

control mode
 0x03
 0x04 Anomalous CPU
 0x05 Anomalous communication CPU

transmission cycle

11
Occurring 0x06 Anomalous velocity deviation

|
alarm 0x07 Anomalous resolver deviation Brake on/servo off

4 0x08 Anomalous position limit exceeded Brake on/servo off
 0x09 Anomalous motor torque
 0x0A Anomalous IPM
 0x0B Anomalous brake

severance/short-circuit

 0x0C Anomalous resolver (motor side)
severance/short-circuit

 0x0D Anomalous resolver (gear side)
severance/short-circuit

 0x0E Anomalous overcurrent
 0x0F Anomalous overvelocity
 0x10 Anomalous different CPU
 0x11 Emergency stop switch on Servo lock when in

anomaly occurrence，

 0x12 Dead man switch off After a certain time,

brake-on.

 0x13 Limit switch on After a certain time,

servo-off.

 ：
 0xFF Anomalous communication cycle

(*1)

3
2

１：Angle - side limit operation forbidden
- side drive 1

Forbidden
status
- side drive ０：Normal

１：Angle + side limit operation forbidden
+ side drive 0

Forbidden
status
+ side drive ０：Normal

Chapter 6 Programming

6-123

(*1) Anomalous communication cycle: servo CPU always provides CPU information

in constant cycle to communication control CPU. If this information transmission

stops for a certain time, communication control CPU recognizes its servo CPU as

anomalous communication cycle.

(Example) For ０ｘC060

０ｘ C ０６ ０

 C：（Control mode） →Servo OFF + Non control mode

 ０６：（Current alarm） →Anomalous velocity deviation

 ０：（Drive forbidden） →Normal

Chapter 6 Programming

6-124

Chapter 7 Library Reference

7- 1

Chapter 7 Library Reference

Chapter 7 & 8 are for PA library reference.

Regarding a header file, two types below are explained to be included following an

application development language.

 ・Visual C++ (Windows)

 ・Visual BASIC (Windows)

For function reference, it is explained as C programming language.

Chapter 7 Library Reference

7- 2

＜Header file for Visual C++ (Windows)＞

・Data types with specific significance:

typedef float MATRIX[3][4]; 3×4 matrix indicating the tip position/orientation, etc.

 ｎx ｏx ａx ｐx

 ｎy ｏy ａy ｐy

 ｎz ｏz ａz ｐz

typedef float NOAMAT[3][3]; 3×3 matrix indicating the tip orientation,

 ｎx ｏx ａx

 ｎy ｏy ａy

 ｎz ｏz ａz

typedef float VECTOR[3]; Tip position vector, etc.

 （ ｐx，ｐy，ｐz ）

・Data types when in processing end:

 #define WM_WAIT 0 Returns from function after processing ends.

 #define WM_NOWAIT 1 Returns from function before processing ends.

Chapter 7 Library Reference

7- 3

 PA library Data Structure （for Windows Visual C++）

・Axis data structure： 6-axis/7-axis angle storing structure:

 typedef struct {

 float s1; S1 axis value [rad]

 float s2; S2 axis value [rad]

 float s3; S3 axis value [rad]

 float e1; E2 axis value [rad]

 float e2; E3 axis value [rad]

 float w1; W1 axis value [rad]

 float w2; W2 axis value [rad]

 }ANGLE, *ANGLEP;

・Arm Status Structure： Structure set by the motion controller:

 typedef struct {

 long max; Board controllable arm numbers 1or2

 long arm; Arm identification number 0or1

 long axis; Arm axis numbers

 long typ; Arm type

 long drv; Servo driver classification

 long dio; Extension DIO board exist / not exist

 long remote; operation mode (valid / invalid)

 long count; Control counter value

 long error; Error code

 ANGLE angle; Current axis value

 MATRIX noap; Current tip orientation matrix

 float ypr[3]; Current orientation

 }ARMSTATUS, *ARMSTATUSP;

Chapter 7 Library Reference

7- 4

 PA library Data Structure （for Windows Visual C++）

・Parameter Structure:

 typedef struct{

 float rezl; Resolver resolution

 long pul[7]; Position limiter（＋）

 long pdl[7]; Position limiter（－）

 long vel[7+2]; Velocity limiter

 long dev[7+2]; Default velocity

 float lim[7 + 2];

 float ceh[7 + 2];

 float cem[7 + 2];

 float cel[7 + 2];

 float pg1[7]; Position control gain１

 float pg2[7]; Position control gain２

 float vg1[7]; Velocity control gain

 float tg1[7]; Force control gain

 float pcm[7]; position control selection matrix

 float fcm[7]; Force control selection matrix

 float arl[7]; Arm length

 float arg[7]; Axis gravity center position

 float arw[7]; Axis weight

 float hom[7]; Home position recovery target value

 float saf[7]; Safety position recovery target value

 float esc[7]; Escape position recovery target value

 float tol[7]; Tool parameter

 float fvl[7];

 long dmy[7];

 long spa[7]; Spare

 }PARAM, *PARAMP;

・Digital I/O Sstructure:

 typedef struct{

 unsigned char io1;

 unsigned char io2;

 unsigned char io3;

 unsigned char io4;

 }DIOSTATUS, *DIOSTATUSP;

Chapter 7 Library Reference

7- 5

 PA library Data Structure （for Windows Visual C++）

・Teach data structure:

 typedef struct {

 float agl[7]; S1 axis value

 S2 axis value

 S3 axis value

 E1 axis value

 E2 axis value

 W1 axis value

 W2 axis value

 float ｖｅｌ[2]; Tip linear motion velocity[mm/sec]

 Axis /Tip rotational motion velocity [rad/sec]

 long atr[12]; Teach data type：PTP／PTP(NOAP)

 Interpolation method：Axis/Straight line/Circle/Arc

 Axis control arm stop accuracy[]

 RMRC control arm stop accuracy []

 Velocity interpolation pattern：Constant

velocity/start up/shutdown/start up +

shutdown

 Start up time : Acceleration time designation[msec]

 Shutdown time : Deceleration time designation [msec]

 JUMP data number : Number specifying JUNP

condition

 DO output

 Waiting time : Motion start delay time[msec]

 }PNTPNT, *PNTPNTP;

typedef struct {

 PLYPNT pnt;

 char cmt[32]; Comment

} PLAY, *PLAYP;

typedef struct {

 float xyz[3]; Position : Arm XYZ coordinate [mm]

 float noa[3][3]; Position ：Arm NOA

} NOAP, *NOAPP;

Chapter 7 Library Reference

7- 6

 PA library Data Structure （for Windows Visual C++）

・JUMP Data Structure:

typedef struct {

 long cnd[2]; JUMP conditional number

 Spare

 long xdi; DI condition for Conditional appraisal

 long tim; Time out

 long key; JUMP destination teach data Key

 long pid; JUMP destination teach point ID

 long cnt;

}JUDGE, *JUDGEP;

typedef struct {

 long cid;

 JUDGE jdg[8];

}JUMP, *JUMPP;

typedef struct { ．．．．Teach data structure

 PLAY ply;

 NOAP noa;

 JUMP jmp;

}PNTDAT, *PNTDATP;

Chapter 7 Library Reference

7- 7

 PA library Data Structure （for Windows Visual C++）

・Sensor correction data structure:

 typedef struct {

 long Enable; Designation bit

 float _xyz[3]; Mechanical interface coordinate absolute

deviation correction value

 float Ixyz[3]; Mechanical interface coordinate relative

deviation correction value

 float _XYZ[3]; Base coordinate absolute deviation

correction value

float IXYZ[3]; Base coordinate relative deviation correction

value

 float _wave[3]; Trajectory coordinate absolute deviation

correction value

 float Iwave[3]; Trajectory coordinate relative deviation

correction value

 } TRANSMAT, *TRANSMATP;

・Arm target value structure:

 typedef struct {

 ANGLE angle; Target value

 MATRIX noap; Tip position/orientation matrix

 float ypr[3]; Tip position

 } ARMTARGET, *ARMTARGETP;

・Structure to send commands from the motion control to the servo driver:

typedef struct {

 long sig;

 long trq;

 long vel;

} O8DRIVE;

・Structure to send commands from the servo driver to the motion control:

typedef struct {

 long sts;

 long agl;

 long vel;

 long trq;

} I8DRIVE;

Chapter 7 Library Reference

7- 8

 PA library Data Structure （for Windows Visual C++）

・CUBE information structure

typedef struct{

 long ena; Cube information Valid/Invalid

 long mod; Mode when in cube creation

 float max[3]; Maximum value／Side length

 float min[3]; Minimum value／Center

 char cmt[32]; Comment

} CUBE, *CUBEP;

・Debug structure:

typedef struct {

 long ldbg[16];

 float fdbg[32];

} DEBG, *DEBGP;

Chapter 7 Library Reference

7- 9

 PA library characteristic type definition （for Windows Visual C++）

・Data transmission format numbers:

#define COM_FMT00 0

#define COM_FMT01 1

#define COM_FMT02 2

#define COM_FMT03 3

#define COM_FMT04 4

#define COM_FMT05 5

#define COM_FMT06 6

#define COM_FMT07 7

#define COM_FMT08 8

#define COM_FMT09 9

#define COM_FMT10 10

#define COM_FMT11 11

・Arm classification：Control arm number selection:

 typedef unsigned long ARM;

 #define ARM0 (ARM)0 Arm No. 0 selection

 #define ARM1 (ARM)1 Arm No. 1 selection

 #define ARM2 (ARM)2 Arm No. 2 selection

 #define ARM3 (ARM)3 Arm No. 3 selection

 #define ARM4 (ARM)4 Arm No. 4 selection

 #define ARM5 (ARM)5 Arm No. 5 selection

 #define ARM6 (ARM)6 Arm No. 6 selection

 #define ARM7 (ARM)7 Arm No. 7 selection

 #define ARM8 (ARM)8 Arm No. 8 selection

 #define ARM9 (ARM)9 Arm No. 9 selection

 #define ARM10 (ARM)10 Arm No. 10 selection

 #define ARM11 (ARM)11 Arm No. 11 election

 #define ARM12 (ARM)12 Arm No. 12 selection

 #define ARM13 (ARM)13 Arm No. 13 selection

 #define ARM14 (ARM)14 Arm No. 14 selection

 #define ARM15 (ARM)15 Arm No. 15 selection

Chapter 7 Library Reference

7- 10

 PA library characteristic type definition （for Windows Visual C++）

・Axis classification：Control axis number selection:

 typedef unsigned long AXIS;

 #define S1 (AXIS)0x01 S1 axis designation

 #define S2 (AXIS)0x02 S2 axis designation

 #define S3 (AXIS)0x04 S3 axis designation

 #define E1 (AXIS)0x08 E2 axis designation

 #define E2 (AXIS)0x10 E3 axis designation

 #define W1 (AXIS)0x20 W1 axis designation

 #define W2 (AXIS)0x40 W2 axis designation

 #define AXISALL (S1|S2|S3|E1|E2|W1|W2)

 #define ALLAXIS (S1|S2|S3|E1|E2|W1|W2)

#define LOCKAXIS_S1 (S2|S3|E1|E2|W1|W2)

 #define LOCKAXIS_S3 (S1|S2|E1|E2|W1|W2)

・Servo driver classification：Control servo driver number selection:

 typedef unsigned long DRIVER;

 #define DRV1 (DRIVER)0 Servo driver 1 (S1, S2)

 #define DRV2 (DRIVER)1 Servo driver 2 (S3, E1)

 #define DRV3 (DRIVER)2 Servo driver 3 (E2, W1)

 #define DRV4 (DRIVER)3 Servo driver 4 (W2)

Chapter 7 Library Reference

7- 11

 PA library characteristic type definition （for Windows Visual C++）

・Playback motion classification:

 typedef unsigned long PLAYBACK;

 #define PB_FORES (PLAYBACK)0 Forward playback step motion

 #define PB_FOREB (PLAYBACK)1 Not available

 #define PB_FORE (PLAYBACK)2 Forward playback consecutive

motion

 #define PB_BACK (PLAYBACK)3 Reverse playback consecutive

motion

・Teach data deletion operation classification:

 typedef unsigned long PNTDEL;

 #define PD_CUR (PNTDEL)0x7500 Current point teach data deletion

 #define PD_FORE (PNTDEL)0x7501 Previous current point teach data

deletion

 #define PD_ALL (PNTDEL)0x7502 All active teach data deletion

 #define PD_ALLDATA (PNTDEL)0 All teach data deletion

・Teach data attribution alteration classification:

 typedef unsigned long PNTATTR;

 #define PA_CHGVEL (PNTATTR)0x7300 Linear velocity alteration

 #define PA_CHGWAIT (PNTATTR)0x7301 Wait time alteration

 #define PA_VELPTN (PNTATTR)0x7302 Velocity interpolation

#define PA_ROTVEL (PNTATTR)0x7303 Rotational velocity alteration

#define PA_AXSACC (PNTATTR)0x7304 Each axis precision

#define PA_RMRCACC (PNTATTR)0x7305 Straight line precision

#define PA_JUMPID (PNTATTR)0x7306 JUMP conditional number

・Teach data type classification:

 typedef unsigned long PNTTYPE;

 #define PT_CP (PNTTYPE)0x710 Not available

 #define PT_PTP (PNTTYPE)0x7101 Loading axis value for linear interpolation

 #define PT_BCP (PNTTYPE)0x7102 Not available

 #define PT_BPTP (PNTTYPE)0x7103 Linear interpolation axis value insertion

 #define PT_ARC1 (PNTTYPE)0x7104 Arc 1st point axis value loading

 #define PT_ARC2 (PNTTYPE)0x7105 Arc 2nd point axis value loading

 #define PT_ARC3 (PNTTYPE)0x7106 Arc 3rd point axis value loading

 #define PT_CIR1 (PNTTYPE)0x7107 Circle 1st point axis value loading

 #define PT_CIR2 (PNTTYPE)0x7108 Circle 2nd point axis value loading

 #define PT_CIR3 (PNTTYPE)0x7109 Circle 3rd point axis value loading

 #define PT_AXS (PNTTYPE)0x710a Loading axis value for axis interpolation

 #define PT_BAXS (PNTTYPE)0x710b Inserts axis value for axis interpolation

 #define PT_POS (PNTTYPE)0x710c Loading NOAP for linear interpolation

 #define PT_BPOP (PNTTYPE)0x710d Inserts NOAP for linear interpolation

 #define PT_ARC4 (PNTTYPE)0x710e Arc 1st point NOAP loading

 #define PT_ARC5 (PNTTYPE)0x710f Arc 2nd point NOAP loading

 #define PT_ARC6 (PNTTYPE)0x7110 Arc 3rd point axis value loading

 #define PT_CIR4 (PNTTYPE)0x7111 Circle 1st point NOAP loading

 #define PT_CIR5 (PNTTYPE)0x7112 Circle 2nd point NOAP loading

 #define PT_CIR6 (PNTTYPE)0x7113 Circle 3rd point NOAP loading

Chapter 7 Library Reference

7- 12

 PA library characteristic type definition （for Windows Visual C++）

・Teach data pointer operation classification:

 typedef unsigned long PNTMOVE;

 #define PM_TOP (PNTMOVE)0x7100 Moves pointer to top.

 #define PM_NEXT (PNTMOVE)0x7101 Pointer forward, once.

 #define PM_PRIV (PNTMOVE)0x7102 Pointer backward, once.

 #define PM_BTM (PNTMOVE)0x7103 Moves pointer to bottom.

 #define PM_JMP (PNTMOVE)0x7104 Moves pointer to designated

number.

 #define PM_CIR (PNTMOVE)0x7105 Circle teach point searched,

moving pointer to teach point

found first.

 #define PM_ARC (PNTMOVE)0x7106 Arc teach point searched, moving

pointer to teach point found first.

・Default velocity alteration classification:

 typedef unsigned long VELTYPE;

 #define VT_ONEVEL (VELTYPE)0 Each axis default velocity

alteration

 #define VT_XYZVEL (VELTYPE)1 Tip position default velocity

alteration

 #define VT_YPRVEL (VELTYPE)2 Tip orientation default velocity

alteration

・Velocity control mode classification:

 typedef unsigned long VELMODE;

 #define VM_XYZ (VELMODE)0x200 Base coordinate linear velocity control

 #define VM_YPR (VELMODE)0x201 Base coordinate rotational velocity control

 #define VM_xyz (VELMODE)0x202 Mechanical interface coordinate linear

velocity control

 #define VM_ypr (VELMODE)0x203 Mechanical interface coordinate rotational

velocity control

 #define VM_ONE (VELMODE)0x204 Each axis velocity control

#define VM_XYZYPR (VELMODE)0x205 Base coordinate linear/rotational

velocity control

#define VM_xyzypr (VELMODE)0x206 Mechanical interface coordinate

linear/rotational velocity control

Chapter 7 Library Reference

7- 13

 PA library characteristic type definition （for Windows Visual C++）

・Redundant axis control mode classification:

 typedef unsigned long JOUMODE;

 #define JM_SET (JOUMODE)0x345 Redundant axis control parameter

operation start

 #define JM_RESET (JOUMODE)0x346 Redundant axis control parameter

reset

 #define JM_VSET (JOUMODE)0x347 Redundant axis velocity control

 mode

 #define JM_ON (JOUMODE)0x348 Redundant axis control all axes

restriction mode

 #define JM_OFF (JOUMODE)0x349 Redundant axis control restriction

release

 #define JM_S3ON (JOUMODE)0x34a Redundant axis control only S3

 axis restriction mode

 #define JM_S3DIV (JOUMODE)0x34b Redundant axis control S3 axis

 interpolation restriction mode

 #define JM_S3HOLD (JOUMODE)0x34c Redundant axis control S3 axis

 fixation restriction mode

 typedef unsigned long JOUTYPE;

#define JT_RIGHT (JOUTYPE)1 Moves redundant axis restriction

parameter to the right.

 #define JT_HOLD (JOUTYPE)0 Holds redundant axis restriction

parameter.

 #define JT_LEFT (JOUTYPE)-1 Moves redundant axis restriction

parameter to the left.

・Target tip matrix control mode classification:

 typedef unsigned long MOVEMODE;

 #define MM_XYZ (MOVEMODE)0x5680 Tip position control

 #define MM_NOA (MOVEMODE)0x5681 Tip orientation control

 #define MM_XYZNOA (MOVEMODE)0x5682 Tip position/orientation

control

7-axis arm function

Chapter 7 Library Reference

7- 14

 PA library characteristic type definition （for Windows Visual C++）

・Direct control classification: (Optional function)

 typedef unsigned long DIRECTMODE;

 #define DM_STOP (DIRECTMODE)0 Direct control stop

 #define DM_START (DIRECTMODE)1 Direct control start

#define ARM_STANDING 1 Floor mounted

 #define ARM_HANGING -1 Suspending from ceiling

・DIO port numbers:

 typedef unsigned long DIOPORT;

 #define DP_PORT1 (DIOPORT)0 DIO 1 port selection

 #define DP_PORT2 (DIOPORT)1 DIO 2 port selection

 #define DP_PORT3 (DIOPORT)2 DIO 3 port selection

 #define DP_PORT4 (DIOPORT)3 DIO 4 port selection

#define DPO_PORT1 (DIOPORT)4 DO 1 port selection

#define DPO_PORT2 (DIOPORT)5 DO 2 port selection

#define DPO_PORT3 (DIOPORT)6 DO 3 port selection

#define DPO_PORT4 (DIOPORT)7 DO 4 port selection

#define DPX_PORT1 (DIOPORT)8 DO 1 port selection

#define DPX_PORT2 (DIOPORT)9 DO 2 port selection

#define DPX_PORT3 (DIOPORT)10 DO 3 port selection

#define DPX_PORT4 (DIOPORT)11 DO 4 port selection

 DPO_XXXXX is used when acquiring contents set to be outputted by PA library.

 DPX_XXXXX is used when acquiring current output value (related to information in PA

library or playback data).

・DIO channel numbers:

 typedef unsigned long DIOCH;

 #define DC_CH1 (DIOCH)0 Channel 1 selection

 #define DC_CH2 (DIOCH)1 Channel 2 selection

 #define DC_CH3 (DIOCH)2 Channel 3 selection

 #define DC_CH4 (DIOCH)3 Channel 4 selection

 #define DC_CH5 (DIOCH)4 Channel 5 selection

 #define DC_CH6 (DIOCH)5 Channel 6 selection

 #define DC_CH7 (DIOCH)6 Channel 7 selection

 #define DC_CH8 (DIOCH)7 Channel 8 selection

MMeemmoo

Chapter 7 Library Reference

7- 15

 PA library characteristic type definition （for Windows Visual C++）

・Sensor correction coordinate classification:

 typedef unsigned long TRANSMODE;

 #define MODE_xyz (TRANSMODE)0x01 Adds absolute correction

value in the mechanical

interface coordinate

system

 #define MODEIxyz (TRANSMODE)0x02 Adds relative correction

value in the mechanical

interface coordinate

system

 #define MODE_XYZ (TRANSMODE)0x04 Adds absolute correction

value in the base

coordinate system

 #define MODEIXYZ (TRANSMODE)0x08 Adds relative correction

value in the base

coordinate system

 #define MODE_wave (TRANSMODE)0x10 Adds absolute correction

value in the trajectory

coordinate system

 #define MODEIwavｅ (TRANSMODE)0x20 Adds relative correction

value in the trajectory

coordinate system

・Teach point attribute designation:

 typedef unsigned long PNTID;

 #define PA_SETID (PNTID)0x7304

・Circle & arc teach point number designation:

 typedef unsigned long PNTNO;

 #define PN_1 (PNTNO)1

 #define PN_2 (PNTNO)2

 #define PN_3 (PNTNO)3

・JUMP data valid/invalid (in teach data)
typedef unsigned long JUMPONOFF;

#define JMP_ON (JUMPONOFF)1 Valid

#define JMP_OFF (JUMPONOFF)0 Invalid

・JUMP data valid/invalid (in JUMP data)

typedef unsigned long JUMPENABLEDISABLE;

#define JMPENABLE (JUMPENABLEDISABLE)0x01000000 Valid

#define JMPDISABLE (JUMPENABLEDISABLE)0x00000000 Invalid

Chapter 7 Library Reference

7- 16

 PA library characteristic type definition （for Windows Visual C++）

・JUMP Command

typedef unsigned long JUMPORDER;

#define NO_JUMP (JUMPORDER)0x00010000 Unconditional JUMP

#define DI_JUMP (JUMPORDER)0x00020000 DI conditional JUMP

 #define DI_WAITJUMP (JUMPORDER)0x00030000 DI conditional WAITJUMP

#define DI_WAIT (JUMPORDER)0x00040000 DI conditional WAIT

・JUMP Conditional Logic

typedef unsigned long JUMPDILOGIC;

#define LEVEL_ON (JUMPDILOGIC)0x00000100

#define LEVEL_OFF (JUMPDILOGIC)0x00000200

#define EDGE_ON (JUMPDILOGIC)0x00000400

#define EDGE_OFF (JUMPDILOGIC)0x00000800

・JUMP ticket-oriented DI

typedef unsigned long DIOKIND;

#define DIO_INTERNAL (DIOKIND)0x00000000 System

#define DIO_EXTERNAL (DIOKIND)0x00000001 User

・Teaching place when in CUBE creation:

typedef unsigned long CUBEPNT;

#define MAXPNT (CUBEPNT)1

#define MINPNT (CUBEPNT)2

#define CENTERPNT (CUBEPNT)3

・Mask setting:

typedef unsigned long DIOMASK;

#define DIMSK (DIOMASK)0

#define DOMSK (DIOMASK)1

・RETRAC ON/OFF:

typedef unsigned long RETRAC;

#define RETRACOFF (RETRAC)0

#define RETRACON (RETRAC)1

Chapter 7 Library Reference

7- 17

 PA library characteristic type definition （for Windows Visual C++）

・CUBE information:

typedef unsigned long CUBEINFO;

#define NOCUBE (CUBEINFO)0x00000000

#define CUBEON (CUBEINFO)0x00000001

#define CUBEMAX (CUBEINFO)0x00000002

#define CUBEMIN (CUBEINFO)0x00000004

#define CUBECENTER (CUBEINFO)0x00000008

#define CUBESIDE (CUBEINFO)0x00000010

・TEACH MODE

typedef unsigned long TEACHMODE;

#define TEACH_OFF (TEACHMODE)0

#define TEACH_LOW (TEACHMODE)1

#define TEACH_MID (TEACHMODE)2

#define TEACH_HIGH (TEACHMODE)3

・TEACH LOCK

typedef unsigned long TEACHLOCK;

#define LOCK_OFF (TEACHLOCK)0

#define LOCK_ON (TEACHLOCK)1

・Communication status with servo driver:

typedef unsigned long COMSTATUS;

#define STP_STATUS (COMSTATUS)0

#define MOV_STATUS (COMSTATUS)1

#define SIM_STATUS (COMSTATUS)2

・for RETRAC:

#define MOD_ROBFILE 1

#define MOD_TOLFILE 2

・for Dead man switch:

#define SET_DDM 3

Chapter 7 Library Reference

7- 18

＜ Header file for Visual BASIC (Windows)＞

・Data type when in processing end:

Public Const WM_WAIT As Long = 0 Returns from function after

processing ends.

Public Const WM_NOWAIT As Long = 1 Returns from function before

processing ends.

Chapter 7 Library Reference

7- 19

 PA library data structure (for Windows Visual BASIC)

・Axis data structure： 6-axis/7-axis angle storing structure

 Type ANGLE

 S1 As Single S1 axis value [rad]

 S2 As Single S2 axis value [rad]

 S3 As Single S3 axis value [rad]

 E1 As Single E1 axis value [rad]

 E2 As Single E2 axis value [rad]

 W1 As Single W1 axis value [rad]

 W2 As Single W2 axis value [rad]

 End Type

・Arm status structure: Structure set by the motion controller

 Type ARMSTATUS

 max As Long Board controllable arm numbers 1or2

 ARM As Long Arm identification number 0or1

 Axnum As Long Arm axis numbers

 typ As Long Arm type

 drv As Long Servo driver classification

 dio As Long Extension DIO board exist / not exist

remote As Long operation mode (valid / invalid)

 count As Long Control counter value

 error As Long Error code

 agl As ANGLE Current axis value

 NOAP(3, 2) As Single Current tip orientation matrix

 ypr(2) As Single Current orientation

 End Type

Chapter 7 Library Reference

7- 20

 PA library data structure (for Windows Visual BASIC)

・Parameter Structure:

 Type PARAM

 rezl As Single Resolver resolution

 pul(6) As Long Position limiter (+)

 pdl(6) As Long Position limiter (-)

 vel(8) As Long Velocity limiter

 dev(8) As Long Default velocity

 lim(8) As Single Teach mode velocity limit

 ceh(8) As Single Teach mode fast motion velocity

 cem(8) As Single Teach mode medium motion velocity

 cel(8) As Single Teach mode slow motion velocity

 pg1(6) As Long Position control gain1

 pg2(6) As Long Position control gain2

 vg1(6) As Long Velocity control gain

 tg1(6) As Long Force control gain

 pcm(6) As Long position control selection matrix

 fcm(6) As Long Force control selection matrix

 arl(6) As Long Arm length

 arg(6) As Long Axis gravity center position

 arw(6) As Long Axis weight

 rfp(6) As Long Home position recovery target value

 rsp(6) As Long Escape position recovery target value

 rop(6) As Long Recovery target value for other points

 tol(6) As Long Tool parameter

 fvl(6) As Single Control parameter

 dmy(6) As Long Not available

 spa(6) As Long Spare

 End Type

Chapter 7 Library Reference

7- 21

 PA library data structure (for Windows Visual BASIC)

・Teach data structure:

 Type PNTPNT

 agl(6) As Single S1 axis value

 S2 axis value

 S3 axis value

 E1 axis value

 E2 axis value

 W1 axis value

 W2 axis value

 vel(1) As Single Tip linear motion velocity

 Tip rotational motion velocity

 atr(11) As Long Teach data type: PTP/PTP(NOAP)

 Interpolation method: Axis/Straight

line/Circle/Arc

 Axis control arm stop accuracy []

 RMRC control arm stop accuracy []

 Velocity interpolation pattern:

 Constant velocity/start

up/shutdown/start up + shutdown

 Start up time: Acceleration time designation

[msec]

 Shutdown time: Deceleration time

designation [msec]

 JUMP data number:

Number specifying JUNP condition

 DO output

 Waiting time : Motion start delay time [msec]

 End Type

Type PLAY

 pnt As PLYPNT

 cmt As String * 32 Comment

End Type

Type NOAP

 xyz(2) As Single Position: Arm XYZ coordinate [mm]

 noa(2, 2) As Single Position ：Arm NOA

End Type

Chapter 7 Library Reference

7- 22

 PA library data structure (for Windows Visual BASIC)

・JUMP Data Structure:

Type JUDGE

 cnd(1) As Long JUMP conditional number Spare

 xdi As Long DI condition for Conditional appraisal

 tim As Long Time out

 key As Long JUMP destination teach data Key

 pid As Long JUMP destination teach point ID

 cnt As Long

End Type

Type JUMP

 cid As Long

 jdg(7) As JUDGE

End Type

Type PNTDATA

 ply As PLAY

 noa As NOAP

 jmp As JUMP

End Type

・Digital I/O structure:

 Type DIOSTATUS

 Io1 As Byte DIO (tool) 1 value

 Io2 As Byte DIO (tool) 2 value

 Io3 As Byte DIO (tool) 3 value

 Io4 As Byte DIO (tool) 4 value

 End Type

Chapter 7 Library Reference

7- 23

 PA library data structure (for Windows Visual BASIC)

・Sensor correction data structure:

 Type TRANSMAT

 Enable As Long Designation bit

xyz11(2) As Single Mechanical interface coordinate absolute deviation

correction value

xyz12(2) As Single Mechanical interface coordinate relative deviation

correction value

xyz21(2) As Single Base coordinate absolute deviation correction value

xyz22(2) As Single Base coordinate relative deviation correction value

wave1(2) As Single Trajectory coordinate absolute deviation correction

value

wave2(2) As Single Trajectory coordinate relative deviation correction

value

 End Type

・Arm target value structure:

 Type ARMTARGET

 agl As ANGLE Target angle

 noap(3, 2) As Single Target tip position/orientation

 ypr(2) As Single Target tip orientation

 End Type

・Structure to send commands from the motion control to the servo driver:

Type O8DRIVE

sig As Long

trq As Long

vel As Long

End Type

・Structure to send commands from the servo driver to the motion control:

Type I8DRIVE

sts As Long

agl As Long

vel As Long

trq As Long

End Type

Chapter 7 Library Reference

7- 24

PA library data structure (for Windows Visual BASIC)

・CUBE information structure:

Type CUBE

ena As Long Cube information valid/invalid

mod As Long Mode when in cube creation

max(2) As Single Maximum value／Side length

min(2) As Single Minimum value／Center

cmt As String * 32 Comment

End Type

・Debug structure:

Type DEBG

ldbg(15) As Long

fdbg(31) As Single

End Type

Chapter 7 Library Reference

7- 25

 PA library characteristic type definition （for Windows Visual BASIC）

・Arm classification：Control arm number selection:

 Public Const ARM0 As Long = 0 Arm No. 0 selection

 Public Const ARM1 As Long = 1 Arm No. 1 selection

 Public Const ARM2 As Long = 2 Arm No. 2 selection

 Public Const ARM3 As Long = 3 Arm No. 3 selection

 Public Const ARM4 As Long = 4 Arm No. 4 selection

 Public Const ARM5 As Long = 5 Arm No. 5 selection

 Public Const ARM6 As Long = 6 Arm No. 6 selection

 Public Const ARM7 As Long = 7 Arm No. 7 selection

 Public Const ARM8 As Long = 8 Arm No. 8 selection

 Public Const ARM9 As Long = 9 Arm No. 9 selection

 Public Const ARM10 As Long = 10 Arm No. 10 selection

 Public Const ARM11 As Long = 11 Arm No. 11 selection

 Public Const ARM12 As Long = 12 Arm No. 12 selection

 Public Const ARM13 As Long = 13 Arm No. 13 selection

 Public Const ARM14 As Long = 14 Arm No. 14 selection

 Public Const ARM15 As Long = 15 Arm No. 15 selection

・Axis classification：Control axis number selection:

 Public Const S1 As Long = &H1 S1 axis designation

 Public Const S2 As Long = &H2 S2 axis designation

 Public Const S3 As Long = &H4 S3 axis designation

 Public Const E1 As Long = &H8 E2 axis designation

 Public Const E2 As Long = &H10 E3 axis designation

 Public Const W1 As Long = &H20 W1 axis designation

 Public Const W2 As Long = &H40 W2 axis designation

 Public Const AXISALL As Long = S1 + S2 + S3 + E1 + E2 + W1 + W2

 Public Const LOCKAXIS_S1 As Long = S2 + S3 + E1 + E2 + W1 + W2

 Public Const LOCKAXIS_S3 As Long = S1 + S2 + E1 + E2 + W1 + W2

・Servo driver classification：Control servo driver number selection:

 Public Const DRV1 As Long = 0 Servo driver 1 (S1, S2)

 Public Const DRV2 As Long = 1 Servo driver 1 (S3, E1)

 Public Const DRV3 As Long = 2 Servo driver 1 (E2, W1)

 Public Const DRV4 As Long = 3 Servo driver 1 (W2)

Chapter 7 Library Reference

7- 26

 PA library characteristic type definition （for Windows Visual BASIC）

・Playback motion classification:

 Public Const PB_FORES As Long = 0 Forward playback step motion

 Public Const PB_BACKS As Long = 1 Not available

 Public Const PB_FORE As Long = 2 Forward playback consecutive

motion

 Public Const PB_BACK As Long = 3 Reverse playback consecutive

motion

・Teach data deletion operation classification:

 Public Const PD_CUR As Long = &H7500 Current point teach data deletion

 Public Const PD_FORE As Long = &H7501 Previous current point teach data

deletion

 Public Const PD_ALL As Long = &H7502 All active teach data deletion

 Public Const PD_ALLDATA As Long = &H7502 All teach data deletion

・Teach data attribution alteration classification:

Public Const PA_CHGVEL As Long = &H7300 Linear velocity alteration when in

playback

Public Const PA_CHGWAIT As Long = &H7301 Wait time alteration when in

playback

Public Const PA_VELPTN As Long = &H7302 Velocity interpolation pattern

alteration when in playback

 Public Const PA_ROTVEL As Long = &H7303 Rotational velocity alteration when

in playback

 Public Const PA_AXSACC As Long = &H7304 Each axis precision

Public Const PA_RMRCACC As Long = &H7305 Straight line precision

Public Const PA_JUMPID As Long = &H7306 JUMP conditional number

Chapter 7 Library Reference

7- 27

 PA library characteristic type definition （for Windows Visual BASIC）

・Teach data type classification:

 Public Const PT_CP As Long = &H7100 Not available

 Public Const PT_PTP As Long = &H7101 PTP linear interpolation data

loading

 Public Const PT_BCP As Long = &H7102 Not available

 Public Const PT_BPTP As Long = &H7103 PTP linear interpolation data

insertion

 Public Const PT_ARC1 As Long = &H7104 Arc 1st point data loading

 Public Const PT_ARC2 As Long = &H7105 Arc 2nd point data loading

 Public Const PT_ARC3 As Long = &H7106 Arc 3rd point data loading

 Public Const PT_CIR1 As Long = &H7107 Circle 1st point data loading

 Public Const PT_CIR2 As Long = &H7108 Circle 2nd point data loading

 Public Const PT_CIR3 As Long = &H7109 Circle 3rd point data loading

 Public Const PT_AXS As Long = &H710A PTP axis interpolation data

loading

 Public Const PT_BAXS As Long = &H710B PTP axis interpolation data

insertion

Public Const PT_POS As Long = &H710C Linear interpolation NOAP loading

Public Const PT_BPOS As Long = &H710D Linear interpolation NOAP

insertion

Public Const PT_ARC4 As Long = &H710E Arc 1st point NOAP loading

Public Const PT_ARC5 As Long = &H710F Arc 2nd point NOAP loading

Public Const PT_ARC6 As Long = &H7110 Arc 3rd point NOAP loading

Public Const PT_CIR4 As Long = &H7111 Circle 1st point NOAP loading

Public Const PT_CIR5 As Long = &H7112 Circle 2nd point NOAP loading

Public Const PT_CIR6 As Long = &H7113 Circle 3rd point NOAP loading

・Teach data pointer operation classification:

 Public Const PM_TOP As Long = &H7100 Moves pointer to top.

Public Const PM_NEXT As Long = &H7101 Pointer forward, once.

 Public Const PM_PRIV As Long = &H7102 Pointer backward, once.

 Public Const PM_BTM As Long = &H7103 Moves pointer to bottom.

Public Const PM_JMP As Long = &H7104 Moves pointer to designated

number.

 Public Const PM_CIR As Long = &H7105 Circle teach point searched,

moving pointer to teach point

found first.

 Public Const PM_ARC As Long = &H7106 Arc teach point searched, moving

pointer to teach point found first.

Chapter 7 Library Reference

7- 28

 PA library characteristic type definition （for Windows Visual BASIC）

・Default velocity alteration classification:

 Public Const VT_ONEVEL As Long = &H0 Each default velocity alteration

 Public Const VT_XYZVEL As Long = &H1 Tip position default velocity

alteration

 Public Const VT_YPRVEL As Long = &H2 Tip orientation default velocity

alteration

・Velocity control mode classification:

 Public Const VM_XYZ1 As Long = &H200 Base coordinate linear velocity

control

Public Const VM_YPR1 As Long = &H201 Base coordinate rotational velocity

control

 Public Const VM_XYZ2 As Long = &H202 Mechanical interface coordinate

linear velocity control

 Public Const VM_YPR2 As Long = &H203 Mechanical interface coordinate

rotational velocity control

 Public Const VM_ONE As Long = &H204 Each axis velocity control

 Public Const VM_XYZYPR1 As Long = &H205 Base coordinate linear/rotational

velocity control

 Public Const VM_XYZYPR2 As Long = &H206 Mechanical interface coordinate

linear/rotational velocity control

・Redundant axis control mode classification:

 Public Const JM_SET As Long = &H345 Redundant axis control parameter

operation start

Public Const JM_RESET As Long = &H346 Redundant axis control parameter

reset

Public Const JM_VSET As Long = &H347 Redundant axis velocity control

mode

 Public Const JM_ON As Long = &H348 Redundant axis control all axes

restriction mode

Public Const JM_OFF As Long = &H349 Redundant axis control restriction

release

 Public Const JM_S3ON As Long = &H34A Redundant axis control only S3

axis restriction mode

 Public Const JM_S3DIV As Long = &H34B Redundant axis control S3 axis

interpolation restriction mode

 Public Const JM_S3HOLD As Long = &H34C Redundant axis control S3 axis

fixation restriction mode

 Public Const JT_RIGHT As Long = 1 Moves redundant axis restriction

 parameter to the right.

 Public Const JT_HOLD As Long = 0 Holds redundant axis restriction

parameter.

 Public Const JT_LEFT As Long=-1 Moves redundant axis restriction

parameter to the left.

7-axis arm function

Chapter 7 Library Reference

7- 29

 PA library characteristic type definition （for Windows Visual BASIC）

・Target tip matrix control mode classification:

Public Const MM_XYZ As Long = &H5680 Tip position control

 Public Const MM_NOA As Long = &H5681 Tip orientation control

 Public Const MM_XYZNOA As Long = &H5682 Tip position/orientation control

・Direct control classification: (Optional function)

 Public Const DM_STOP As Long = 0 Direct control stop

 Public Const DM_START As Long = 1 Direct control start

 Public Const ARM_STANDING As Long = 1 Floor mounted

 Public Const ARM_HANGING As Long = -1 suspending from ceiling

・DIO port numbers:

 Public Const DP_PORT1 As Long = 0 DIO 0 port selection

 Public Const DP_PORT2 As Long = 1 DIO 1 port selection

 Public Const DP_PORT3 As Long = 2 DIO 2 port selection

 Public Const DP_PORT4 As Long = 3 DIO 3 port selection

 Public Const DPO_PORT1 As Long = 4 DO 0 port selection

 Public Const DPO_PORT2 As Long = 5 DO 1 port selection

 Public Const DPO_PORT3 As Long = 6 DO 2 port selection

 Public Const DPO_PORT4 As Long = 7 DO 3 port selection

 Public Const DPX_PORT1 As Long = 8 DO 0 port selection

 Public Const DPX_PORT2 As Long = 9 DO 1 port selection

 Public Const DPX_PORT3 As Long = 10 DO 2 port selection

 Public Const DPX_PORT4 As Long = 11 DO 3 port selection

 DPO_XXXXX is used when acquiring contents set to be outputted by PA library.

 DPX_XXXXX is used when acquiring current output value (related to information

in PA library or playback data).

・DIO channel numbers:

 Public Const DC_CH1 As Long = 0 Channel 1 selection

 Public Const DC_CH2 As Long = 1 Channel 2 selection

 Public Const DC_CH3 As Long = 2 Channel 3 selection

 Public Const DC_CH4 As Long = 3 Channel 4 selection

 Public Const DC_CH5 As Long = 4 Channel 5 selection

 Public Const DC_CH6 As Long = 5 Channel 6 selection

 Public Const DC_CH7 As Long = 6 Channel 7 selection

 Public Const DC_CH8 As Long = 7 Channel 8 selection

MMeemmoo

Chapter 7 Library Reference

7- 30

 PA library characteristic type definition （for Windows Visual BASIC）

・Sensor correction coordinate classification:

 Public Const MODE_XYZ1 As Long = &H1

 Adds absolute correction value in the mechanical interface coordinate

system

Public Const MODE_XYZ2 As Long = &H2

 Adds relative correction value in the mechanical interface coordinate

system

 Public Const MODE_XYZ3 As Long = &H4

Adds absolute correction value in the base coordinate system

 Public Const MODE_XYZ4 As Long = &H8

 Adds relative correction value in the base coordinate system

Public Const MODE_WAVE1 As Long = &H10

 Adds absolute correction value in the trajectory coordinate system

 Public Const MODE_WAVE2 As Long = &H20

 Adds relative correction value in the trajectory coordinate system

・Teach point attribute designation:

 Public Const PA_SETID As Long = &H7304

・Circle & arc teach point number designation:

 Public Const PN_1 As Long = 1

 Public Const PN_2 As Long = 2

 Public Const PN_3 As Long = 3

・JUMP data valid/invalid (in teach data):

Public Const JMP_ON As Long = 1 Valid

Public Const JMP_OFF As Long = 0 Invalid

・JUMP data valid/invalid (in JUMP data):

Public Const JMPENABLE As Long = &H1000000

Public Const JMPDISABLE As Long = &H0

・JUMP command:

Public Const NO_JUMP As Long = &H10000

Public Const DI_JUMP As Long = &H20000

Public Const DI_WAITJUMP As Long = &H30000

Public Const DI_WAIT As Long = &H40000

Chapter 7 Library Reference

7- 31

 PA library characteristic type definition （for Windows Visual BASIC）

・JUMP conditional logic:

Public Const LEVEL_ON As Long = &H100

Public Const LEVEL_OFF As Long = &H200

Public Const EDGE_ON As Long = &H400

Public Const EDGE_OFF As Long = &H800

・Objective DI:

Public Const DIO_INTERNAL As Long = &H0

Public Const DIO_EXTERNAL As Long = &H1

・Teaching place when in CUBE creation:

Public Const MAXPNT As Long = 1

Public Const MINPNT As Long = 2

Public Const CENTERPNT As Long = 3

・DIorDO mask setting:

Public Const DIMSK As Long = 0

Public Const DOMSK As Long = 1

・RETRAC ON/OFF:

Public Const RETRACOFF As Long = 0

Public Const RETRACON As Long = 1

・CUBE data:

Public Const NOCUBE As Long = &H0

Public Const CUBEON As Long = &H1

Public Const CUBEMAX As Long = &H2

Public Const CUBEMIN As Long = &H4

Public Const CUBECENTER As Long = &H8

Public Const CUBESIDE As Long = &H10

Chapter 7 Library Reference

7- 32

 PA library characteristic type definition （for Windows Visual BASIC）

・TEACHMODE:

Public Const TEACH_OFF As Long = 0

Public Const TEACH_LOW As Long = 1

Public Const TEACH_MID As Long = 2

Public Const TEACH_HIGH As Long = 3

・TEACHLOCK:

Public Const LOCK_OFF As Long = 0

Public Const LOCK_ON As Long = 1

・Communication status with servo driver:

Public Const STP_STATUS As Long = 0

Public Const MOV_STATUS As Long = 1

Public Const SIM_STATUS As Long = 2

・fpr RETRAC:

Public Const MOD_ROBFILE As Long = 1

Public Const MOD_TOLFILE As Long = 2

・for Dead man switch:

Public Const SET_DDM As Long = 3

Chapter 7 Library Reference

7- 33

ERROR LIST (in common)

Normal

ERR_OK 0 No error

（１） Operation control section (PA library) detection error:

 ERR_FILE -1 Designated file not existing

 ERR_READ -2 File loading failure

 ERR_WRITE -3 File saving failure

 ERR_INT -4 Unsuccessful interruption into 486

 ERR_OPEN -5 pa_opn_arm() not executed

 ERR_MALLOC -6 Failed to allocate memory space

 ERR_PRM -7 Parameter alteration not allowed when in control

 ERR_PNT -8 A specified degree of Teaching data is out of range

・Parameter error:

 ERR_ARM -20 Designated arm not existing

 ERR_AXIS -21 Designated axis not existing

 ERR_DRV -22 Designated driver not existing

 ERR_PB -23 Incorrect playback motion mode

 ERR_PD -24 Incorrect teach point deletion mode

 ERR_PA -25 Incorrect teach point attribution mode

 ERR_PTN -26 Incorrect teach point velocity pattern attribution value

 ERR_PT -27 Incorrect teach point data type

 ERR_PM -28 Incorrect teach point operation type

 ERR_VT -29 Incorrect default velocity alteration type

 ERR_VM -30 Incorrect velocity control mode

 ERR_JM -31 Incorrect redundant axis control mode

 ERR_JT -32 Incorrect redundant axis operation mode

 ERR_MM -33 Incorrect target tip matrix control mode

 ERR_DM -34 Incorrect direct control mode

 ERR_DP -35 Incorrect digital input/output port designation

 ERR_DC -36 Incorrect digital input/output channel designation

 ERR_MES -37 Error code not defined

 ERR_BOARD -38 Error code not defined

 ERR_DIO -39 Incorrect digital input/output DIorDO designation

 ERR_PRJ -40 Project not loaded

・WinRT error:

 ERR_UNMAPMEMORY -100 Error occurred in WinRTUnMapMemory

 ERR_UNMAPMEMORY2 -101 Error occurred in WinRTUnMapMemory2

 ERR_OPENDEVICE -200 Error occurred in WinRTOpenNamedDevice

 ERR_CONFIG -201 Error occurred in WinRTGetFullConfiguration

 ERR_MAPMEMORY -300 Error occurred in WinRTMapMemory

 ERR_MAPMEMORY2 -301 Error occurred in WinRTMapMemory2

Chapter 7 Library Reference

7- 34

ERROR LIST (in common)

 （２）Motion control section detection error:

・Warning error:

 ERR_CANT_CPU -1000 Access to motion controller not allowed.

 ERR_NON_EVNT -1001 Format does not match with command.

 ERR_CANT_EVNT -1002 Command not compatible with current mode

 ERR_INVALD_EVNT -1003 Invalid command

 ERR_NON_ARM -1004 Designated arm number not existing.

 ERR_NON_ROB -1005 Download new ROB file

 ERR_NON_TOL -1006 Download new TOL file

 ERR_S1_VEL -1010 S1 axis velocity exceeded

 ERR_S2_VEL -1011 S2 axis velocity exceeded

 ERR_S3_VEL -1012 S3 axis velocity exceeded

 ERR_E1_VEL -1013 E1 axis velocity exceeded

 ERR_E2_VEL -1014 E2 axis velocity exceeded

 ERR_W1_VEL -1015 W1 axis velocity exceeded

 ERR_W2_VEL -1016 W2 axis velocity exceeded

 ERR_XYZ_VEL -1018 Tip linear velocity exceeded

 ERR_YPR_VEL -1019 Tip rotational velocity exceeded

 ERR_S1_SAGL -1020 S1 axis safety angle exceeded

 ERR_S2_SAGL -1021 S2 axis safety angle exceeded

 ERR_S3_SAGL -1022 S3 axis safety angle exceeded

 ERR_E1_SAGL -1023 E1 axis safety angle exceeded

 ERR_E2_SAGL -1024 E2 axis safety angle exceeded

 ERR_W1_SAGL -1025 W1 axis safety angle exceeded

 ERR_W2_SAGL -1026 W2 axis safety angle exceeded

 ERR_S1_TAGL -1030 S1 axis target angle exceeded

 ERR_S2_TAGL -1031 S2 axis target angle exceeded

 ERR_S3_TAGL -1032 S3 axis target angle exceeded

 ERR_E1_TAGL -1033 E1 axis target angle exceeded

 ERR_E2_TAGL -1034 E2 axis target angle exceeded

 ERR_W1_TAGL -1035 W1 axis target angle exceeded

 ERR_W2_TAGL -1036 W2 axis target angle exceeded

 ERR_NOA_CLC -1038 Unable to calculate NOA Ver.PCI

 ERR_LNK_CTL -1039 Unable to create teach point due to

continuity restriction

 ERR_MEM_FULL -1040 Failed to allocate memory space

 ERR_MIS_COMD -1041 Prior procedure required before issuing this

command

 ERR_PB_CIR -1042 Incorrect circle or arc designation

 ERR_PB_NEXT -1043 Next pointer not existing

 ERR_PB_PRIV -1044 Previous pointer not existing

 ERR_PB_END -1045 Playback data ended

 ERR_PB_NULL -1046 Playback data not existing

 ERR_PB_REFER -1047 Failed to find playback data

 ERR_PB_REPLACE -1048 Accepted as replace command

Chapter 7 Library Reference

7- 35

ERROR LIST (in common)

 ERR_PB_PANIC -1049 Pointer management accident

 ERR_NOT_ENUGH -1050 Target value is out of control area. (Arm

length is not enough.)

 ERR_MIS_PARAM -1051 Designated parameter value exceeded the

setting range

 ERR_NOA_DAT -1060 Designated NOA not appropriate

 ERR_PNT_ATR -1061 Not available

 ERR_PTP_DAT -1062 Exceeding RMRC motion range

 ERR_CP_LOGGING -1063 Not allowed to use while in CP data

acquisition

 ERR_FIFO_MAX -1064 Exceeded the maximum interpolation number

 ERR_FIFO_ARC -1065 Unable to generate circle or arc

 COVERS1 -1070 S1 axis velocity angle exceeded

 COVERS2 -1071 S2 axis velocity angle exceeded

 COVERS3 -1072 S3 axis velocity angle exceeded

 COVERE1 -1073 E1 axis velocity angle exceeded

 COVERE2 -1074 E2 axis velocity angle exceeded

 COVERW1 -1075 W1 axis velocity angle exceeded

 COVERW2 -1076 W2 axis velocity angle exceeded

 ERR_MIS_VAL -1080 Setting value is too large or too small

 ERR_PNT_APP -1081 Approach cannot be performed with axis

control,

 ERR_PLY_FOR -1098 Consecutive motion not allowed while in

teach mode.

 ERR_PLY_MOD -1099 Switched to teach mode by outer operation.

 ERR_USE_TCH -1100 Teach lock can be ON only in teach mode.

 ERR_ACT_DAT -1101 Designated Key teach data not existing

 ERR_CHG_KEY -1103 Unable to perform Key research for teach

data

 ERR_CUB_NUM -1200 Interference area designation number error

 ERR_CUB_LEN -1201 Side length designation cannot be performed

with this cube information. This cube has

another attribution.

ERR_CUB_MAX -1202 Upper value teaching cannot be performed

with this cube information. This cube has

another attribution.

 ERR_CUB_MIN -1203 Lower value teaching cannot be performed

with this cube information. This cube has

another attribution.

 ERR_CUB_CTR -1205 Center value teaching cannot be performed

with this cube information. This cube has

another attribution.

ERR_CUB_PRM -1206 Unknown cube parameter setting

 ERR_CUB_SET -1207 Setting cannot be performed with this cube

information. This cube has another

attribution.

Chapter 7 Library Reference

7- 36

ERROR LIST (in common)

 ERR_PLY_KEY -1249 Wrong designated number when in Key

acquisition

 ERR_NON_KEY -1250 There is no designated ID attribution in

teach data designated by Key

 ERR_NON_CID -1251 Designated teach point has no JUMP data.

 ERR_JMP_SET -1252 Teach data designated by Key does not have

its number JUMP information.

 ERR_NON_IDN -1253 Teach point designated by ID attribution has

no JUMP information.

 ERR_JMP_NUM -1254 Unable to find JUMP information designated

by teach point attribution.

 ERR_JMP_ATR -1255 Wrong designated parameter when in JUMP

data acquisition/setting

 ERR_KEY_ATR -1256 Wrong designated parameter when in JUMP

data acquisition/setting

 ERR_SOC_TST -1300 Socket generation failure

 ERR_BND_TST -1311 Failed to bind socket and address

 ERR_LSN_TST -1312 Listening failure

ERR_APT_TST -1313 Accepting failure

 ERR_SOC_SND -1314 Socket generation failure

 ERR_SOC_BLK -1315 Not available

 ERR_SOC_CLT -1316 Too many clients connected

 ERR_PRM_DEV -1350 Parameter motion velocity is exceeding

velocity limit value. Parameter alteration is

invalid.

Chapter 7 Library Reference

7- 37

ERROR LIST (in common)

・Operation continuity malfunction error: －－＞ （Brake-stop status）

 ERR_OVER900 -2017 Arm length exceeded RMRC motion limit

length while in motion

 ERR_S1_AGL -2020 S1 axis angle exceeded

 ERR_S2_AGL -2021 S2 axis angle exceeded

 ERR_S3_AGL -2022 S3 axis angle exceeded

 ERR_E1_AGL -2023 E1 axis angle exceeded

 ERR_E2_AGL -2024 E2 axis angle exceeded

 ERR_W1_AGL -2025 W1 axis angle exceeded

 ERR_W2_AGL -2026 W2 axis angle exceeded

 DOVERS1 -2030 S1 axis direct control angle exceeded

 DOVERS2 -2031 S2 axis direct control angle exceeded

 DOVERS3 -2032 S3 axis direct control angle exceeded

 DOVERE1 -2033 E1 axis direct control angle exceeded

 DOVERE2 -2034 E2 axis direct control angle exceeded

 DOVERW1 -2035 W1 axis direct control angle exceeded

 DOVERW2 -2036 W2 axis direct control angle exceeded

 ERR_CANT_MOVE -2051 RMRC control is not allowed at the current

position.

 ERR_S1_REZ -2060 Anomalous S1 resolver deviation

 ERR_S2_REZ -2061 Anomalous S2 resolver deviation

 ERR_S3_REZ -2062 Anomalous S3 resolver deviation

 ERR_E1_REZ -2063 Anomalous E1 resolver deviation

 ERR_E2_REZ -2064 Anomalous E2 resolver deviation

 ERR_W1_REZ -2065 Anomalous W1 resolver deviation

 ERR_W2_REZ -2066 Anomalous W2 resolver deviation

 Anomalous resolver deviation means when the resolver value inputted

at the previous time and the present time one exceed the allowable

range. (Incorrect loading, provokes missing data.)

 ERR_TIMEOUT -2070 Automatically stopped on account of

exceeding surveillance time.

 ERR_SYNCOUT -2071 Not reaching the target value

MMeemmoo

Chapter 7 Library Reference

7- 38

ERROR LIST (in common)

ERR_SYNC_S1 -2080 Anomalous S1 axis synchronization in axis control

ERR_SYNC_S2 -2081 Anomalous S2 axis synchronization in axis control

ERR_SYNC_S3 -2082 Anomalous S3 axis synchronization in axis control

ERR_SYNC_E1 -2083 Anomalous E1 axis synchronization in axis control

ERR_SYNC_E2 -2084 Anomalous E2 axis synchronization in axis control

ERR_SYNC_W1 -2085 Anomalous W1 axis synchronization in axis control

ERR_SYNC_W2 -2086 Anomalous W2 axis synchronization in axis control

ERR_RMRC_X -2087 Anomalous X axis synchronization in RMRC control

ERR_RMRC_Y -2088 Anomalous Y axis synchronization in RMRC control

ERR_RMRC_Z -2089 Anomalous Z axis synchronization in RMRC control

 Anomalous synchronization occurs when target and current value

deviation exceed the allowable range. (Arm is not moving or rather

delays motion.)

ERR_VELOCITY -2090 Anomalous velocity deviation

ERR_RMRC_YPR -2091 Anomalous tip orientation deviation in RMRC control

ERR_CUB_INN -2100 Interfered with cube

ERR_ARM_ERR0 -2200 Motion start or continuation is not allowed at arm

singularity

ERR_ARM_ERR1 -2201 Motion start or continuation is not allowed at arm

singularity

ERR_ARM_ERR2 -2202 Motion start or continuation is not allowed at arm

singularity

MMeemmoo

Chapter 7 Library Reference

7- 39

ERROR LIST (in common)

・Fatal error －－＞ （Control stop status）

 ERR_POWER_ON -3000 control not started.

 After fatal error occurred without issuing control start command, if

other command is issued, this error occurs.

 ERR_EM_CTL -3001 Emergency stop is pushed.

 ERR_ARC_SEND -3002 Anomalous arc net communication

 ERR_S1X_LIM -3003 S1 axis limit switch is ON.

 ERR_DRV_TYP -3005 Servo driver type is different from parameter

designation.

 ERR_FORCE_ON -3010 Not in force control

 ERR_DDD_STA -3070 Anomalous communication control servo (master)

status.

 ERR_D11_STA -3071 Anomalous servo driver (S1) status

 ERR_D12_STA -3072 Anomalous servo driver (S2) status

 ERR_D21_STA -3073 Anomalous servo driver (S3) status

 ERR_D22_STA -3074 Anomalous servo driver (E1) status

 ERR_D31_STA -3075 Anomalous servo driver (E2) status

 ERR_D32_STA -3076 Anomalous servo driver (W1) status

 ERR_D41_STA -3077 Anomalous servo driver (W2) status

 Anomalous servo driver is the case when servo driver detects any

anomaly and turns into waiting status after being released from control.

 For servo status, refer to next page.

ERR_S_SUSPD -3091 Anomaly when issuing control (communication) start

command

ERR_E_SUSPD -3092 Anomaly when issuing control (communication) end

command

ERR_I_SUSPD -3093 Anomaly when issuing initialization command

Anomalous control command issuing means when issuing command to

the servo driver, there is no response for a certain time. (Servo driver

is anomalous.)

 ERR_MOD_CTL -4000 Anomalous mode management

MMeemmoo

MMeemmoo

MMeemmoo

Chapter 7 Library Reference

7- 40

ERROR LIST (in common)

 （３）Servo status driver detection error:

More information, refer to servo driver operation manual and (3) error information in the

section 6.14.1.

 DRV_MEM_ERR 1 Anomalous shared memory

 EEP_ROM_ERR 2 Anomalous EEPROM

 CPU_XXX_ERR 3 Anomalous CPU

 ARC_NET_ERR 4 Anomalous communication cycle

 VEL_SPN_ERR 5 Anomalous velocity deviation

 REZ_SPN_ERR 6 Anomalous resolver deviation

 VEL_LIM_ERR 7 Anomalous position limit

 MTR_TRQ_ERR 8 Anomalous motor torque

 IPM_XXX_ERR 9 Anomalous IPM

 BRK_XXX_ERR 10 Severed brake line

 REZ_001_ERR 11 Severed resolver line (gear side)

 REZ_002_ERR 12 Severed resolver line (motor side)

 OVR_TRQ_ERR 13 Over current

 OVR_VEL_ERR 14 Over velocity

 DMS_XXX_ERR 15 Anomalous dead man SW

 CPU_NON_ERR 16 Other anomalous CPU

RReeffeerreennccee

Chapter 7 Library Reference

7- 41

FUNCTION LIST <> Page number

--- System Setting & Initialization Function --

pa_ini_sys <8-2> PA library initialization

pa_ter_sys <8-3> PA library termination

--- Arm status control function --

pa_opn_arm <8-4> Open arm (control arm selection)

pa_cls_arm <8-5> Close arm (control arm separation)

pa_sta_arm <8-6> Controller operation start (Servo driver communication start)

pa_ext_arm <8-7> Controller operation end (Servo driver communication end)

pa_sta_sim <8-8> Simulation control start (simulation communication start)

pa_ext_sim <8-9> Simulation control end (simulation communication end)

 pa_stp_arm <8-10> Arm brake-stop

 pa_sus_arm <8-11> Arm temporarily stop

 pa_rsm_arm <8-12> Arm temporarily-stop-release

--- Axis motion control function ---

 pa_exe_axs <8-13> Axis angle control

 pa_exe_hom <8-14> Axis angle control to home position

 pa_exe_esc <8-15> Axis angle control to escape position

 pa_exe_saf <8-16> Axis angle control to safety position

--- Tip position/orientation (RMRC) deviation control function --------------------------------

 pa_mov_XYZ <8-17> Position deviation control in robot coordinate system

 pa_mov_YPR <8-18> Orientation deviation control in robot coordinate system

 pa_mov_xyz <8-19> Position deviation control in tip coordinate system

(available only for Visual C++)

 pa_mov_XYZ0 <8-19> Position deviation control in tip coordinate system

(available only for Visual BASIC)

 pa_mov_ypr <8-20> Orientation deviation control in tip coordinate system

(available only for Visual C++)

 pa_mov_YPR0 <8-20> Orientation deviation control in tip coordinate system

(available only for Visual BASIC)

 pa_mov_mat <8-21> Tip position /orientation absolute position control

Chapter 7 Library Reference

7- 42

FUNCTION LIST <> Page number

--- Function on teach point operation & playback control ------------------------------

pa_axs_pnt <8-23> Axis motion control from the present position to the current

point

pa_mov_pnt <8-24> Linear motion control from the present position to the current

point

pa_ply_pnt <8-25> Playback control

pa_chg_pnt <8-27> Teach point pointer alteration ((current point alteration)

pa_add_pnt <8-29> Teach point addition

pa_del_pnt <8-31> Teach point deletion

pa_rpl_pnt <8-32> Teach point replacement

 pa_set_pnt <8-33> Teach point attribution setting

 pa_set_idn <8-34> ID_No. setting at teach point

 pa_chg_dio <8-35> Teach point (PTP) DO attribution setting

 pa_vel_pnt <8-36> Playback control velocity coefficient alteration

 pa_swt_dio <8-37> Playback control teach point DO valid/invalid setting

pa_get_pnt <8-38> Current point teach point data loading

pa_get_cur <8-40> Current point teach point number loading

pa_get_num <8-41> Teach point all numbers loading

 pa_get_idn <8-42> Current point ID_No. loading

 pa_get_cpt <8-43> Current point circle/arc teach data loading

 pa_get_pvl <8-44> Playback control velocity coefficient loading

 pa_get_pdo <8-45> Playback control teach point DO valid/invalid loading

 pa_lod_pnt <8-46> Loading teach data to controller

 pa_sav_pnt <8-47> Saving teach data to man-machine controller

 pa_set_dlc <8-48> Playback DO automatic stop/non stop setting

 pa_get_dlc <8-49> Playback DO automatic stop/non stop loading

Chapter 7 Library Reference

7- 43

FUNCTION LIST <> Page number

-----------------―――----- (Additional function from Ver.3.0)------------

pa_ply_set <8-50> Teach data Key acquisition by number designation

 pa_act_pnt <8-51> Active teach data switching

 pa_jmp_set <8-52> JUMP data acquisition by number designation

 pa_get_jmp <8-53> JUMP data acquisition by Key/ID designation

 pa_set_jmp <8-54> JUMP data setting

 pa_ena_jmp <8-55> JUMP condition valid/invalid setting

 pa_ply_mod <8-56> Teach mode setting

 pa_chg_key <8-57> Current active teach data Key alteration

 pa_get_key <8-58> Current active teach data Key acquisition

 pa_mon_pnt <8-59> Acquired to monitor teach data status

 pa_set_cmt <8-60> Comment setting

 pa_jmp_cmt <8-61> Current point shifting by comment

 pa_get_ena <8-62> JUMP condition valid/invalid acquisition

 pa_get_pmd <8-63> Teach mode acquisition

 pa_del_jmp <8-64> JUMP data deletion

 pa_sav_ptj <8-65> Saving teach data and JUMP data

 pa_lod_ptj <8-66> Loading teach data and JUMP data

 pa_get_prj <8-67> Project name acquisition

 pa_set_prj <8-68> Project name setting

 pa_sav_pr <8-69> Saving project

 pa_lod_prj <8-70> Loading project

 pa_set_cub <8-71> CUBE designation

 pa_get_cub <8-72> CUBE teach designation

 pa_cub_len <8-73> CUBE side length designation

 pa_cub_cmt <8-74> Naming CUBE

 pa_del_cub <8-75> CUBE deletion

 pa_ena_cub <8-76> CUBE valid/invalid

 pa_inf_cub <8-77> CUBE information reference

--- Velocity control function --

 pa_mod_vel <8-78> Velocity control mode setting

 pa_odr_vel <8-80> Velocity control data set

---Tip absolute position/orientation, axis real-time

control function -------------------------------

pa_mod_dpd <8-82> Target position/orientation real-time control mode setting

 pa_odr_dpd <8-84> Target position/orientation real-time control data set

 pa_mod_axs <8-85> Axis real-time control mode setting

 pa_odr_axs <8-86> Axis real-time control data set

Chapter 7 Library Reference

7- 44

FUNCTION LIST <> Page number

--- Direct control function ---------（Optional function）-----------------------

pa_mod_dir <8-87> Servo lock ON/OFF when in direct control start

 pa_wet_ded <8-88> Weight compensation control

 pa_drt_ded <8-89> Arm installation direction setting

 pa_chk_cnt <8-90> Synchronization processing in direct control

 pa_set_tim <8-91> Time-out setting in synchronization processing

 pa_get_tim <8-92> Time-out loading in synchronization processing

 pa_get_drt <8-93> Arm installation direction acquisition/loading

--- Function on position setting/definition --

pa_set_hom <8-94> Home position setting

 pa_set_esc <8-95> Escape position setting

 pa_set_saf <8-96> Safety position setting

 pa_def_hom <8-97> Defining current value as home position

 pa_def_esc <8-98> Defining current value as escape position

 pa_def_saf <8-99> Defining current value as safety position

--- Function on coordinate conversion matrix & tip position offset ---------------------------

 pa_set_mtx <8-100> Coordinate spatial conversion matrix (position offset) setting

 pa_set_mat <8-101> Coordinate spatial conversion matrix setting

pa_set_wav <8-102> Weaving trajectory setting

 pa_odr_xyz <8-103> Tip position offset value setting

 pa_lmt_xyz <8-104> Limit value setting when in offset value supplement

 pa_get_mat <8-105> Current setting conversion matrix loading

 pa_get_sns <8-106> Current setting tip offset value loading

 pa_get_lmt <8-107> Limit value loading when in offset value supplement

--- Redundant axis control function -----------(7-axis, only) --------------------------

 pa_mod_jou <8-107> Redundant axis control mode setting

 pa_odr_jou <8-110> Redundant axis control data set

pa_mov_jou <8-111> Redundant axis (elbow) motion control

 pa_get_jou <8-112> Arm redundant axis control mode loading

Chapter 7 Library Reference

7- 45

FUNCTION LIST <> Page number

--- Arm status information loading function ----------------------------------

 pa_get_mod <8-113> Arm control status loading

 pa_get_ver <8-115> Motion controller S/W version number loading

 pa_get_com <8-116> Communication status (no communication/simulation/ actual

machine) loading

 pa_get_sts <8-117> Current arm information loading

 pa_get_cnt <8-119> Current arm control counter loading

 pa_get_err <8-120> Current arm error information loading

 pa_get_agl <8-121> Current arm axis value loading

 pa_get_xyz <8-122> Current arm tip position loading

 pa_get_noa <8-123> Current arm orientation matrix loading

 pa_get_ypr <8-124> Current arm position angle loading

 pa_get_prm <8-125> Current arm parameter loading

 pa_get_tar <8-127> Current arm target data loading

----------------------- (Additional function from Ver.3.0)-----------------------

 pa_get_sav <8-128> Axis servo ON/OFF status acquisition

 pa_sav_sts <8-129> Servo status acquisition

 pa_get_smd <8-130> TEACH MODE acquisition from servo

 pa_set_ddm <8-131> Dead man SW valid/invalid

 pa_get_ddm <8-132> Dead man SW valid/invalid status acquisition

 pa_set_lok <8-133> TEACH LOCK setting

 pa_get_lok <8-134> TEACH LOCK acquisition

 pa_tct_tim <8-135> Tact time (playback time) acquisition

 pa_get_max <8-136> Board controllable arm numbers acquisition

 pa_get_spt <8-137> Acquiring arm identification number

 pa_set_sim <8-138> Simulation magnification setting

 pa_set_inc <8-139> Real-time velocity setting

 pa_get_sim <8-140> Simulation magnification acquisition

 pa_get_inc <8-141> Real-time velocity acquisition

Chapter 7 Library Reference

7- 46

FUNCTION LIST <> Page number

--- Digital input/output function --

pa_inp_dio <8-142> Digital input (32ch. unit input)

 pa_oup_dio <8-143> Digital output (32ch. unit output)

 pa_get_dio <8-144> Digital input (1ch. unit input)

 pa_set_dio <8-145> Digital output (1ch. unit set)

 pa_rst_dio <8-146> Digital output (1ch. unit reset)

-- (Additional function from Ver.3.0)-----

 pa_dio_msk <8-147> DIO mask setting

 pa_get_msk <8-148> DIO mask acquisition

--- Function on parameter --

 pa_set_tol <8-149> Tool information setting

 pa_set_vel <8-150> Default velocity alteration

 pa_lod_ctl <8-151> loading parameter to controller

--- (Additional function from Ver.3.0-----

 pa_tst_nom <8-152> RETRAC creation ON/OFF setting

 pa_get_rmd <8-153> RETRAC creation ON/OFF acquisition

 pa_lod_rob <8-154> Robot model file loading

pa_lod_tol <8-155> Tool model file loading ﾞ

pa_sav_rob <8-156> model file saving ﾞ

pa_ena_nom <8-157> RETRAC calculation switching

 pa_get_nom <8-158> Acquiring either T-matrix or RETRAC calculation

 pa_tkn_nom <8-159> Acquiring RETRAC calculation OK/NOT OK

--- Other functions --

 pa_map_ctl <8-160> Shared area mapping with controller

 pa_fsh_chk <8-161> Waiting for control command processing completion

 pa_fsh_sub <8-162> Waiting for control command processing completion

pa_req_ctl <8-163> Issuing command setting intrusion to controller

 pa_req_sub <8-164> Issuing command setting intrusion to controller

 pa_rst_ctl <8-165> Arm error information reset

 pa_err_mes <8-166> Error message acquisition

Chapter 8 PA Library

8-1

Chapter 8 PA Library

Chapter 8 PA Library

8-2

ｐａ＿ｉｎｉ＿ｓｙｓ

Function

 PA library initialization

Syntax

 long pa_ini_sys(void)

Explanation

 This “pa_ini_sys” has to be called before using PA library.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_ter_sys

Description example

 #include <pa.h> .. Library prototype declaration

 #include <paerr.h> .. Error code

 main()

 {

 pa_ini_sys();

 :

 :

 pa_ter_sys();

 }

 pa.h ：Needs when the library is used.

 paerr.h ：Needs on account error names are declared.

MMeemmoo

Chapter 8 PA Library

8-3

ｐａ＿ｔｅｒ＿ｓｙｓ

Function

 PA library is terminated.

Syntax

 long pa_ter_sys(void)

Explanation

 This “pa_ter_sys” has to be called after using PA library.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_ini_sys

Chapter 8 PA Library

8-4

ｐａ＿ｏｐｎ＿ａｒｍ

Function

 Open arm (control arm selection)

Syntax

 ERR pa_opn_arm(ARM armno)

 armno Arm number (No.)

Explanation

 The arm designated by “armno” can be accessed.

 When plural arms are controlled, arms are distinguished by “armno.”

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_cls_arm

Description example

 #include <pa.h> .. Library prototype declaration

 #include <paerr.h> .. Error code

 main()

 {

 pa_ini_sys();

 pa_opn_arm(ARM1); .. Arm number selection :

 :

 pa_cls_arm(ARM1);

 pa_ter_sys();

 }

 pa.h ：Needs when the library is used.

 paerr.h ：Needs on account error names are declared.

 All these descriptions are always needed to use the library.

MMeemmoo

Chapter 8 PA Library

8-5

ｐａ＿ｃｌｓ＿ａｒｍ

Function

 Close arm

Syntax

 long pa_cls_arm(ARM armno)

 armno Arm number (No.)

Explanation

 The arm designated by “armno” cannot be accessed.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_opn_arm

Chapter 8 PA Library

8-6

ｐａ＿ｓｔａ＿ａｒｍ

Function

 Motion controller operation start

Syntax

 long pa_sta_arm(ARM armno)

 armno Arm number (No.)

Explanation

The controller designated by “armno” starts to communicate with servo driver.

The controller becomes ready to receive motion command.

 This function has to be always performed except initialization.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 For return value, there is controller error other than “ERR_OK.”

Refer to error table.

Reference

 pa_ext_arm

Description example

 #include <pa.h> .. Library prototype declaration

 #include <paerr.h> .. Error code

 main()

 {

 pa_ini_sys();

 pa_opn_arm(ARM1); .. Arm number selection

 pa_sta_arm(ARM1);

 :

 Arm motion function

 :

 pa_ext_arm(ARM1);

 pa_cls_arm(ARM1);

 pa_ter_sys();

 }

 pa.h ：Needs when the library is used.

 paerr.h ：Needs on account error names are declared

 All these descriptions are always needed to use the library.

 This sentence is omitted in following description examples.

RReeffeerreennccee

MMeemmoo

Chapter 8 PA Library

8-7

ｐａ＿ｅｘｔ＿ａｒｍ

Function

 Motion controller operation exit

Syntax

 long pa_ext_arm(ARM armno)

 armno Arm number (No.)

Explanation

 The controller designated by “armno” terminates to communicate with servo driver

 The controller becomes not ready to receive control command.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_sta_arm

Chapter 8 PA Library

8-8

ｐａ＿ｓｔａ＿ｓｉｍ

Function

 Starts arm motion with simulation mode.

Syntax

 long pa_sta_sim(ARM armno)

 armno Arm number (No.)

Explanation

The controller designated by “armno” starts inner servo driver simulation and

controls it.

This library is used in place of “pa_sta_arm.” Program can be debugged without

moving arm.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_ext_sim

Description example

 #include <pa.h> .. Library prototype declaration

 #include <paerr.h> .. Error code

 main()

 {

 pa_ini_sys();

 pa_opn_arm(ARM1); .. Arm number 1 selection

 pa_sta_sim(ARM1); .. Uses “pa_sta_arm” when the actual machine is

operated.

 :

 Arm motion function

 :

 pa_ext_sim(ARM1); .. Uses “pa_ext_arm” when the actual machine is

operated.

 pa_cls_arm(ARM1);

 pa_ter_sys();

 }

Control can be terminated with “pa_ext_arm,” also, when in simulation (pa_sta_sim).

MMeemmoo

Chapter 8 PA Library

8-9

ｐａ＿ｅｘｔ＿ｓｉｍ

Function

 Simulation mode is terminated.

Syntax

 long pa_ext_sim(ARM armno)

 armno Arm number (No.)

Explanation

The controller designated by “armno” terminates inner servo driver simulation and

ends control.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_sta_sim

Chapter 8 PA Library

8-10

ｐａ＿ｓｔｐ＿ａｒｍ

Function

 The brake stops arm motion.

Syntax

 long pa_stp_arm(ARM armno, long func)

 armno Arm number (No.)

 func Designation whether to wait or not until motion is completed.

Explanation

The controller designated by “armno” stops servo and performs brake-stop to

arm.

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion stops completely.

・Designates WM_NOWAIT：returns without confirming a stop.

 However, “pa_stp_arm” is performed instantly.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Description example

 : .. Arm in motion

 if (stop key is pushed)

 pa_stp_arm(ARM1,WM_WAIT);

 : .. Arm brake-stop

Chapter 8 PA Library

8-11

ｐａ＿ｓｕｓ＿ａｒｍ

Function

 Stops the arm motion temporarily.

Syntax

 long pa_sus_arm(ARM armno, long func)

 armno Arm number (No.)

 func Designation whether to wait or not until motion is completed.

Explanation

 The arm designated by “armno” becomes servo-lock status if it is in motion.

 Maintaining as it was before temporary-stop, continues the status kept by

“par_rsm_arm.”

This function creates motion by “func” as follows:

･Designates WM_WAIT ：does not return unless temporarily, motion stops

completely.

・Designates WM_NOWAIT：returns without confirming a temporary stop.

 However, “pa_sus_arm” is executed instantly.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_rsm_arm

Description example

 : .. Arm in motion

 if (temporary stop-key is pushed)

 pa_sus_arm(ARM1, WM_WAIT);

 : .. While in arm servo lock

 if (resuming key is pushed)

 pa_rsm_arm(ARM1, WM_WAIT);

 .. Arm servo lock released

 (Resuming arm motion)

Chapter 8 PA Library

8-12

ｐａ＿ｒｓｍ＿ａｒｍ

Function

 Releases arm temporary stop.

Syntax

 long pa_rsm_arm(ARM armno, long func)

 armno Arm number (No.)

 func Designation whether to wait or not until motion is completed.

Explanation

 If the arm designated by “armno” is in temporary stop, it is released resuming

prior motion.

This function creates motion by “func” as follows:

･Designates WM_WAIT ：does not return unless temporarily, motion stops

completely.

・Designates WM_NOWAIT：returns without confirming temporary-stop-release.

 However, “pa_rsm_arm” is executed instantly.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_sus_arm

Chapter 8 PA Library

8-13

ｐａ＿ｅｘｅ＿ａｘｓ

Function

 Performs each axis motion.

Syntax

 long pa_exe_axs(ARM armno, AXIS axis, ANGLEP angle, long func)

 armno Arm number (No.)

 axis designates by “enum AXIS”: motion axis designation.

 Plural axes can be selected. (Example: S1 | S2 | S3)

 angle Motion angle: is designated by pointer type “ANGLEP” to structure

ANGLE

 func Designation whether to wait or not until motion is completed.

Explanation

 The axis designated by “axis” creates motion at default angle velocity to the angle

designated by “angle”.

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion stops completely.

・Designates WM_NOWAIT：returns without confirming motion completion.

 When the designated axis target angle exceeds its axis motion range, its target

angle is altered to motion range allowing maximum value. Automatic target value

alteration is reported to users with the warning: “target angle exceeded.”

 Angle velocity default value employs default velocity.

 For alteration, arm parameter has to be changed. Arm parameter alteration

method can be referred to parameter setting manual or “pa_set_vel.”

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_vel

Description example

 :

 ANGLE ang;

 ang.s1=1.57;

 ang.s2=1.57;

 ang.w2=1.57;

 pa_exe_axs(ARM1, S1|S2|W2, &ang, WM_WAIT);

 .. Moves S1, S2 and W2 axis at the distance of 1.57 [rad]

 :

Remark

RReeffeerreennccee

Chapter 8 PA Library

8-14

ｐａ＿ｅｘｅ＿ｈｏｍ

Function

 Controls each axis to home position.

Syntax

 long pa_exe_hom(ARM armno, long func)

 armno Arm number (No.)

 func Designation whether to wait or not until motion is completed.

Explanation

 Moves to the home position setting in the arm parameter.

Home position default angle for all axes is 0 [deg].

Home position default angle correction method can be referred to parameter setting

manual or “pa_set_hom.”

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_hom Alters home position.

 pa_def_hom Replaces home position with current value.

RReeffeerreennccee

Chapter 8 PA Library

8-15

ｐａ＿ｅｘｅ＿ｅｓｃ

Function

 Controls each axis to “escape” position.

Syntax

 long pa_exe_esc(ARM armno, long func)

 armno Arm number (No.)

 func Designation whether to wait or not until motion is completed.

Explanation

 Moves to the “escape” position setting in parameter.

 Escape position default angles are:

 Ｓ２ ： ４５[deg]

 Ｅ１ ： ９０[deg]

 Ｗ１ ： ４５[deg]

 Others： ０[deg]

Escape position default angle correction method can be referred to parameter

setting or “pa_set_esc.”

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_esc Alters escape position.

 pa_def_esc Replaces escape position with current value.

RReeffeerreennccee

Chapter 8 PA Library

8-16

ｐａ＿ｅｘｅ＿ｓａｆ

Function

 Controls each axis to “safety position.”

Syntax

 long pa_exe_saf(ARM armno, long func)

 armno Arm number (No.)

 func Designation whether to wait or not until motion is completed.

Explanation

 Moves to “safety” position setting in parameter.

 Safety position default angles are:

 Ｓ２ ： ４５[deg]

 Ｅ１ ： ９０[deg]

 Ｗ１ ：－４５[deg]

 Others： ０[deg]

Escape position default angle correction method can be referred to parameter

setting or “pa_set_saf.”

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_saf Alters safety position.

 pa_def_saf Replaces safety position with current value.

RReeffeerreennccee

Chapter 8 PA Library

8-17

ｐａ＿ｍｏｖ＿ＸＹＺ

Function

 RMRC base coordinate position deviation control

Syntax

 long pa_mov_XYZ(ARM armno, float X, float Y, float Z, long func)

 armno Arm number (No.)

 X Base coordinate toward X position deviation [mm]

 Y Base coordinate toward Y position deviation [mm]

 Z Base coordinate toward Z position deviation [mm]

 func Designation whether to wait or not until motion is completed.

Explanation

With base coordinate axis as standard, the tip position moves at exact distance

created from designated position deviation toward X, Y and Z. Tip orientation does

not change.

Tip motion trajectory is linear. Velocity is interpolated creating modified sin curve

profile for start-up/shutdown.

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

 PA-10 RMRC control: method to interpolate arm tip trajectory and orientation

setting position and orientation as the target value.

 In PA-10 RMRC control, uncontrollable areas exist.

 This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]

(930 [mm] length from S2 rotation origin to W1 rotation origin). Singularity check

is performed when the target value is created in RMRV control.

 For more, refer to programming manual in chapter 3.

 When the tip target position calculated from designated deviation, exceeds arm

motion range, warning occurs: “target value arm length exceeds 925 [mm]

(automatically cut target value).”

If arm motion continues and exceeds motion range, the operation is automatically

switched to temporary-stop status. Immediately, the servo-lock performs.

 When LENGTH value is beyond 925 [mm] before being in motion, this motion is not

performed as the motion range exceeds.

Two motion range types: LENGTH 925 [mm] available for RMRC control and axis

angle limit. If exceeding either limit, arm motion is not performed.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

RReeffeerreennccee

Remark

Chapter 8 PA Library

8-18

ｐａ＿ｍｏｖ＿ＹＰＲ

Function

 RMRC Base coordinate orientation deviation control

Syntax

 long pa_mov_YPR(ARM armno, float Y, float P, float R, long func)

 armno Arm number (No.)

 Y Base coordinate rotation on X axis orientation deviation [rad]

 P Base coordinate rotation on Y axis orientation deviation [rad]

 R Base coordinate rotation on Z axis orientation deviation [rad]

 func Designation whether to wait or not until motion is completed.

Explanation

 With base coordinate axis as standard, the tip orientation (direction) rotates at

exact distance created from designated deviation: Yaw, Pitch and Roll. Tip

position does not change.

Tip rotational velocity is interpolated creating modified sin curve profile for

start-up/shutdown.

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

 PA-10 RMRC control: method to interpolate arm tip trajectory and orientation

setting position and orientation as the target value.

 In PA-10 RMRC control, uncontrollable areas exist.

 This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]

(930 [mm] length from S2 rotation origin to W1 rotation origin).

 For more, refer to programming manual in chapter 3.

 No warning occurs even if the tip target orientation calculated by the designated

deviation exceeds arm motion range.

 If arm motion continues and exceeds motion range, the operation is automatically

switched to temporary-stop status. Immediately, the servo-lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this motion is

not performed as the motion range exceeds.

Two motion range types: LENGTH 925 [mm] available for RMRC control and axis

angle limit. If exceeding either limit, arm motion is not performed.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

RReeffeerreennccee

Remark

Chapter 8 PA Library

8-19

ｐａ＿ｍｏｖ＿ｘｙｚ （for Visual BASIC, ｐａ＿ｍｏｖ＿ＸＹＺ０）

Function

 RMRC mechanical interface coordinate position deviation control

Syntax

 long pa_mov_xyz(ARM armno, float x, float y, float z, long func)

 armno Arm number (No.)．

 x Mechanical interface coordinate toward X position deviation [mm]

 y Mechanical interface coordinate toward Y position deviation [mm]

 z Mechanical interface coordinate toward Z position deviation [mm]

 func Designation whether to wait or not until motion is completed.

Explanation

With base coordinate axis as standard, the tip position moves at the only distance

created from designated position deviation toward X, Y and Z. Tip orientation does

not change.

Tip motion trajectory is linear. Velocity is interpolated creating trapezoidal profile.

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation

setting position and orientation as the target value.

 In PA-10 RMRC control, uncontrollable areas exist.

 This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]

(930 [mm] length from S2 rotation origin to W1 rotation origin). Singularity check

is performed when the target value is created in RMRV control.

 For more, refer to programming manual in chapter 3.

 When the tip target position calculated from designated deviation, exceeds arm

motion range, warning occurs: “target value arm length exceeds 925 [mm]

(automatically cut target value).”

If arm motion continues and exceeds motion range, the operation is automatically

switched to temporary-stop status. Immediately, the servo-lock performs.

 When LENGTH value is beyond 925 [mm] before being in motion, this motion is not

performed as the motion range exceeds.

Two motion range types: LENGTH 925 [mm] available for RMRC control and axis

angle limit. If exceeding either limit, arm motion is not performed.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

RReeffeerreennccee

Remark

Chapter 8 PA Library

8-20

ｐａ＿ｍｏｖ＿ｙｐｒ （for Visual BASIC, ｐａ＿ｍｏｖ＿ＹＰＲ０）

Function

 RMRC mechanical interface coordinate orientation deviation control

Syntax

 long pa_mov_ypr(ARM armno, float y, float p, float r, long func)

 armno Arm number (No.)．

 y Mechanical interface coordinate rotation on X axis position deviation

[rad]

 p Mechanical interface coordinate rotation on Y axis position deviation

[rad]

 r Mechanical interface coordinate rotation on Z axis position deviation

[rad]

 func Designation whether to wait or not until motion is completed.

Explanation

The tip orientation moves with RMRC control at the distance created from

orientation deviation designated at y, p and r in the mechanical interface

coordinate.

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

 PA-10 RMRC control: method to interpolate arm tip trajectory and orientation

setting position and orientation as the target value.

 In PA-10 RMRC control, uncontrollable areas exist.

 This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]

(930 [mm] length from S2 rotation origin to W1 rotation origin).

For more, refer to programming manual in chapter 3.

No warning occurs even if the tip target orientation calculated by the designated

deviation exceeds arm motion range.

 If arm motion continues and exceeds motion range, the operation is automatically

switched to temporary-stop status. Immediately, the servo-lock performs.

 When LENGTH value is beyond 925 [mm] before being in motion, this motion is

not performed as the motion range exceeds.

Two motion range types: LENGTH 925 [mm] available for RMRC control and axis

angle limit. If exceeding either limit, arm motion is not performed.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

RReeffeerreennccee

Remark

Chapter 8 PA Library

8-21

ｐａ＿ｍｏｖ＿ｍａｔ

Function

 Tip position/orientation target absolute position designation control

Syntax

 long pa_mov_mat(ARM armno, MOVEMODE mmod, MATRIX mat,

 ANGLEP angle, long func)

 armno Arm number (No.)．

 mmod Absolute target matrix classification ? 絶先目標行列種別???????

 mat Absolute tip position/orientation target matrix

 angle Each axis value for redundant axis restriction control [rad]

 func Designation whether to wait or not until motion is completed.

Explanation

 Moves to the target provided by “mat” for the arm designated by “armno”.

 Three motion target designation methods: absolute position, absolute orientation

and absolute position/orientation. These can be designated by “mmod”.

Trajectory to the designated target value is interpolated linearly.

 MOVEMODE mmod classification:

 ・MM_XYZ ：By “mat”, position is altered without changing absolute

position target matrix tip orientation.

･MM_NOA ：By “mat”, orientation is moved without changing absolute

orientation target matrix tip position.

･MM_XYZNOA ：By “mat”, absolute position orientation matrix tip

position/orientation is moved.

 MATRIX mat:

 ｎx ｏx ａx ｐx

 ｎy ｏy ａy ｐy matrix: mat[3][4]

 ｎz ｏz ａz ｐz

 ANGLEP angle

Also, in this control, redundant axis control mode (the mode selected by

“pa_mod_jou”) to control elbow position is available and restricted by each axis

value provided by “angle.” For 6-axis or 7-axis arm, when redundant axis

control mode is OFF (no restriction), “angle” is invalid. However, a variable has

to be set 0.

This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

 PA-10 RMRC control: method to interpolate arm tip trajectory and orientation

setting position and orientation as the target value.

 In PA-10 RMRC control, uncontrollable areas exist.

 This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]

(930 [mm] length from S2 rotation origin to W1 rotation origin).

For more, refer to programming manual.

RReeffeerreennccee

Chapter 8 PA Library

8-22

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Description example

 :

 MATRIX mat;

 ANGLE an;

 mat[0][0] = 0.0;

 :

 mat[2][3]= 850.0;

 an.s1 = 0.0;

 an.s2 = 0.0;

 an.s3 = 60.0/180.0*M_PI; ..60[deg]

 :

 an.w2 = 0.0;

 pa_mov_mat(ARM1, MM_XYZNOA, mat, &an, WM_WAIT);

 :

 Moves with RMRC interpolation from the current point to the tip

position/orientation indicated by “mat”.

Chapter 8 PA Library

8-23

ｐａ＿ａｘｓ＿ｐｎｔ

Function

 Moves from the present point to the current point.

Syntax

 long pa_axs_pnt(ARM armno, long func)

armno Arm number (No.)．

 func Designation whether to wait or not until motion is completed.

Explanation

 Moves the arm with axis interpolation from the present point to the current point.

 ＜Differences between pa_axs_pnt and pa_mov_pnt＞
・Whatever a current point data type is, “pa_axs_pnt” moves with axis control.

・For “pa_mov_pnt,” when the current point data type is PTP data, moves with linear

interpolation (RMRC) control. When type is CP data, moves with axis interpolation

(axis angle control.)

 When the present and current point position/orientation are completely different, it

is advisable to use axis interpolation. From any position/orientation (home

orientation, etc.) it can reach the current point.

 Explanation for “func” is the same as “pa_mov_pnt”.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_mov_pnt Moves linearly to the current point.

Description example

 :

 pa_chg_pnt(ARM1, PM_TOP, 0); .. Moves teach point pointer to the top.

 pa_axs_pnt(ARM1, WM_WAIT); .. Moves to the current (top) teach point with

axis interpolation.

Chapter 8 PA Library

8-24

ｐａ＿ｍｏｖ＿ｐｎｔ

Function

 Moves from the present point to the current point.

Syntax

 long pa_mov_pnt(ARM armno, long func)

 armno Arm number (No.)．

 func Designation whether to wait or not until motion is completed.

Explanation

Moves the arm from the present point to the current point interpolating linearly tip

trajectory and tip orientation.

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

 For this method, RMRC control is employed, the arm tip position trajectory from

the present position to the current one is linearly interpolated and orientation is

also interpolated.

 For 7-axis arm:
 Even if the tip position/orientation trajectory is the same, plural axis values exist

then. So that redundant axis control has to be set.

・If redundant axis operation control mode is selected, current point teach data

axis value restricts motion.

・If redundant axis operation control mode not restricted is selected, motion is not

restricted by current point teach data axis value.

Either redundant axis control modes, the tip trajectories are the same. But, each

axis value is different.

Redundant axis control mode is available in all RMRC controls until it is reset.

For more, refer to programming manual in chapter 3.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_chg_pnt Current point alteration

 pa_axs_pnt Each axis moves to the current point.

 pa_ply_pnt Playback control

 pa_mod_jou Restricted axis control mode

Description example

 pa_mod_jou(ARM1, JM_ON); .. Redundant axis control mode ”All axes restriction”

selection

 pa_chg_pnt(ARM1, PM_TOP, 0); .. Moves the teach point pointer to the top

 pa_mov_pnt(ARM1, WM_WAIT); .. Moves to the current (top) teach point with

axis interpolation.

RReeffeerreennccee

Chapter 8 PA Library

8-25

ｐａ＿ｐｌｙ＿ｐｎｔ

Function

 Performs playback control.

Syntax

 long pa_ply_pnt(ARM armno, PLAYBACK pbmod, long number, long func)

 armno Arm number (No.)．

 pbmod Motion direction and motion method are designated by “enum

PLAYBACK.”

 func Designation whether to wait or not until motion is completed.

Explanation

 Performs playback motion designated by “pbmod”.

 PB_FORES：Performs playback with step toward.

 If data is PTP, motion continues to the next.

 PB_BACKS：Performs playback with step reverse.

 If data is PTP, motion continues to the next.

 PB_FORE： Starts to consecutively playback forward for teach data from the

current point. Playback is performed as many as designated by the number.

If the number is designated –1, playback is infinitely performed.

 This function creates motion by “func” as follows:

・Designates WM_WAIT ：does not return unless motion is completed.

 ・Designates WM_NOWAIT：returns without confirming motion completion.

 Playback motion is available when teach data is being loaded or when teaching is

performed. However, this can be used only when the current point and the arm

position are placed together. If not, move the arm to the current point.

 Playback control: method to interpolate the tip position/orientation calculated

from teach data axis value and control it.

Chapter 8 PA Library

8-26

 For 7-axis arm, Even if the tip position/orientation trajectory is the same, plural

axis values exist. So that redundant axis operation has to be set.

 Before performing playback control:
・If redundant axis operation control mode is selected, teach point data axis value

restricts motion.

・If redundant axis operation control mode: “JM_OFF” is selected, motion is not

restricted by teach point data axis value.

 Default is JM_OFF.

With any redundant axis control mode, the tip trajectory is the same. But, each

axis value is different.

Redundant axis control mode is available in all RMRC controls until it is reset.

For more, refer to programming manual.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_mov_pnt Moves linearly to the arm current point.

 pa_axs_pnt Each axis moves to the arm current point.

 pa_mod_jou Performs redundant axis operation control.

Description example

 :

 pa_mod_jou(ARM1, JM_ON); .. Redundant axis control mode “all axes restriction”

selection

 :

 pa_chg_pnt(ARM1, PM_TOP, 0); .. Moves the teach point pointer to the top

 pa_mov_pnt(ARM1, WM_WAIT); .. Moves to the current (top) teach point with

axis interpolation.

 pa_ply_pnt(ARM1, PB_FORE, -1, WM_WAIT); .. Playback control starts from the

current point (top) to infinity.

7-axis arm function

RReeffeerreennccee

Chapter 8 PA Library

8-27

ｐａ＿ｃｈｇ＿ｐｎｔ

Function

 Alters the current point of teach point.

Syntax

 long pa_chg_pnt(ARM armno, PNTMOVE pmov, long jpt)

 armno Arm number (No.)．

 pmov Designates teach point pointer forwarding place with “enum PNTMOVE.”

 jpt Pointer shifting designation number

 pmov = Available when in “PM_JMP.”

Explanation

 Changes teach point pointer to the teach point position designated by “pmov”.

 Teach point pointed out by teach point pointer is called current point.

 PM_TOP ：Moves the teach point pointer to the top.

 PM_NEXT ：Moves the teach point pointer to the next teach point.

This function is available when teach data is being loaded or when

teaching is performed. If the current point is at the last teach point,

nothing is performed.

 PM_PRIV ：Moves the teach point pointer to the previous teach point.

This function is available when teach data is being loaded or when

teaching is performed. If the current point is at the top teach point,

nothing is performed.

 PM_BTM ：Moves the teach point pointer to the last teach point.

This function is available when teach data is being loaded or when

teaching is performed. If the current point is at the last teach point,

nothing is performed.

PM_JMP ：Moves the teach point pointer to the teach point. With designated

number “jpt”.

 PM_CIR ：Researches the circle teach point forward from the current point and

moves the teach point pointer to the teach point found in the first

place.

 PM_ARC ：Researches the arc teach point forward from the current point and

moves the teach point pointer to the teach point found in the first

place.

 When the current point (the 2ndpoint) is the circle first point, if “PM_NEXT”

is designated, the current point become the 5th point. To summarize, the

points able to be the current point are point attribution: PTP and circle 1st

point and arc 1st point.

MMeemmoo

MMeemmoo

MMeemmoo

Chapter 8 PA Library

8-28

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_sav_pnt

 Teach point pointer:

 When operation function on teach point is performed, the teach point has to be

indicated for the operation target. The one indicating this teach point is the teach

point pointer.

 The teach point pointed out by teach point pointer is called the current point

(current teach point).

 After pointer shifting operation, if intending to restart playback, the current point

and present arm position have to be placed together.

 When teach data is loaded, the current point is the top teach point.

 Teach point operation is total only for teach data operation. It has nothing to do

with actuating arm itself.

 For more, refer to programming manual 3

MMeemmoo

RReeffeerreennccee

Chapter 8 PA Library

8-29

ｐａ＿ａｄｄ＿ｐｎｔ

Function

 Adds the current position to the teach point.

Syntax

 long pa_add_pnt(ARM armno, PNTTYPE ptyp)

armno Arm number (No.)．

ptyp Teach point addition position and data type designated by “enum PNTTYPE”.

 Adds the current value as teach point with the method designating by “ptyp”.

 ・PT_PTP ： Adds PTP linear interpolation data after the current point.

 The current point becomes the added teach point.

・PT_BPTP ： Adds PTP linear interpolation data before the current point.

 The current point becomes the added teach point.

・PT_ARC1 ： Adds the arc 1st point.

 The current point becomes the added teach point.

・PT_ARC2 ： Adds the arc 2nd point.

The current point has to be the arc 1st point.

 The current point becomes the added teach point.

・PT_ARC3 ： Adds the arc 3rd point.

 The current point has to be the arc 2nd point.

 The current point becomes the added teach point.

・PT_CIR1 ： Adds the circle 1st point.

 The current point becomes the added teach point.

・PT_CIR2 ： Adds the circle 2nd point.

 The current point has to be the circle 1st point.

 The current point becomes the added teach point.

・PT_CIR3 ： Adds the circle 3rd point

 The current point has to be the circle 2nd point.

 The current point becomes the added teach point.

･PT_AXS ： Adds PTP axis interpolation data retaining axis recovery attribution

after the current point.

The current point becomes the added teach point.

･PT_BAXS ： Inserts PTP axis interpolation data retaining axis recovery

attribution before the current point.

The current point becomes the inserted teach point.

Chapter 8 PA Library

8-30

 ・PT_POS ： Adds PTP linear interpolation NOAP data after the current point.

 The current point becomes the added teach point.

･PT_BPOS ： inserts PTP linear interpolation NOAP data before the current

point.

The current point becomes the added teach point.

・PT_ARC4 ： Adds the arc 1st point with NOAP data.

 The current point becomes the added teach point.

・PT_ARC5 ： Adds the arc 2nd point with NOAP data.

 The current point has to be the arc 1st point.

 The current point becomes the added teach point.

・PT_ARC6 ： Adds the arc 3rd point with NOAP data.

 The current point has to be the arc 2nd point.

 The current point becomes the added teach point.

・PT_CIR4 ： Adds the circle 1st point with NOAP data.

 The current point becomes the added teach point.

・PT_CIR5 ： Adds the circle 2nd point with NOAP data.

 The current point has to be the circle 1st point.

 The current point becomes the added teach point.

・PT_CIR6 ： Adds the circle 3rd point with NOAP data.

 The current point has to be the circle 2nd point.

 The current point becomes the added teach point.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_chg_pnt Current point alteration

 pa_del_pnt Teach data deletion

Description example

 :

 pa_chg_pnt(ARM1, PM_JMP, 5); .. Moves the teach point pointer to the

5th teach point.

 pa_add_pnt(ARM1, PT_PTP); .. loads PTP linear interpolation data

teach point to the 6th teach point.

 :

Chapter 8 PA Library

8-31

ｐａ＿ｄｅｌ＿ｐｎｔ

Function

 Deletes the teach point.

Syntax

 long pa_del_pnt(ARM armno, PNTDEL pdel)

 armno Arm number (No.)．

 pdel Designates teach point to be deleted, with “enum PNTDEL”.

Explanation

 Deletes teach point designated by “pdel”.

・ PD_CUR ： Deletes teach point of current point.

 If current point is deleted, teach point pointer moves back to the prior teach

point after deletion.

 On account current point is changeable, when intending to restart playback,

the arm has to be moved to the current point position to get coordination.

 ・PD_ALL ： Deletes all teach points of current teach Key.

 ・PD_ALLDATA ： Deletes all teach data points.

Command cannot be accepted while in playback.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_chg_pnt Current point alteration

 pa_add_pnt Teach point addition

Chapter 8 PA Library

8-32

ｐａ＿ｒｐｌ＿ｐｎｔ

Function

 Replaces the present axis value with teach point data of current point.

Syntax

 long pa_rpl_pnt(ARM armno)

 armno Arm number (No.)．

Explanation

 Replaces the present axis value with teach point data of current point.

This function is available when teach data is being loaded or when teaching is

performed.

 There is no function to recover replaced data.

 This replacement function is available when the current point is PTP data.

 When intending to change only the position of certain completed teach data, if this

replacement and current point alteration functions are combined well, alteration can

be easily performed.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_chg_pnt Current point alteration

Description example

 :

 pa_chg_pnt(ARM1, PM_JMP, 3); .. Moves the teach point pointer to the 3rd

teach point.

 pa_rpl_pnt(ARM1); .. Replace the 3rd teach point with the

current point.

Remark

Chapter 8 PA Library

8-33

ｐａ＿ｓｅｔ＿ｐｎｔ

Function

 Sets the teach point attribution.

Syntax

 long pa_set_pnt(ARM armno, PNTATTR pattr, long* ldat, float fdat)

 armno Arm number (No.)．

 pattr Designates attribution altered, with “enum PNTATTR”.

 ldat Attribution altered

 fdat Attribution altered

Explanation

 Attribution designated by current point: “armno” has to be set in “ldat” or “fdat”.

 ・PA_CHGVEL ：Alters playback linear velocity.

 “fdat” dimension: [mm/sec]

 ・PA_CHGWAIT： Alters playback waiting time. “ldat[0]” dimension: [msec]

 ・PA_VELPTN ： Alters teach data velocity interpolation pattern.

ldat[0] shows velocity pattern.

ldat[1] shows start up time [*10mSec]

ldat[2] shows start up time [*10mSec]

 ・PA_ROTVEL ： Alters playback rotational velocity.

 “fdat” dimension: [rad/sec]

・PA_AXSACC： Alters each axis accuracy. “fdat” dimension: [deg]

・PA_RMRCACC： Alters straight line accuracy. “fdat” dimension: [mm]

・PA_JUMPID： Alters JUMP numbers. Setting at ldat[0].

 For teach data format, refer to programming manual.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Description example

 long i,ldat[3];

for(i=0;i<3;i++) ldat[i]=0;

 :

 pa_chg_pnt(ARM1, PM_JMP, 3);.. Moves the teach point pointer to the 3rd teach

point.

 pa_set_pnt(ARM1, PA_CHGVEL, ldat, 1.2f); .. Changes 3rd teach point velocity to

1.2[mm/sec].

RReeffeerreennccee

Chapter 8 PA Library

8-34

ｐａ＿ｓｅｔ＿ｉｄｎ

Function

 Sets teach point ID data attribution.

Syntax

 long pa_set_idn(ARM armno, PNTID pa, long dat)

armno Arm number (No.)．

pa Alteration attribution designation

dat Attribution value

Explanation

 This “pa” designates teach point attribution intended to change. Now, the

attribution supported by this library is only one.

 Macro definition

 PA_SETID : Sets ID number.

 This ID number is set to be designated by “dat”.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

pa_get_idn Teach point ID number acquisition

Description example

 :

 pa_set_idn(ARM0,PA_SETID,0x1234); .. ID No. setting

Chapter 8 PA Library

8-35

ｐａ＿ｃｈｇ＿ｄｉｏ

Function

Sets teach point (PTP) DO data attribution.

Syntax

 long pa_chg_dio(ARM armno, DIOSTATUSP dp)

armno Arm number (No.)．

 dp Pointer to the DO data attribution structure “DIOSTATUS”.

Explanation

Sets each designated port data attribution as current point DO data attribution.

(Port 1 cannot be set on account of the system activation.)

Setting cannot be performed while in playback control.

Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Description example

 DIOSTATUS dos;

 :

 dos.io1 = 0x01; .. PORT1 CH1 ON

 dos.io2 = 0x80; .. PORT2 CH8 ON

 dos.io3 = 0x40; .. PORT3 CH7 ON

 :

 pa_chg_dio(ARM1,&dos); .. Sets current point teach data DIO information.

DO information format inside teach data is long. Beware when putting

this format into “DIOSTATUS” type.

 Example: For adding PORT1_CH1 ON, PORT2_CH3 ON and PORT3_CH8 ON to

current point DO information.

 :

 PNTDAT pnt;

 UBYTE* ubp;

 DIOSTATUS dos;

 :

 pa_get_pnt(ARM0,&pnt); .. Current point DO information loading

 ubp = (UBYTE*)&pnt.ply.pnt.atr[6]; .. Setting with DIOSTATUS type.

 dos.io1 = *(ubp+2);

 dos.io2 = *(ubp+1); (ATTENTION! To each port address.)

 dos.io3 = *ubp;

 dos.io1 |= 0x01; ..Adds DIO information.

 dos.io2 |= 0x04;

 dos.io3 |= 0x80;

 pa_chg_dio(ARM0,&dos); .. Setting to current point DIO information

Remark

Chapter 8 PA Library

8-36

ｐａ＿ｖｅｌ＿ｐｎｔ

Function

 Alters all teach data interpolation velocity in playback control.

Syntax

 long pa_vel_pnt(ARM armno, float vgain)

 armno Arm number (No.)．

 vgain Interpolation velocity alteration gain

Explanation

 Alters arm playback interpolation velocity designated by “armno”.

Velocity of all data with PTP interpolation is corrected.

PTP interpolation velocity in playback control is the shifting time calculating from

shifting value created from tip linear motion velocity: Vxyz and tip rotational motion

velocity: Vypr.

 △Txyz＝△XYZ／Vxyz

 △Typr＝△YPR／Vypr

 Larger one is selected.

 Selected velocity (Vxyz or Vypr) is altered by “vgain”.

 If “△Txyz ＞ △Typr”,

 Vxyz = Vxyz*vgain

 Velocity is interpolated on the basis of “Vxyz”.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_get_pvl Playback velocity coefficient information acquisition

Chapter 8 PA Library

8-37

ｐａ＿ｓｗｔ＿ｄｉｏ

Function

 Sets teach point DO data valid/invalid.

Syntax

 long pa_swt_dio(ARM armno, long sw)

 armno Arm number (No.)．

 sw Valid/invalid parameter

Explanation

When parameter (sw) is 0, DO attribution inside teach data becomes invalid and is

not output even during playback control.

 If parameter (sw) is not 0, output is exactly performed following teach data DO

attribution in playback control.

 Default is 1

 This can be changed while in playback control.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_ply_pnt performs playback control.

 pa_get_pdo DO data valid/invalid acquisition while in playback.

Chapter 8 PA Library

8-38

ｐａ＿ｇｅｔ＿ｐｎｔ

Function

 Acquires teach point attribution of current point.

Syntax

 long pa_get_pnt(ARM armno, PNTDATP tea)

 armno Arm number (No.)．

 tea Download area for teach point attribution of current point.

 Explanation

 Acquires current point teach data.

 tea.ply.pnt.agl[0]

～tea.ply.pnt.agl[6] S1 axis angle [rad]～W2 axis [rad]

 tea.ply.pnt.vel[0] Linear velocity [mm/sec]

 tea.ply.pnt.vel[1] Rotational velocity [rad/sec]

tea.ply.pnt.atr[0] Teach point type（PTP/PTP(NOAP)）

tea.ply.pnt.atr[1] Interpolation method (straight

line/circle/arc)

tea.ply.pnt.atr[2] Velocity type (Acceleration & Deceleration/

Acceleration/ Deceleration/Straight line)

tea.ply.pnt.atr[3] Waiting time [*10mSec]

tea.ply.pnt.atr[4] Serial number (not available for users)

tea.ply.pnt.atr[5] ID number

tea.ply.pnt.atr[6] DO information

tea.ply.pnt.atr[7] Accuracy

 Upper 16 bit: RMRC accuracy (0-25.5[mm])

 Lower 16 bit: axis accuracy (0-25.5[deg])

tea.ply.pnt.atr[8] JUMP conditional number

tea.ply.pnt.atr[9] Acceleration time [*0.01mSec]

tea.ply.pnt.atr[10] Deceleration time [*0.01mSec]

tea.ply.pnt.atr[11] Spare

tea.ply.cmt[32] Maximum 32 letters comment

tea.noa.xyz[0]～tea.noa.xyz[3] Arm X, Y and Z coordinate [mm]

tea.noa.noa[0]～tea.noa.noa[3] Arm orientation

tea.jmp.cid Number specifying JUMP condition

tea.jmp.jdg[0].cnd[0] JUMP condition

tea.jmp.jdg[0].cnd[1] Not available

tea.jmp.jdg[0].xdi DI information

tea.jmp.jdg[0].tim Time-out [mSec]

tea.jmp.jdg[0].key Teach data Key

tea.jmp.jdg[0].pid Teach point ID

tea.jmp.jdg[0].cnt Inside information

 :

tea.jmp.jdg[7].cnd[0] JUMP condition

tea.jmp.jdg[7].cnd[1] Not available

tea.jmp.jdg[7].xdi DI information

tea.jmp.jdg[7].tim Time-out [mSec]

tea.jmp.jdg[7].key Teach data Key

Chapter 8 PA Library

8-39

tea.jmp.jdg[7].pid Teach point ID

tea.jmp.jdg[7].cnt Inside information

JUMP condition can be set 8 (eight).

For interpolation pattern, refer to programming manual.

 Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Reference

pa_get_cur Acquires teach point number of current point.

pa_get_num Acquires total numbers of teach point.

pa_get_idn Acquires teach point ID number.

RReeffeerreennccee

Chapter 8 PA Library

8-40

ｐａ＿ｇｅｔ＿ｃｕｒ

Function

 Acquires current point teach point number.

Syntax

 long pa_get_cur(ARM armno, long* cur)

 armno Arm number (No.)．

 cur Current point teach point number.

Explanation

 Acquires teach point number from teach point attributions of current point.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

pa_get_pnt Acquires current point teach point attribution.

pa_get_num Acquires teach point total numbers.

Chapter 8 PA Library

8-41

ｐａ＿ｇｅｔ＿ｎｕｍ

Function

 Acquires teach point total numbers.

Syntax

 long pa_get_num(ARM armno, long* num)

 armno Arm number (No.)．

 num Teach point total numbers

Explanation

Acquires teach point total numbers.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

pa_get_pnt Acquires current point teach point attribution.

pa_get_cur Acquires current point teach point number.

Chapter 8 PA Library

8-42

ｐａ＿ｇｅｔ＿ｉｄｎ

Function

Acquires teach point ID data attribution.

Syntax

long pa_get_idn(ARM armno, long* idn)

armno Arm number (No.)．

idn attribution value

Explanation

 Acquires current point ID data attribution.

Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference

 pa_set_idn Teach point ID number setting

Description example

 long id;

 :

 pa_get_idn(ARM0,&id); .. Current point ID number acquisition

Chapter 8 PA Library

8-43

ｐａ＿ｇｅｔ＿ｃｐｔ

Function

 1st, 2nd and 3rd point information are acquired when current point is circle/arc.

Syntax

 long pa_get_cpt(ARM armno, PNTNO pno, PNTDATP pntdat)

 armno Arm number (No.)．

pno Circle/arc Identification number designation.

 pntdat Pointer for teach data structure “PNTDAT”.

Explanation

Teach data to obtain by “pa_get_pnt” is only the current point data. Therefore, if

intending to acquire 2nd/3rd data for circle/arc, use this function.

Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference

 pa_get_pnt Acquires current point teach point attribution.

Chapter 8 PA Library

8-44

ｐａ＿ｇｅｔ＿ｐｖｌ

Function

 Acquires playback velocity coefficient information.

Syntax

 long pa_get_pvl(ARM armno, float* div)

armno Arm number (No.)．

 div Playback velocity coefficient

Explanation

Acquires current setting playback velocity coefficient information.

 For Playback velocity coefficient, default = 1. This default can be changed by

“pa_vel_pnt”.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_vel_pnt Playback velocity coefficient information setting

Chapter 8 PA Library

8-45

ｐａ＿ｇｅｔ＿ｐｄｏ

Function

 Acquires DO information valid/invalid inside teach data when in playback control.

Syntax

long pa_get_pdo(ARM armno, long* stat)

armno Arm number (No.)．

stat DO valid/invalid flag

Explanation

 stat = １：Playback data DO information valid.

 stat = ０：Playback data DO information invalid.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_swt_dio Teach data DO information valid/invalid setting when in

playback control.

Chapter 8 PA Library

8-46

ｐａ＿ｌｏｄ＿ｐｎｔ

Function

 Loads teach point to controller.

Syntax

 long pa_lod_pnt(ARM armno, STRING file)

 armno Arm number (No.)．

 file Teach point data file name

Explanation

 Loads data designated by “file” to the arm designated by “armno”.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_sav_pnt Teach data saving

Chapter 8 PA Library

8-47

ｐａ＿ｓａｖ＿ｐｎｔ

Function

Loads teach points from the controller. Saves them in hard disk of man-machine

controller.

Syntax

 long pa_sav_pnt(ARM armno, STRING file)

 armno Arm number (No.)．

 file Teach data storing file name

Explanation

 Uploads teach data from the arm controller designated by “armno”. Saves it with

the designated file name in the hard disk of man-machine controller.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_lod_pnt Teach data loading

Chapter 8 PA Library

8-48

ｐａ＿ｓｅｔ＿ｄｌｃ

Function

Sets either to stop automatically or not synchronizing DO information with arm

motion in playback control.

Syntax

 long pa_set_dlc(ARM armno, long data)

 armno Arm number (No.)．

 data DO automatic stop valid/invalid parameter

Explanation

 When teach point DO information is outputted during playback control, if the arm

is temporarily stopped (paused) or in brake-stop, set either to stop or not to output

DO information.

When parameter (data) is 0, if the arm is stopped, DO information output is also

stopped.

When parameter (data) is 1, even if the arm is stopped, DO information output

continues.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_get_dlc

Chapter 8 PA Library

8-49

ｐａ＿ｇｅｔ＿ｄｌｃ

Function

 Acquires determination whether to automatically stop or not synchronizing DO

information with arm motion in playback control.

Syntax

 long pa_get_dlc(ARM armno, long* stat)

armno Arm number (No.)．

stat DO automatic stop valid/invalid flag

Explanation

stat = ０：Teach data DO information automatic stop invalid.

stat = １：Teach data DO information automatic stop valid.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_dlc

Chapter 8 PA Library

8-50

ｐａ＿ｐｌｙ＿ｓｅｔ

Function

 Acquires teach data Key with number designation.

Syntax

long pa_ply_set(ARM armno, long number, long* key);

armno Arm number (No.)．

number Teach data number

key Teach data Key number pointer

Explanation

 Acquires teach data Key with number designation.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_jmp_set Acquires JUMP data with Key and number designation

Description example:

long key;

 :

pa_ply_set(ARM0,0,&key); Acquires teach data Key with number

designation.

Chapter 8 PA Library

8-51

ｐａ＿ａｃｔ＿ｐｎｔ

Function

 Active teach data switching

Syntax

long pa_act_pnt(ARM armno, long key)

armno Arm number (No.)．

key Teach data Key number

Explanation

 Switches currently active teach data to designated Key.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_chg_key Switching currently active teach data to Key.

Description example:

 :

pa_act_pnt(ARM0,3); Alters from Key No.3 data into active teach data.

 :

Chapter 8 PA Library

8-52

ｐａ＿ｊｍｐ＿ｓｅｔ

Function

 JUMP data acquisition with number designation

Syntax

long pa_jmp_set(ARM armno, long key, long num, JUMPP jmp);

armno Arm number (No.)．

 key Teach data Key number

 num Data number

 jmp JUMP data

Explanation

 Acquires JUMP data by teach data Key and number designation

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_jmp JUMP data setting

 pa_get_jmp JUMP data acquisition

Description example:

JUMP jmp;

 :

pa_jmp_set(ARM0,2,0,&jmp); JUMP data acquisition by Key2 and number

designation

Chapter 8 PA Library

8-53

ｐａ＿ｇｅｔ＿ｊｍｐ

Function

 JUMP data acquisition.

Syntax

long pa_get_jmp(ARM armno, long key, long id, JUMPP jmp);

armno Arm number (No.)．

key Teach data Key number

id Teach point ID number

jmp JUMP data pointer

Explanation

 Acquires JUMP data.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_jmp JUMP data setting

Description example:

JUMP jmp;

 :

pa_get_jmp(ARM0,2,0,&jmp); This is defined in Key=2 and ID=0.

JUMP data acquisition

Chapter 8 PA Library

8-54

ｐａ＿ｓｅｔ＿ｊｍｐ

Function

 JUMP data setting

Syntax

long pa_set_jmp(ARM armno, long key, long id, JUMPP jmp);

armno Arm number (No.)

 key Teach data Key number

 id Teach data ID number

 jmp JUMP data

Explanation

 Sets JUMP data.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_get_jmp JUMP data acquisition

Chapter 8 PA Library

8-55

ｐａ＿ｅｎａ＿ｊｍｐ

Function

 JUMP data valid/invalid setting.

Syntax

long pa_ena_jmp(ARM armno, long stat);

armno Arm number (No.)．

stat 0： invalid

1： valid

Explanation

 Sets JUMP data valid/invalid.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_get_ena JUMP data valid/invalid status acquisition

Description example:

 :

pa_ena_jmp(ARM0,1); JUMP data is valid

 :

Chapter 8 PA Library

8-56

ｐａ＿ｐｌｙ＿ｍｏｄ

Function

 Teach mode setting

Syntax

long pa_ply_mod(ARM armno, long mod);

armno Arm number (No.)．

mod 0： Teach mode released

 1： Low

 2： Medium

 3： High

Explanation

 Sets teach mode.

Macro definitions employed in “mod” are as follows:

 Macro definition：

 TEACH_OFF Teach mode released

 TEACH_LOW Teach mode：Low

 TEACH_MID Teach mode：Medium

 TEACH_HIGH Teach mode：High

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_get_pmd Teach mode acquisition

Description example:

 :

pa_ply_mod(ARM0,TEACH_LOW); Teach mode ON（low velocity）

 :

Chapter 8 PA Library

8-57

ｐａ＿ｃｈｇ＿ｋｅｙ

Function

 Alters currently active teach data Key.

Syntax

long pa_chg_key(ARM armno, long key);

armno Arm number (No.)．

key Teach data Key number pointer

Explanation

 Alters currently active teach data Key.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_act_pnt Alters active teach data.

 pa_get_key Acquires currently active teach data Key.

Description example:

 long key;

 :

 pa_get_key(ARM0,&key); Alters currently active teach data Key.

if(key==1) When active teach data Key is 1

pa_chg_key(ARM0,2); Alters currently active teach data Key to

2.

 :

Chapter 8 PA Library

8-58

ｐａ＿ｇｅｔ＿ｋｅｙ

Function

 Acquires active teach data Key.

Syntax

long pa_get_key(ARM armno, long* key);

armno Arm number (No.)．

key Teach data Key number pointer

Explanation

 Acquires active teach data Key.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_chg_key Alters currently active teach data Key.

 pa_act_pnt Alters active teach data.

Chapter 8 PA Library

8-59

ｐａ＿ｍｏｎ＿ｐｎｔ

Function

 Acquires current teach point data (for monitor.)

Syntax

long pa_mon_pnt(ARM armno, PNTDATP pntdat);

armno Arm number (No.)．

pntdat Pointer to teach point data structure.

Explanation

 Acquires current teach point data (for monitor.)

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_get_pnt Acquires current teach point data.

Chapter 8 PA Library

8-60

ｐａ＿ｓｅｔ＿ｃｍｔ

Function

 Teach data comment setting

Syntax

long pa_set_cmt(ARM armno, char* cmt);

armno Arm number (No.)．

cmt Comment

Explanation

 Designates comment at teach point (maximum 32 letters.)

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Description example:

 :

 pa_set_cmt(ARM0,”Diverging point”); Sets comment at current point.

 :

Chapter 8 PA Library

8-61

ｐａ＿ｊｍｐ＿ｃｍｔ

Function

 Moves current teach point by comment designation.

Syntax

long pa_jmp_cmt(ARM armno, long key, char* cmt);

armno Arm number (No.)．

key Teach data Key number designation

cmt Comment designation

Explanation

 Moves current teach point by comment designation.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_chg_pnt

Description example:

 :

pa_jmp_cmt(ARM0,1,”Diverging point”); Moves current point to teach point

with comment designated by Key 1.

 :

Chapter 8 PA Library

8-62

ｐａ＿ｇｅｔ＿ｅｎａ

Function

 JUMP data valid/invalid acquisition.

Syntax

long pa_get_ena(ARM armno, long* stat);

armno Arm number (No.)．

stat 0: valid

 1: invalid

Explanation

 Acquires JUMP data valid/invalid.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_ena_jmp JUMP data valid/invalid setting

Chapter 8 PA Library

8-63

ｐａ＿ｇｅｔ＿ｐｍｄ

Function

 Teach mode acquisition

Syntax

long pa_get_pmd(ARM armno, long* mod);

armno Arm number (No.)．

mod 0：Teach mode released

 1：Low

 2：Medium

 3：High

Explanation

 Acquires teach mode.

 Macro definitions employed in “mod” are as follows:

 Macro definition：

 TEACH_OFF Teach mode released

 TEACH_LOW Teach mode：Low

 TEACH_MID Teach mode：Medium

 TEACH_HIGH Teach mode：High

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_ply_mod Teach mode setting

Chapter 8 PA Library

8-64

ｐａ＿ｄｅｌ＿ｊｍｐ

Function

 JUMP data deletion

Syntax

long pa_del_jmp(ARM armno, long key, long jnm);

armno Arm number (No.)．

key Key number

jnm JUMP number

Explanation

 Deletes JUMP data.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_jmp JUMP data setting

Description example:

 long key;

 :

 pa_get_key(ARM0,&key); Active Key acquisition

pa_jmp_cmt(ARM0,key,0); JUMP data deletion

 :

Chapter 8 PA Library

8-65

ｐａ＿ｓａｖ＿ｐｔｊ

Function

 Teach and JUMP data saving.

Syntax

long pa_sav_ptj(ARM armno, char* name);

armno Arm number (No.)．

name File name

Explanation

 Saves active teach data and its JUMP data.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_lod_ptj Teach data and JUMP data loading

 pa_lod_prj Project loading

 pa_sav_prj Project saving

 pa_lod_pnt Teach data loading

 pa_sav_pnt Teach data saving

Description example:

 :

pa_sav_ptj(ARM0,”c:\\data.csv”); Teach and JUMP data saving.

 :

Chapter 8 PA Library

8-66

ｐａ＿ｌｏｄ＿ｐｔｊ

Function

 Teach and JUMP data loading.

Syntax

long pa_lod_ptj(ARM armno, char* name);

armno Arm number (No.)．

name File name

Explanation

 Loads active teach data and its JUMP data.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_sav_ptj Teach data and JUMP data loading

 pa_lod_prj Project loading

 pa_sav_prj Project saving

 pa_lod_pnt Teach data loading

 pa_sav_pnt Teach data saving

Description example:

 :

pa_lod_ptj(ARM0,”c:\\data.csv”); Teach and JUMP data loading

 :

Chapter 8 PA Library

8-67

ｐａ＿ｇｅｔ＿ｐｒｊ

Function

 Project name acquisition

Syntax

long pa_get_prj(ARM armno, char* name);

armno Arm number (No.)．

name Project name

Explanation

 Acquires project name.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_prj Project name setting

Chapter 8 PA Library

8-68

ｐａ＿ｓｅｔ＿ｐｒｊ

Function

 Project name setting

Syntax

long pa_set_prj(ARM armno, char* name);

armno Arm number (No.)．

name Project name

Explanation

 Sets project name with maximum 128 letters.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_get_ptj Project name acquisition

Description example:

 :

pa_set_prj(ARM0,”Test project”); Project name setting

 :

Chapter 8 PA Library

8-69

ｐａ＿ｓａｖ＿ｐｒｊ

Function

 Project saving

Syntax

long pa_sav_prj(ARM armno, char* fdname);

armno Arm number (No.)．

name Storing folder name

Explanation

 Saves project.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_sav_ptj Teach data and JUMP data loading

 pa_lod_pｔj Teach data and JUMP data loading

 pa_lod_prj Project loading

 pa_lod_pnt Teach data loading

 pa_sav_pnt Teach data saving

Description example:

 :

pa_sav_prj(ARM0,”c:\\data”); Project saving

 :

Chapter 8 PA Library

8-70

ｐａ＿ｌｏｄ＿ｐｒｊ

Function

 Project loading

Syntax

long pa_lod_prj(ARM armno, char* fdname);

armno Arm number (No.)．

name Storing folder name

Explanation

 Loads project.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_sav_ptj Teach data and JUMP data saving

 pa_lod_pｔj Teach data and JUMP data loading

 pa_sav_prj Project saving

 pa_lod_pnt Teach data loading

 pa_sav_pnt Teach data saving

Description example:

 :

pa_lod_prj(ARM0,”c:\\data”); Project loading

 :

Chapter 8 PA Library

8-71

ｐａ＿ｓｅｔ＿ｃｕｂ

Function

 CUBE designation

Syntax

long pa_set_cub(ARM armno, long num, float xyz[], float ypr[]);

armno Arm number (No.)．

num CUBE number (０-23)

xyz[] Maximum value [mm]

ypr[] Minimum value [mm]

Explanation

 Designates CUBE.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_get_cub CUBE information teaching

 pa_cub_len CUBE side length designation

Description example:

 float xyz[3];

 float ypr[3];

 :

xyz[0]=100.0;

xyz[1]=100.0;

xyz[2]=100.0;

ypr[0]=0.0;

ypr[1]=0.0;

ypr[2]=0.0;

pa_set_cub(ARM0, 0, xyz, ypr); 0 (zero) CUBE designation

 :

Chapter 8 PA Library

8-72

ｐａ＿ｇｅｔ＿ｃｕｂ

Function

 CUBE teaching designation

Syntax

long pa_get_cub(ARM armno, long num, long mod);

armno Arm number (No.)．

num CUBE number（0-23）

mod １：Maximum value

２：Minimum value

３：Center

Explanation

 Designates CUBE teaching.

 Macro definitions employed in “mod” are as follows:

 Macro definition:

 MAXPNT： Maximum value

 MINPNT： Minimum value

 CENTERPNT： Center

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_cub CUBE information designation

 pa_cub_len CUBE side length designation

Description example:

 :

pa_get_cub(ARM0, 0, MAXPNT); 0 (zero) CUBE designation

 :

Chapter 8 PA Library

8-73

ｐａ＿ｃｕｂ＿ｌｅｎ

Function

 CUBE side length designation

Syntax

long pa_cub_len(ARM armno, long num, float xyz[]);

armno Arm number (No.)．

num CUBE number (0-23)

xyz Each side length [mm]

Explanation

 CUBE side length designation

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_cub CUBE information designation

 pa_get_cub CUBE information teaching

Chapter 8 PA Library

8-74

ｐａ＿ｃｕｂ＿ｃｍｔ

Function

 Names CUBE.

Syntax

long pa_cub_cmt(ARM armno, long num, char* name);

armno Arm number (No.)．

num CUBE number (0-23)

name CUBE name

Explanation

 Names CUBE.(maximum 32 letters)

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Chapter 8 PA Library

8-75

ｐａ＿ｄｅｌ＿ｃｕｂ

Function

 CUBE deletion

Syntax

long pa_del_cub(ARM armno, long num);

armno Arm number (No.)．

num CUBE number (0-23)

Explanation

 CUBE deletion

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Chapter 8 PA Library

8-76

ｐａ＿ｅｎａ＿ｃｕｂ

Function

 CUBE valid/invalid

Syntax

long pa_ena_cub(ARM armno, long num, long mod);

armno Arm number (No.)．

num CUBE number (0-23)

mod １：valid

０：invalid

Explanation

 Sets CUBE valid/invalid

 By designating num as –1, all CUBE information can be set to be invalid at a time.

 Valid designation is impossible.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Chapter 8 PA Library

8-77

ｐａ＿ｉｎｆ＿ｃｕｂ

Function

 CUBE information reference

Syntax

long pa_inf_cub(ARM armno, long num, CUBEP cub);

armno Arm number (No.)．

num CUBE number (0-23)

cub CUBE information

Explanation

 Refers to CUBE information.

 cub..ena CUBE information valid/invalid

 cub..mod Designation method when in CUBE information creation

 NOCUBE： CUBE information not exists

 CUBEON： Maximum value/minimum value designation

CUBEMAX： Maximum value teaching

CUBEMIN： Minimum value teaching

CUBECENTER： Center teaching

CUBESIDE： Side length designation

 cub.max[3] Maximum value or side length

 cub.min[3] Minimum value or center

 cub.cmt[32] Comment

 Combination of cub.mod are as follows:

 CUBEON Maximum value/minimum value designation

 CUBEMAX/CUBEMIN Maximum value/minimum value teaching

 CUBECENTER/CUBESIDE Side length/center teaching

 This combination is not correct. CUBE information is not established.

Return value

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference

 pa_set_cub CUBE information designation

 pa_get_cub CUBE information teaching

 pa_cub_len CUBE side length designation

Chapter 8 PA Library

 8-78

ｐａ＿ｍｏｄ＿ｖｅｌ

Function:

 Sets velocity mode.

Syntax:

 long pa_mod_vel(ARM armno, VELMODE vmod, AXIS axis)

 armno Arm number (No.)

 vmod Designates velocity mode by “enum VELMODE”.

axis Designates motion axis. Plural valid axes can be designated only when

axis velocity mode is designated. Velocity can be also. (ex) S1 | S3

Explanation:

 Sets in velocity mode designated by “vmod”.

 If velocity mode is set, the arm moves with velocity set value.

 Setting or alteration for velocity set value is performed by “pa_odr_vel“.

 VM_XYZ：Linear velocity mode in base coordinate

 （for Visual BASIC: VM_XYZ1）

 VM_YPR：Rotational velocity mode in base coordinate

 （for Visual BASIC: VM_YPR1）

 VM_xyz：Linear velocity mode in mechanical interface coordinate

 （for Visual BASIC: VM_XYZ2）

 VM_ypr：Rotational velocity mode in mechanical interface coordinate

 （for Visual BASIC: VM_YPR2）

 VM_ONE：Axis velocity mode

 Makes the axis designated by “axis” move with the designated velocity.

 VM_XYZYPR：Linear/rotational velocity mode in base coordinate

 （for Visual BASIC: VM_XYZYPR1）

 VM_xyzypr：Linear/rotational velocity mode in mechanical interface coordinate

 （for Visual BASIC: VM_XYZYPR2）

 Uncontrollable areas exist in any control except in axis velocity control.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg] (930

[mm] length from S2 rotation origin to W1 rotation origin).

For more, refer to programming manual in chapter 3.

 When the tip target position calculated from designated velocity, exceeds arm

motion range, warning occurs: “target value arm length exceeds 925 [mm]

(automatically cut target value).”

If arm motion continues and exceeds motion range, the operation is automatically

switched to temporary-stop status. Immediately, the servo-lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this designation is

ignored on account of being out of motion range.

Remark

RReeffeerreennccee

Remark

Chapter 8 PA Library

 8-79

 For axis velocity control likewise, each axis angle exceeds each axis angle limit at

designated velocity, the following warnings occur:

 -1070 S1 axis velocity control angle exceeded

 -1071 S2 axis velocity control angle exceeded

 -1072 S3 axis velocity control angle exceeded

 -1073 E1 axis velocity control angle exceeded

 -1074 E2 axis velocity control angle exceeded

 -1075 W1 axis velocity control angle exceeded

 -1076 W2 axis velocity control angle exceeded

 There are two motion ranges: LENGTH 925 [mm] available for RMRC control and

axis angle limit. If exceeding either limit, arm motion cannot be performed to the

direction exceeding the motion range. Velocity command to this direction is

ignored. But, velocity command to the movable direction can be provided.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_odr_vel Velocity setting in velocity mode

Chapter 8 PA Library

 8-80

ｐａ＿ｏｄｒ＿ｖｅｌ

Function:

 Sets velocity for velocity mode.

Syntax:

 ｌong pa_odr_vel(ARM armno, float spd[])

 armno Arm number (No.)

 spd[] Velocity setting (Its significance is different depending on velocity mode.)

Explanation:

 Sets velocity for velocity control mode.

 for Base coordinate linear velocity mode &

 Mechanical interface coordinate linear velocity mode

 spd[0]：Displacement/velocity toward x [mm/sec]

 spd[1]：Displacement/velocity toward y [mm/sec]

 spd[2]：Displacement/velocity toward z [mm/sec]

 for Base coordinate rotational velocity mode &

 Mechanical interface coordinate rotational velocity mode

 spd[0]：Angular velocity on x axis [rad/sec]

 spd[1]：Angular velocity on y axis [rad/sec]

 spd[2]：Angular velocity on z axis [rad/sec]

 for Axis velocity mode

 spd[0]：S1 axis motion angular velocity [rad/sec]

 spd[1]：S2 axis motion angular velocity [rad/sec]

 spd[2]：S3 axis motion angular velocity [rad/sec]

 spd[3]：E1 axis motion angular velocity [rad/sec]

 spd[4]：E2 axis motion angular velocity [rad/sec]

 spd[5]：W1 axis motion angular velocity [rad/sec]

 spd[6]：W2 axis motion angular velocity [rad/sec]

 for Base coordinate linear/rotational velocity mode &

 Mechanical interface coordinate linear/rotational velocity mode

 spd[0]：Displacement/velocity toward x [mm/sec]

 spd[1]：Displacement/velocity toward y [mm/sec]

 spd[2]：Displacement/velocity toward z [mm/sec]

 spd[3]：Angular velocity on x axis [rad/sec]

 spd[4]：Angular velocity on y axis [rad/sec]

 spd[5]：Angular velocity on z axis [rad/sec]

Chapter 8 PA Library

 8-81

Sets velocity command value with seven float type configurations. After entering velocity

control mode, velocity command (“pa_odr_vel” or “pa_chk_cnt”) has to be issued every

time-out (maximum value: 1000 msec) setting by “pa_set_tim”. If command is not issued

within time-out, it is recognized as controller anomaly. The arm automatically stops

velocity control and sets in brake-stop status.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_mod_vel Velocity mode setting

pa_chk_cnt Synchronization processing

pa_set_tim Time-out setting

Description example:

 float spd[7];

 :

 pa_set_tim(ARM1, 20); ･･･Time-out setting

 （200msec）

 pa_mod_vel(ARM1, VM_XYZ, 0); ... Velocity mode setting

 :

 Hereafter, “pa_odr_vel” or “pa_chk_cnt” has to be issued, at least once, within

200msec.

 :

 spd[0] = -50.0; ... X

 pd[1] = 40.0; ... Y

 spd[2] = 100.0; ... Z

 pa_odr_vel(ARM1, spd); ... Velocity alteration

 :

 spd[0] = 0.0; ... X

 spd[1] = 0.0; ... Y

 spd[2] = 0.0; ... Z

 pa_odr_vel(ARM1, spd); ... Velocity clear

 :

 pa_sus_arm(ARM1, WM_NOWAIT); ･･･ Velocity control termination

 AXIS is invalid except VM_ONE.

Remark

MMeemmoo

Chapter 8 PA Library

 8-82

ｐａ＿ｍｏｄ＿ｄｐｄ

Function:

 Sets target tip position/orientation direct real-time control mode.

Syntax:

 ｌong pa_mod_dpd(ARM armno);

 armno Arm number (No.)

Explanation:

 Sets directly target tip position/orientation.

This mode creates motion, taking target value provided by “pa_odr_dpd” as absolute

value.

 Even though motion to absolute target value can be performed employing

“pa_mov_mat”, there is a difference whether interpolation is performed or not.

 Trajectory from current position to target value provided by “pa_odr_dpd” is not

interpolated. Therefore, when this mode is employed, velocity/trajectory

interpolation has to be performed by users.

 If entering real-time control mode, command library (pa_odr_dpd) has to be issued

at least once within 1000msec all the time. If command is not issued within 1000

msec, it is recognized as man-machine controller anomaly. The arm automatically

terminates real-time control mode and sets in brake-stop status.

For time-out setting, use “pa_set_tim”.

Return value:

ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_odr_dpd RMRC real-time control

pa_chk_cnt Synchronization processing

pa_set_tim Time-out setting

Remark

Chapter 8 PA Library

 8-83

Description example:

 MATRIX mat;

 ANGLE an;

 ：

 pa_mov_mat(ARM1, MM_XYZNOA, mat, &an, WM_WAIT);

 :

 pa_set_tim(ARM1, 20); ･･･ Time-out setting（200msec）

 pa_mod_jou(ARM1, JM_ON); ･･･ Redundant axis control mode setting (all

axes restricted)

 pa_mod_dpd(ARM1); ･･･ Control mode selection by tip matrix

 :

 Hereafter, “pa_odr_dpd” or “pa_chk_pnt” has to be issued, at least once, within

200msec.

 Renewing “mat”.

 pa_odr_dpd(ARM1, mat, &an); ･･･ Tip matrix and restriction data axis value setting

(Refer to “pa_odr_dpd”)

 Renewing “mat”.

 pa_odr_dpd(ARM1, mat, &an);

 :

pa_sus_arm(ARM1 , WM_NOWAIT); ･･･ Real-time control termination

Chapter 8 PA Library

 8-84

ｐａ＿ｏｄｒ＿ｄｐｄ

Function:

 Sets target tip position/orientation data in real time.

Syntax:

 ｌong pa_odr_dpd(ARM armno, MATRIX mat, ANGLEP angle);

 armno Arm number (No.)

 mat Absolute target position/orientation matrix

 angle Each axis value for redundant axis restriction control

Explanation:

 Sets target value when in target position/orientation direct mode.

 For “mat”, designates absolute position/orientation every control cycle (10ms).

 Motion controller performs RMRC feedback control without trajectory interpolation

for position/orientation provided by “mat”.

 To summarize, arm control trajectory is controlled by the value set in PA library.

Therefore, a difference between current position/orientation and setting “mat” has

to be one cycle deviation (velocity divided by control cycle.)

 In this control, likewise, redundant axis control mode (mode selected by

“pa_mod_jou”) to control elbow position is valid and restricted by each axis value

provided by “angle”.

 If redundant axis control mode is “no restriction” or “S3 axis fixed”, “angle” is

invalid.

 If redundant axis control mode is “S3 interpolation”, “MATRIX mat” likewise, S3

axis angle every control cycle is also set in “angle”.

If entering real-time control mode, command library (pa_odr_dpd) has to be issued at

least once within 1000msec all the time. If command is not issued within 1000

msec, it is recognized as man-machine controller anomaly. The arm automatically

terminates real-time control mode and sets in brake-stop status.

For time-out setting, use “pa_set_tim”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_mod_dpd RMRC real-time control mode setting

 pa_mod_axs Each axis real-time control mode setting

 pa_odr_axs Each axis real-time control

 pa_chk_cnt Synchronization processing

 pa_set_tim Time-out setting

Remark

Chapter 8 PA Library

 8-85

ｐａ＿ｍｏｄ＿ａｘｓ

Function:

 Sets target angle direct control (real-time) mode.

Syntax:

 ｌong pa_mod_axs(ARM armno);

 armno Arm number (No.)

Explanation:

 Sets directly target angle.

 This mode creates motion, taking target value provided by “pa_odr_axs” as absolute

value.

Even though motion to target angle value can be performed employing “pa_exe_axs”,

there is a difference whether interpolation is performed or not.

 Angle from current position to target value provided by “pa_odr_axs” is not

interpolated. Therefore, when this mode is employed, velocity/angle interpolation

has to be performed by users.

If entering real-time control mode, command library (pa_odr_axs) has to be issued at

least once within 1000msec all the time. If command is not issued within 1000

msec, it is recognized as man-machine controller anomaly. The arm automatically

terminates real-time control mode and sets in brake-stop status.

For time-out setting, use “pa_set_tim”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_odr_axs Each axis real-time control

Description example:

 ANGLE angle;

 pa_get_agl(ARM1, &angle);

 :

 pa_odr_axs(ARM1, &angle); ... Each axis value (current value) setting

 pa_set_tim(ARM1, 20); ･･･ Time-out setting （200msec）

 pa_mod_axs(ARM1); ... Control mode selection by axis real-time control

 :

Hereafter, “pa_odr_axs” or “pa_chk_pnt” has to be issued, at least once, within 200msec.

 :

 angle.s3 += 0.5*M_PI/180.0; ... Each axis renewal

 pa_odr_axs(ARM1, &angle); ... Each axis value setting

 : ... Each axis renewal

 pa_odr_axs(ARM1, &angle); ... Each axis value setting

 :

 pa_sus_arm(ARM1, WM_NOWAIT); ･･･ Real-time control termination

Remark

Chapter 8 PA Library

 8-86

ｐａ＿ｏｄｒ＿ａｘｓ

Function:

 Sets target axis data in real time.

Syntax:

 ｌong pa_odr_axs(ARM armno, ANGLEP angle);

 armno Arm number (No.)

 angle Each axis target value for each axis real-time control

Explanation:

 Sets target axis value in real time.

For “angle”, designates each axis value every control cycle (10ms).

Motion controller performs axis feedback control without axis interpolation for each

axis provided by “angle”.

 To summarize, arm axis is controlled by the value set in PA library. Therefore, the

difference between current angle and setting “angle” has to be one cycle deviation

(velocity divided by control cycle.)

If entering real-time control mode, command library (pa_odr_axs) has to be issued at

least once within 1000msec all the time. If command is not issued within 1000

msec, it is recognized as man-machine controller anomaly. The arm automatically

terminates real-time control mode and sets in brake-stop status.

For time-out setting, use “pa_set_tim”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_mod_axs Each axis real-time control setting

 pa_odr_dpd RMRC real-time control

Remark

Chapter 8 PA Library

 8-87

ｐａ＿ｍｏｄ＿ｄｉｒ

Function:

 Direct control (servo lock) ON/OFF

Syntax:

 ｌong pa_mod_dir(ARM armno, DIRECTMODE dmod);

 armno Arm number (No.)

 dmod Designates servo lock by “enum DIRECTMODE”.

Explanation:

Before changing to weight compensation control or simplified weight compensation

control, the arm has to be in servo-lock status.

 Its servo-lock status ON/OFF switching is performed.

 DM_START： Servo-lock ON

 DM_STOP ： Servo-lock OFF

If entering weight compensation control, (to be concrete, issuing pa_wet_ded),

synchronization processing library (pa_chk_cnt) has to be issued, at least once,

within 1000msec. If command is not issued within 1000 msec, it is recognized as

man-machine controller anomaly. The arm automatically terminates real-time

control mode and sets in brake-stop status.

For time-out setting, use “pa_set_tim”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_chk_cnt Synchronization processing

 pa_set_tim Time-out setting

Remark

Chapter 8 PA Library

 8-88

ｐａ＿ｗｅｔ＿ｄｅｄ

Function:

Weight compensation control

Syntax:

ｌong pa_wet_ded(ARM armno, AXIS axis);

armno Arm number (No.)

axis Weight compensation axis designation

Explanation:

Weight compensation control is performed with axis angle, adjacent arm link weight

and gravity center position.

 Macro definitions Designated axes

 LOCKAXIS_S3 : S1|S2|E1|E2|W1|W2

 LOCKAXIS_S1 : S2|S3|E1|E2|W1|W2

 As macro definitions shown above, there are only two weight compensation controls.

Axes able to operate simultaneously are six. Either S1 or S3 axis is always in

servo-lock status. (If different setting except the ones above are adopted,

“LOCKAXIS_S3 “ is automatically set on the motion control calculator side.)

 This function can be performed only when in arm direct control.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_mod_dir Direct control status ON/OFF

Description example:

 AXIS axis;

 :

 axis = LOCKAXIS_S1;

 :

 pa_set_tim(ARM0,20); ･･･ Time-out setting

 （200msec）

 pa_mod_dir(ARM0,DM_START); ... Direct control start

 pa_wet_ded(ARM0,axis); ... S1 servo-lock selection

 :

 :

Hereafter, “pa_odr_dpd” or “pa_chk_pnt” has to be issued, at least once, within

200msec.

 : “mat” renewal

pa_sus_arm(ARM0, WM_NOWAIT); ･･･ Weight compensation control termination

Chapter 8 PA Library

 8-89

ｐａ＿ｄｒｔ＿ｄｅｄ

Function:

 Sets arm installation position. (floor mounted/suspending from ceiling)

Syntax:

 ｌong pa_drt_ded(ARM armno, long vec);

 armno Arm number (No.)

 vec Arm installation position designation

Explanation:

 Before performing weight compensation control, designate the arm status either

floor mounted or suspending from ceiling. On account of arm being already

initialized as floor mounted status, only when the arm is suspended from the ceiling,

this library has to be performed.

 Macro definition employed in “vec” as follows:

 Macro definitions Designation

 ARM_STANDING Floor mounted status

 ARM_HANGING Status suspended from ceiling

Arm installation positions when in weight compensation control are only two macro

definitions as described above. Other definitions cannot be employed.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

pa_wet_ded Direct control status ON/OFF

pa_get_drt Direct control installation position acquisition

Chapter 8 PA Library

 8-90

ｐａ＿ｃｈｋ＿ｃｎｔ

Function:

 Synchronization processing in weight compensation control (velocity, redundant

axis velocity and real-time control)

Syntax:

 ｌong pa_chk_cnt(ARM armno)

 armno Arm number (No.)

Explanation:

 Synchronization processing between man-machine controller and motion

controller is performed in weight compensation control.

If entering weight compensation control, this PA library has to be issued at least

once within 1000msec all the time. If command is not issued within 1000 msec, it

is recognized as man-machine controller anomaly. The arm automatically

terminates real-time control mode and sets in brake-stop status.

For time-out setting, use “pa_set_tim”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_wet_ded Weight compensation control start

 pa_set_tim Time-out setting in synchronization processing

Description example:

 AXIS axis;

 :

 axis = LOCKAXIS_S1;

 :

 pa_set_tim(ARM0,20); ･･･ Time-out setting

 （200msec）

 pa_mod_dir(ARM0,DM_START); ･･･ Direct control start

 pa_wet_ded(ARM0,axis); ･･･ S1 axis servo-lock selection

 :

Hereafter, “pa_odr_dpd” or “pa_chk_pnt” has to be issued, at least once, within 200msec.

 while(1){

 :

 pa_chk_cnt(ARM1); ･･･ Synchronization processing

Sleep(100);

 :

 : ＜Actuates arm manually.＞

 }

 pa_mod_dir(ARM1, DM_STOP); ･･･ Direct control termination

 :

Chapter 8 PA Library

 8-91

ｐａ＿ｓｅｔ＿ｔｉｍ

Function:

 Time-out setting in synchronization processing

Syntax:

 ｌong pa_set_tim(ARM armno, long tim);

 armno Arm number (No.)

 tim Time-out

Explanation:

 Sets synchronization processing time-out in weight compensation, velocity and

redundant axis control

 Default (when power is ON) is 1000ms.

 Setting range is 10～1000ms.

 Unit is［*10ms］.

 (ex) tim = 1 : 10ms

tim > 100 : error

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_wet_ded Weight compensation control

 pa_chk_cnt Synchronization processing

 pa_get_tim Time-out acquisition

Chapter 8 PA Library

 8-92

ｐａ＿ｇｅｔ＿ｔｉｍ

Function:

 Time-out acquisition in synchronization processing

Syntax:

 ｌong pa_get_tim(ARM armno, long* tim);

 armno Arm number (No.)

 tim Time-out

Explanation:

 Acquires synchronization processing time-out in weight compensation, velocity

and redundant axis control. Unit is［*10ms］.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_chk_cnt Synchronization processing

 pa_set_tim Time-out setting

Chapter 8 PA Library

 8-93

ｐａ＿ｇｅｔ＿ｄｒｔ

Function:

 Arm installation position acquisition in direct control (floor mounted/suspending

from ceiling)

Syntax:

 ｌong pa_get_drt(ARM armno, long* stat);

armno Arm number (No.)

stat Arm installation position parameter

Explanation:

 Before performing weight compensation control, acquire arm status either

mounted on the floor or suspended from the ceiling.

Parameter（stat） is 1: floor mounted

 Parameter（stat） is –1: suspending from ceiling

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_drt_ded Arm installation direction setting in direct control

Chapter 8 PA Library

 8-94

 ｐａ＿ｓｅｔ＿ｈｏｍ

Function:

 Alters home position

Syntax:

 ｌong pa_set_hom(ARM armno, ANGLEP angle);

 armno Arm number (No.)

 angle Designates each axis angle. Unit: [rad]

Explanation:

 Alters home position set in arm parameter.

 Returns to default value when power supply is off.

 Home position default angle is 0[deg] for all axes.

 For home position default angle correction method, refer to parameter setting.)

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_def_hom Defines current value as home position

 pa_exe_hom Arm control to home position

Description example:

 :

 ANGLE angle;

 angle.s1 = 1.3;

 angle.s2 = 1.5;

 :

 angle.w2 = 0.0;

 pa_set_hom(ARM1, &angle);

 :

Chapter 8 PA Library

 8-95

ｐａ＿ｓｅｔ＿ｅｓｃ

Function:

 Alters escape position.

Syntax:

 ｌong pa_set_esc(ARM armno, ANGLEP angle);

 armno Arm number (No.)

angle Designates each axis angle. Unit: [rad]

Explanation:

 Alters escape position set in arm parameter.

 Returns to default value when power supply is off.

 Escape position default angles are:

 S2: 45 [deg]

 E1: 90 [deg]

 W1: 45 [deg]

 Others: 0[deg]

For escape position default angle correction method, refer to parameter setting.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_def_esc Defines current value as escape position

 pa_exe_esc Arm control to escape position

RReeffeerreennccee

Chapter 8 PA Library

 8-96

ｐａ＿ｓｅｔ＿ｓａｆ

Function:

 Alters safety position.

Syntax:

 ｌong pa_set_saf(ARM armno, ANGLEP angle)

 armno Arm number (No.)

angle Designates each axis angle. Unit: [rad]

Explanation:

 Alters safety position set in arm parameter.

 Returns to default value when power supply is off.

 Safety position default angles are:

 S2: 45 [deg]

 E1: 90 [deg]

 W1: -45 [deg]

 Others: 0[deg]

For safety position default angle correction method, refer to parameter setting.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_def_saf Defines current value as safety position.

 pa_exe_saf Arm control to safety position

RReeffeerreennccee

Chapter 8 PA Library

 8-97

ｐａ＿ｄｅｆ＿ｈｏｍ

Function:

 Memorizes each axis angle of current value as home position.

Syntax:

 ｌong pa_def_hom(ARM armno);

 armno Arm number (No.)

Explanation:

 Memorizes each axis angle of current value as home position.

 Returns to default value when power supply is off.

 Home position default angle is 0 [deg] for all axes.

For home position default angle correction method, refer to parameter setting.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_set_hom Home position alteration

 pa_exe_hom Arm control to escape position

Description example:

 :

 pa_def_hom(ARM1); ... Defines current value as home position.

 :

RReeffeerreennccee

Chapter 8 PA Library

 8-98

ｐａ＿ｄｅｆ＿ｅｓｃ

Function:

 Memorizes each axis angle of current value as escape position.

Syntax:

 ｌong pa_def_esc(ARM armno);

 armno Arm number (No.)

Explanation:

 Memorizes each axis angle of current value as escape position.

 Returns to default value when power supply is off.

 Escape position default angles are:

 S2: 45 [deg]

 E1: 90 [deg]

 W1: 45 [deg]

 Others: 0[deg]

 For escape position default angle correction method, refer to parameter setting.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_set_esc Escape position alteration

 pa_exe_esc Arm control to escape position

RReeffeerreennccee

Chapter 8 PA Library

 8-99

ｐａ＿ｄｅｆ＿ｓａｆ

Function:

 Memorizes each axis angle of current value as safety position.

Syntax:

 ｌong pa_def_saf(ARM armno)

 armno Arm number (No.)

Explanation:

 Memorizes each axis angle of current value as safety position.

 Returns to default value when power supply is off.

 Safety position default angles are:

 S2: 45 [deg]

 E1: 90 [deg]

 W1: -45 [deg]

 Others: 0[deg]

 For safety position default angle correction method, refer to parameter setting.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_set_saf Safety position alteration

 pa_exe_saf Arm control to safety position

RReeffeerreennccee

Chapter 8 PA Library

 8-100

ｐａ＿ｓｅｔ＿ｍｔｘ

Function:

 Conversion matrix setting in three dimension space coordinate while in playback

control

Syntax:

 ｌong pa_set_mtx(ARM armno, MATRIX mat1)

 armno Arm number (No.)

 mat1 Coordinate conversion matrix

Explanation:

 Sets coordinate conversion matrix “mat1” for the arm designated by “armno”.

Arm trajectory control is corrected by conversion matrix in playback control.

Coordinate conversion matrix default value is unit matrix I.

 1 0 0 0

 Ｉ = 0 1 0 0

 0 0 1 0

For more, refer to programming manual, chapter 3.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Description example:

 :

 MATRIX mat1;

 :

 pa_set_mtx(ARM1, mat1); ... Sets coordinate conversion matrix.

 :

RReeffeerreennccee

Chapter 8 PA Library

 8-101

ｐａ＿ｓｅｔ＿ｍａｔ

Function:

 Playback trajectory coordinate conversion

Syntax:

 ｌong pa_set_mat(ARM armno, MATRIX mat0, MATRIX mat1);

armno Arm number (No.)

mat0 Work coordinate matrix

mat1 Teach data coordinate matrix

Explanation:

 Places playback teach data from teach data coordinate to work coordinate

system.

Creating standard coordinate matrix (:mat1) from teach data, provides work

coordinate matrix (:mat0) to place deviation in its coordinate system.

 For work coordinate matrix/teach coordinate matrix creation method, refer to

programming manual, chapter 3.

“pa_set_mtx” is unit matrix [I] created from one of this function: “mat1”.

 This function cannot be performed while in playback control.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_set_mtx

Description example:

 MATRIX mat0,mat1;

 :

 （Work coordinate matrix creation：mat0）

 （Teach data coordinate matrix creation：mat1）

 :

 pa_set_mat(ARM0,mat0,mat1); ... Sets coordinate conversion matrix

 :

RReeffeerreennccee

Chapter 8 PA Library

 8-102

ｐａ＿ｏｄｒ＿ｘｙｚ

Function:

 Sets tip position offset.

Syntax:

 ｌong pa_odr_xyz(ARM armno, TRANSMATP trans);

 armno Arm number (No.)

 trans Designates either coordinate system with absolute deviation or with

relative deviation. Pointer to trajectory offset data structure:

TRANSMAT.

Explanation:

Sets tip position offset with mode and coordinate designated by “trans->Enable”.

 Coordinates and modes of “trans->Enable” are as follows:

 MODE_xyz : Mechanical interface coordinate, absolute deviation

 Offset is set as trans->_xyz[0]-[2].

 （for Visual BASIC: MODE_XYZ1）

 MODEIxyz : Mechanical interface coordinate, relative deviation

 Offset is set as trans->Ixyz[0]-[2].

 （for Visual BASIC: MODE_XYZ2）

 MODE_XYZ : Base coordinate, absolute deviation

 Offset is set as trans->_XYZ[0]-[2].

 （for Visual BASIC: MODE_XYZ3）

 MODEIXYZ : Base coordinate, relative deviation

 Offset is set as trans->IXYZ[0]-[2].

 （for Visual BASIC: MODE_XYZ4）

 MODE_wave: Trajectory coordinate, absolute deviation

 Offset is set as trans->_wave[0]-[2].

 （for Visual BASIC: MODE_WAVE1）

 MODEIwave: Trajectory coordinate, relative deviation

 Offset is set as trans->Iwave[0]-[2].

 （for Visual BASIC: MODE_WAVE2）

 With this function, offset value can be changed in real-time during playback

control. This makes it possible to detect playback trajectory deviation with sensor,

etc. and correct it.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error charts)

Reference:

 pa_get_sns Trajectory offset acquisition during playback control

Chapter 8 PA Library

 8-103

Description example:

 TRANSMAT tm;

 float data;

 :

 pa_ply_pnt(ARM0,PB_FORE,-1,WM_WAIT); ... Playback start

 :

 data = 0.5f; ... Limit value when in offset addition = 0.5[mm]

 pa_lmt_xyz(ARM0, data); ... Limit value setting when in offset addition

tm.Enable = MODE_xyz; ... mechanical interface coordinate absolute deviation selection

 tm._xyz[0] = 2.0; ... Offset value toward x = 2.0[mm]

 tm._xyz[1] = 0.0; ... Offset value toward y = 0.0[mm]

 tm._xyz[2] = 0.0; ... Offset value toward z = 0.0[mm]

 pa_odr_xyz(ARM0,&tm); ... Adds offset value to mechanical interface coordinate

 :

Chapter 8 PA Library

 8-104

ｐａ＿ｌｍｔ＿ｘｙｚ

Function:

 Sets limit value (value added every cycle) when in tip position offset addition

Syntax:

ｌong pa_lmt_xyz(ARM armno, float data);

armno Arm number (No.)

data Limit value when in offset addition. Unit: [mm]

Explanation:

 In offset control, when tip position offset is provided by “pa_odr_xyz”, offset value

first enters the offset pool. This offset value is added with very small fixed

quantity every cycle until offset value fills out the pool in several cycles,

 Sets a very small fixed quantity every cycle (here is called limit value.)

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_lmt Tip position offset limit value acquisition

Chapter 8 PA Library

 8-105

ｐａ＿ｇｅｔ＿ｍａｔ

Function:

 Acquires coordinate conversion matrix when in playback.

Syntax:

 ｌong pa_get_mat(ARM armno, MATRIX mat0, MATRIX mat1);

 armno Arm number (No.)

mat0 Work coordinate matrix

 mat1 Teach data coordinate matrix

Explanation:

 Acquires teach data coordinate matrix and work coordinate matrix currently set

by “pa_set_mat” or “pa_set_mtx”.

 As work coordinate matrix is the only one set by “pa_set_mtx”, “mat1” ought to

be a unit matrix.

 MATRIX mat0, mat1:

 ｎx ｏx ａx ｐx

 ｎy ｏy ａy ｐy Matrix mat0[3][4], mat1[3][4]

 ｎz ｏz ａz ｐz

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_set_mat Playback trajectory coordinate conversion

 pa_set_mtx Conversion matrix setting in three dimension space coordinate

when in playback control

Chapter 8 PA Library

 8-106

ｐａ＿ｇｅｔ＿ｓｎｓ

Function:

 Acquires trajectory offset when in playback.

Syntax:

 ｌong pa_get_sns(ARM armno, TRANSMATP sns);

armno Arm number (No.)

 sns Pointer to currently provided trajectory offset structure TRANSMAT

Explanation:

 Trajectory offset is stored in TRANSMAT type: sns.

 sns._xyz[] : Mechanical interface coordinate, absolute deviation offset value (x,y,z)

 （for Visual BASIC: sns.xyz11）

 sns.Ixyz[] : Mechanical interface coordinate, relative deviation offset value (x,y,z)

 （for Visual BASIC: sns.xyz12）

 sns._XYZ[] : Base coordinate, absolute deviation offset value (X,Y,Z)

 （for Visual BASIC: sns.xyz21）

 sns.IXYZ[] : Base coordinate, relative deviation offset value (X,Y,Z)

 （for Visual BASIC: sns.xyz22）

 sns._wave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw)

 （for Visual BASIC: sns.wave1）

 sns.Iwave[]: Trajectory coordinate, relative deviation offset value (xw,yw,zw)

 （for Visual BASIC: sns.wave2）

For absolute deviation, offset value currently set by “pa_odr_xyz” is set.

For relative deviation, integration value of offset value set by “pa_odr_xyz” is set.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_odr_xyz Tip position offset setting

Remark

Chapter 8 PA Library

 8-107

ｐａ＿ｇｅｔ＿ｌｍｔ

Function:

 Acquires limit value (value added every cycle) when in tip position offset addition.

Syntax:

ｌong pa_get_lmt(ARM armno, float* dat);

armno Arm number (No.)

 dat Limit value when in offset addition. Unit: [mm]

Explanation:

 Acquires very small quantity offset value (limit value) added every cycle in tip

offset control.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_lmt_xyz Limit value setting when in offset addition

Chapter 8 PA Library

 8-108

ｐａ＿ｍｏｄ＿ｊｏｕ

Function:

 Redundant axis control mode

Syntax:

 ｌong pa_mod_jou(ARM armno, JOUMODE jmod);

 armno Arm number (No.)

 jmod Designates redundant axis control mode by “enum JOUMODE”.

Explanation:

 Sets redundant axis control mode

 For 7-axis arm, like PA-10, even if tip position and orientation trajectory are the

same, plural axis values exist. Redundant axis operation has to be set.

 IN all RMRC control, if intending to control elbow position, following redundant axis

control modes are provided:

 JM_OFF ：Redundant axis control restriction release

 Redundant axis control is reset in RMRC control.

 JM_ON ：Redundant axis control all axes restriction mode

 Each axis value, when in motion, is restricted by teach point or each

axis value of designated data in RMRC control.

 JM_S3ON ：Redundant axis control only S3axis restricted mode

 Each axis value of S3 axis when in motion is restricted by teach point

or each axis value of designated data in RMRC control.

 JM_S3DIV ：Redundant axis control S3 axis interpolation restriction mode

Each axis value of S3 axis when in motion is restricted by teach point

or each axis value of designated data in RMRC control.

 JM_S3HOLD：Redundant axis control S3 axis fixation restriction mode

 Each axis value of S3 axis when in motion is fixed by teach point or

each axis value of designated data in RMRC control.

 In any method, tip trajectory is the same. But, each axis value is different.

For more, refer to programming manual, chapter 3.

 Restriction force for each provided axis data is as follows:

 No restriction ＜Small＞ ＜Medium＞ ＜large＞ Fixed

 JM_OFF → JM_ON → JM_S3ON → JM_S3DIV → JM_S3HOLD

 When intending to change elbow position keeping the same position and orientation

in RMRC control:

 JM_SET ：Sets the mode to operate redundant axis control parameter.

 For parameter operation method, uses “pa_odr_jou”.

 JM_RESET：Returns redundant axis control parameter to default value (no

restriction).

7-axis arm function

RReeffeerreennccee

Chapter 8 PA Library

 8-109

 JM_VSET ：Sets the mode to operate redundant axis control parameter at

constant velocity.

 For parameter operation method, uses “pa_odr_vel”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_odr_jou Redundant axis control ON/OFF

 pa_odr_vel Velocity mode velocity setting

Description example:

 :

 pa_mod_jou(ARM1, JM_ON); ... Redundant axis control mode

 “All axes restriction” selection

 pa_ply_pnt(ARM1, PB_FORE, -1, WM_WAIT); ... Playback control

 :

Chapter 8 PA Library

 8-110

ｐａ＿ｏｄｒ＿ｊｏｕ

Function:

 Redundant axis control parameter operation

Syntax:

 ｌong pa_odr_jou(ARM armno, JOUTYPE jtyp);

 armno Arm number (No.)．

 jtyp Redundant axis transition direction

Explanation:

 If redundant axis control parameter is operated, arm position can be changed.

 This parameter is valid only when “JM_SET” is selected by “JM_SET”.

 JT_RIGHT：Shifts redundant axis restriction parameter to the right.

 JT_LEFT ：Shifts redundant axis restriction parameter to the left.

 JT_HOLD ：retains redundant axis restriction parameter.

 Parameter operation continues until next operation is performed.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_mod_jou Redundant axis control mode

Description example:

 :

 pa_mod_jou(ARM1, JM_SET); ... Redundant axis restriction parameter operation

mode

 pa_odr_jou(ARM1, JT_LEFT); ... Shifts Redundant axis restriction parameter to

the left.

 :

7-axis arm function

Chapter 8 PA Library

 8-111

ｐａ＿ｍｏｖ＿ｊｏｕ

Function:

 Redundant axis control motion by S3 axis designation

Syntax:

 ｌong pa_mov_jou(ARM armno, float s3, long func);

 armno Arm number (No.)．

 s3 Designates S3 axis target angle [rad]

 func Designation whether to wait or not motion completion

Explanation:

For 7-axis arm, like PA-10, even if tip position and orientation trajectory are the

same, plural axis values exist. Therefore, this is the mode to control 7-axis arm as

6-axis one by interpolating a certain axis (S3). Designating S3 axis target angle

without changing tip position/orientation, controls redundant axis (elbow) changing

S3 axis angle to the target angle.

After performing this processing, redundant axis control mode is in S3 interpolation

restriction. The mode continues to be in S3 axis interpolation restriction status if

it is not changed.

 The explanation on “func” is the same as “pa_mov_XYZ”.

 Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Reference:

 pa_mod_jou Redundant axis control mode setting

 pa_odr_vel Velocity mode velocity setting

 Description example:

 float s3;

 :

 s3 = 80.0*M_PI/180.0; ... S3 axis target value = 80[deg]

 pa_mov_jou(ARM1, s3, WM_WAIT); ... Redundant axis (elbow) control

 :

 pa_mov_XYZ(ARM1, 0.0, 100.0, 0.0, WM_WAIT);

 (Moves 100 mm toward Y (Y=100[mm]) kept on laying redundant axis (elbow) down.)

7-axis arm function

Chapter 8 PA Library

 8-112

ｐａ＿ｇｅｔ＿ｊｏｕ

Function:

 Acquires redundant axis control mode in RMRC control.

Syntax:

 ｌong pa_get_jou(ARM armno, long* stat);

 armno Arm number (No.)．

 stat Redundant axis control status

 Explanation:

 “stat” is set by “JOUMODE” as follows:

 stat=JM_OFF ：Redundant control is OFF status.

 stat=JM_ON ：Redundant control is all axes restriction control mode status.

 stat=JM_S3ON ：Redundant control is S3 axis restriction control mode status.

 stat=JM_S3DIV ：Redundant control is S3 axis interpolation control mode status.

 stat=JM_S3HOLD：Redundant control is S3 axis fixation control mode status.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:
 pa_mod_jou Redundant axis control mode setting.

7-axis arm function

 Chapter 8 PA Library

8-113

ｐａ＿ｇｅｔ＿ｍｏｄ

Function:

Acquires motion control calculator status.

Syntax:

 long pa_get_mod(ARM armno, long* stat);

armno Arm number (No.)

stat Current motion control calculator status

Explanation:

 Acquires motion control calculator status.

 Motion control calculator status is as follows:

 １ ： Not available

 ２ ： Not available

 ３ ： Brake-stop status

 ４ ： Not available

 ５ ： Not available

 ６ ： Not available

 ７ ： Not available

 ８ ： Each axis angle control status

 ９ ： Each axis velocity control status

 １０： Direct servo-lock status

 １１： Simplified weight compensation status

 １２： Weight compensation status

 １３： RMRC control status

 １４： RMRC redundant axis control status

 １５： Each axis control servo-lock status

 １６： Not available

 １７： Each axis angle correction status

 １８： Circle interpolation playback status

 １９： Linear interpolation playback status

 ２０： Arc interpolation playback status

 ２１： RMRC control servo-lock status

 ２２： Playback start waiting status (each axis control)

 ２３： Each axis control servo-lock status (while in playback)

 ２４： RMRC control servo-lock status (while in playback)

 ２５： Playback start waiting status (RMRC control)

 ２６： Playback tip position shifting status

 ２７： Redundant axis movable status

 ２８： RMRC real-time status

 ２９： Playback axis interpolation angle correction status

 ３０： Interim status shifting to the point after coordinate conversion

 ３１： Redundant axis movable status (S3 axis interpolation)

 ３２： Each axis real-time control mode status

 ３３： Motion between teach data (RMRC control)

 ３４： Motion between teach data (each axis control)

 Chapter 8 PA Library

8-114

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-115

ｐａ＿ｇｅｔ＿ｖｅｒ

Function:

 Acquires motion control program version.

Syntax:

long pa_get_ver(ARM armno, float* ver);

armno Arm number (No.)

ver Motion control program version.

Explanation:

 Acquires motion control CPU program version.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-116

ｐａ＿ｇｅｔ＿ｃｏｍ

Function:

 Acquires current arm communication status.

Syntax:

long pa_get_com(ARM armno, long* stat);

armno Arm number (No.)

stat Current arm communication status.

Explanation:

 Acquires communication status between the controller while in arm

control and the servo driver (not communicating / while in communication and

actual machine control / while in communication and simulation control.)

Macro definition employed by “stat” is as follows:

 STP_STATUS 0 Status not in communication

 MOV_STATUS 1 while in communication and actual machine control

 SIM_STATUS 2 while in communication with inner servo driver of

motion control section and in simulation mode control

 Before issuing PA library function loading current arm information, when this

definition is used to confirm whether or not the controller is communicating now, if

it is communicating, it is clearly seen that current information can be loaded by

issuing the library. If not communicating, current information cannot be loaded by

even issuing PA library.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Description example:

 long jou;

 long stat;

 :

While in RMRC control

 :

 pa_get_com(ARM1, &stat); ･･･ Acquires communication status

 if(!stat){ If not in communication

 pa_sta_arm(ARM0); ･･･ Starts communication.

 }

 pa_get_jou(ARM0, &jou);･･･Loading current redundant axis control mode.

 :

 Chapter 8 PA Library

8-117

ｐａ＿ｇｅｔ＿ｓｔｓ

Function:

 Acquires current arm information.

Syntax:

 long pa_get_sts(ARM armno, ARMSTATUSP asts);

 armno Arm number (No.)

 asts Current arm information

Explanation:

 armno Acquires current arm information of “armno”.

asts.max Board controllable arm numbers 1or2

asts.arm Arm identification number 0or1

asts.axis Arm axis numbers

asts.typ Arm type

asts.drv Servo driver classification

asts.dio Expansion DIO board exist / not exist

asts.remote operation mode (valid / invalid)

 asts.count Control counter value

 asts.error Error code

 asts.angle.s1 Current S1 axis value

 :

 asts.angle.w2 Current W2 axis value

 asts.noap[0][0] Current tip orientation matrix

 :

 asts.noap[2][3] Current tip position matrix (Z)

 asts.ypr[0] Current orientation (TAW)

 :

 When command processing is finished, the controller computes by adding the

count of the inner variable. With this function, comparing inner variable before and

after issuing command, users can recognize processing termination for command.

. This inner variable is “asts.count”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_cnt

 pa_get_err

 pa_get_agl

 pa_get_xyz

 pa_get_noa

 pa_get_ypr

 Chapter 8 PA Library

8-118

Description example:

 ARMSTATUS asts;

 :

 pa_get_sts(ARM1, &asts);

 printf("error:%ld S1:%lf W2:%lf", asts.error , asts.angle.s1 , asts.angle.w2);

 :

 Chapter 8 PA Library

8-119

ｐａ＿ｇｅｔ＿ｃｎｔ

Function:

 Acquires control count from arm information.

Syntax:

 long pa_get_cnt(ARM armno, long* cunt);

 armno Arm number (No.)

 cunt Control count information

Explanation:

 Acquires control count information from current arm information.

 When command processing is finished, the controller computes by adding the

count of the inner variable. With this function, comparing inner variable before and

after issuing command, users can recognize processing termination for command.

This inner variable is control count value.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_sts

 pa_get_err

 pa_get_agl

 pa_get_xyz

 pa_get_noa

 pa_get_ypr

 Chapter 8 PA Library

8-120

ｐａ＿ｇｅｔ＿ｅｒｒ

Function:

 Acquires error information from arm information.

Syntax:

 long pa_get_err(ARM armno, long* err);

 armno Arm number (No.)

 err Error information (error code)

Explanation:

 Acquires error code information from current arm information.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_sts

 pa_get_cnt

 pa_get_agl

 pa_get_xyz

 pa_get_noa

 pa_get_ypr

 Chapter 8 PA Library

8-121

ｐａ＿ｇｅｔ＿ａｇｌ

Function:

 Acquires axis information from arm information.

Syntax:

 long pa_get_agl(ARM armno, ANGLEP angle);

 armno Arm number (No.)

 angle Current axis value information [rad]

Explanation:

 Acquires axis information from arm information.

 angle.s1：Current S1 axis value

 angle.s2：Current S2 axis value

 angle.s3：Current S3 axis value

 angle.e1：Current E1 axis value

 angle.e2：Current E2 axis value

 angle.w1：Current W1 axis value

 angle.w2：Current W2 axis value

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_sts

 pa_get_cnt

 pa_get_err

 pa_get_xyz

 pa_get_noa

 Chapter 8 PA Library

8-122

ｐａ＿ｇｅｔ＿ｘｙｚ

Function:

 Acquires tip position information from arm information.

Syntax:

 long pa_get_xyz(ARM armno, VECTOR vec);

 armno Arm number (No.)

 vec Current tip position information [mm]

Explanation:

 Acquires tip position information from arm information.

 vec[0]：Arm tip X coordinate value

 vec[1]：Arm tip Y coordinate value

 vec[2]：Arm tip Z coordinate value

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_sts

 pa_get_cnt

 pa_get_err

 pa_get_noa

 pa_get_ypr

 Chapter 8 PA Library

8-123

ｐａ＿ｇｅｔ＿ｎｏａ

Function:

 Acquires tip position/orientation matrix information from arm information.

Syntax:

 long pa_get_noa(ARM armno, MATRIX noap);

 armno Arm number (No.)

 noap Current tip position/orientation information

Explanation:

 Acquires tip position/orientation matrix information from current arm information.

 ｎx ｏx ａx ｐx

 noap[3][4] = ｎy ｏy ａy ｐy

 ｎz ｏz ａz ｐz

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_sts

 pa_get_cnt

 pa_get_err

 pa_get_xyz

 pa_get_ypr

 Chapter 8 PA Library

8-124

ｐａ＿ｇｅｔ＿ｙｐｒ

Function:

 Acquires tip orientation information from arm information.

Syntax:

 long pa_get_ypr(ARM armno, VECTOR ypr);

 armno Arm number (No.)

 ypr Current tip orientation information [rad]

Explanation:

 Acquires tip orientation information from current arm information.

 ypr[0]：Arm tip orientation “yaw” value

 ypr[1]：Arm tip orientation “pitch” value

 ypr[2]：Arm tip orientation “roll” value

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_sts

 pa_get_cnt

 pa_get_err

 pa_get_xyz

 pa_get_noa

 Chapter 8 PA Library

8-125

ｐａ＿ｇｅｔ＿ｐｒｍ

Function:

 Acquires parameter information from arm information.

Syntax:

 long pa_get_prm(ARM armno, PARAMP prm);

 armno Arm number (No.)

 prm Current parameter information

Explanation:

 Acquires parameter information from current arm information.

 prm.rezl; Resolver resolution

 prm.pul[7]; Position limiter（＋）

 prm.pdl[7]; Position limiter（－）

 prm.vel[7 + 2]; Velocity limiter

 prm.dev[7 + 2]; Default velocity

 prm.lim[7 + 2];

 prm.ceh[7 + 2];

 prm.cem[7 + 2];

 prm.cel[7 + 2];

 prm.pg1[7]; Position control gain 1

 prm.pg2[7]; Position control gain 2

 prm.vg1[7]; Velocity control gain

 prm.tg1[7]; （Not available）

 prm.pcm[7]; Position control selection matrix

 prm.fcm[7]; （Not available）

 prm.arl[7]; Arm length

 prm.arg[7]; Axis gravity center position

 prm.arw[7]; Axis weight

 prm.hom[7]; Home position recovery target value

 prm.saf[7]; Other point recovery target value

 prm.esc[7]; Escape point recovery target value

 prm.tol[7]; Tool parameter

 prm.fvl[7];

 prm.dmy[7]; （Not available）

 prm.spa[7]; Spare

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_sts

 pa_get_cnt

 pa_get_err

 pa_get_xyz

 pa_get_noa

 pa_get_ypr

 Chapter 8 PA Library

8-126

Description example:

 :

 PARAM prm;

 :

 pa_get_prm(ARM1, &prm);

 printf("S1_max:%ld S1_min:%ld " ,prm.pul[0] ,prm.pdl[0]);

 printf("S2_max:%ld S2_min:%ld " ,prm.pul[1] ,prm.pdl[1]);

 :

 Chapter 8 PA Library

8-127

ｐａ＿ｇｅｔ＿ｔａｒ

Function:

 Acquires target angle and target tip position/orientation matrix information.

Syntax:

 long pa_get_tar(ARM armno, ARMTARGETP tar);

 armno Arm number (No.)

 tar Target angle and tip position/orientation information

Explanation:

 Acquires arm target value information.

 ARMTARGET type consists of data structures below:

 typedef struct {

 ANGLE angle;

 MATRIX noap;

 float ypr[3];

 } ARMTARGET, *ARMTARGETP;

 For “angle”, each target axis angle every control cycle in axis control is included.

 For “noap”, target tip position/orientation every control cycle in RMRC control is

included.

 ｎx ｏx ａx ｐx

 noap[3][4] = ｎy ｏy ａy ｐy

 ｎz ｏz ａz ｐz

 For “ypr”, Yaw, Pitch and Roll value calculated from tip orientation: “noa” are

included

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_agl

 pa_get_noa

 pa_get_xyz

 pa_get_ypr

 Chapter 8 PA Library

8-128

ｐａ＿ｇｅｔ＿ｓａｖ

Function:

 Acquires each axis servo ON/OFF status.

Syntax:

long pa_get_sav(ARM armno, long* sav);

armno Arm number (No.)

sav Servo status

Explanation:

 Acquires each axis servo status.

 When S1 servo is ON sav=0x01

 When S2 servo is ON sav=0x02

 When S3 servo is ON sav=0x04

 When E1 servo is ON sav=0x08

 When E2 servo is ON sav=0x10

 When W1 servo is ON sav=0x20

 When W2 servo is ON sav=0x40

 All axes servo ON sav=0x7F

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-129

ｐａ＿ｓａｖ＿ｓｔｓ

Function:

 Acquires each axis servo status.

Syntax:

long pa_sav_sts(ARM armno, long* sts);

armno Arm number (No.)

sts Each axis servo status

Explanation:

 Acquires each axis servo status.

 sts[0] S1 axis servo status

 sts[1] S2 axis servo status

 :

 sts[6] W2 axis servo status

 sts[7] Master servo status

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-130

ｐａ＿ｇｅｔ＿ｓｍｄ

Function:

 Acquires “TEACHMODE” from servo.

Syntax:

long pa_get_smd(ARM armno, long* mod);

armno Arm number (No.)

mod 0：OFF

 1：ON

Explanation:

 Acquires “TEACHMODE” from servo.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-131

ｐａ＿ｓｅｔ＿ｄｄｍ

Function:

 Dead man SW valid/invalid

Syntax:

long pa_set_ddm(ARM armno, long ｔｙｐｅ, long val);

armno Arm number (No.)

 type Switch type

 val 1：valid

 0：invalid

Explanation:

 Sets dead man SW valid/invalid.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-132

ｐａ＿ｇｅｔ＿ｄｄｍ

Function:

 Acquires dead man SW valid/invalid status.

Syntax:

long pa_get_ddm(ARM armno, long type, long* val);

armno Arm number (No.)

 type Switch type

 val 1：valid

 0：invalid

Explanation:

 Acquires dead man SW valid/invalid status.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-133

ｐａ＿ｓｅｔ＿ｌｏｋ

Function:

 TEACHLOCK setting

Syntax:

long pa_set_lok(ARM armno, long mod);

armno Arm number (No.)

mod 1：Teach mode ON

 0：Teach mode OFF

Explanation:

 Sets TEACHLOCK.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-134

ｐａ＿ｇｅｔ＿ｌｏｋ

Function:

 TEACHLOCK acquisition

Syntax:

long pa_get_lok(ARM armno, long* mod);

armno Arm number (No.)

mod 1：Teach mode ON

 0：Teach mode OFF

Explanation:

 Acquires TEACHLOCK.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-135

ｐａ＿ｔｃｔ＿ｔｉｍ

Function:

 Tact time (playback time) acquisition

Syntax:

long pa_tct_tim(ARM armno, long* tim);

armno Arm number (No.)

tim Tact time

Explanation:

 Acquires tact time (playback time)

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-136

ｐａ＿ｇｅｔ＿ｍａｘ

Function:

 Acquires board controllable arm numbers.

Syntax:

long pa_get_max(ARM armno, long* num);

armno Arm number (No.)

num Controllable arm numbers 1 or 2

Explanation:

 Acquires board controllable arm numbers.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-137

ｐａ＿ｇｅｔ＿ｓｐｔ

Function:

 Acquires arm identification number.

Syntax:

long pa_get_spt(ARM armno, long* spt);

armno Arm number (No.)

spt 0 or 1st

Explanation:

 Acquires arm identification number on account of two arms being actuated with

one board.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-138

ｐａ＿ｓｅｔ＿ｓｉｍ

Function:

 Simulation magnification setting

Syntax:

long pa_set_sim(ARM armno, long tim);

armno Arm number (No.)

tim Simulation magnification（1～50）

Explanation:

 Sets simulation magnification.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-139

ｐａ＿ｓｅｔ＿ｉｎｃ

Function:

 Real-time velocity setting

Syntax:

long pa_set_inc(ARM armno, float inc);

armno Arm number (No.)

inc Real-time velocity（0.01～1）

Explanation:

 Sets real-time velocity.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-140

ｐａ＿ｇｅｔ＿ｓｉｍ

Function:

 Simulation magnification acquisition

Syntax:

long pa_get_sim(ARM armno, long* sim);

armno Arm number (No.)

sim Simulation magnification（1～50）

Explanation:

 Acquires simulation magnification.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-141

ｐａ＿get＿ｉｎｃ

Function:

 Real-time velocity acquisition

Syntax:

long pa_get_inc(ARM armno, float* inc);

armno Arm number (No.)

inc Real-time velocity（0.01～1）

Explanation:

 Acquires real-time velocity.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-142

ｐａ＿ｉｎｐ＿ｄｉｏ

Function:

 Digital input (32ch. unit input)

Syntax:

 long pa_inp_dio(ARM armno, DIOKIND kind, DIOSTATUSP dio);

 armno Arm number (No.)

kind DIO_INTERNAL（System）

DIO_EXTERNAL（Expansion DIO board）

 dio Designates digital input area by structure “DIOSTATUSP”.

Explanation:

 Gets the status from standard digital input and sets it in the designated area: “dio”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_oup_dio Digital input (32ch. unit input)

 pa_get_dio Digital input (1ch. unit input)

 pa_set_dio Digital output (1ch. unit set)

 pa_rst_dio Digital output (1ch. unit reset)

Description example:

 :

 DIOSTATUS dio;

 :

 pa_inp_dio(ARM1, DIO_EXTERNAL, &dio);

 printf("dio_1:%x " ,dio.io1);

 printf("dio_2:%x " ,dio.io2);

 printf("dio_3:%x " ,dio.io3);

 printf("dio_4:%x " ,dio.io4);

 :

 Chapter 8 PA Library

8-143

ｐａ＿ｏｕｐ＿ｄｉｏ

Function:

 Digital output (32ch. unit output)

Syntax:

 long pa_oup_dio(ARM armno, DIOKIND kind, DIOSTATUSP dio);

 armno Arm number (No.)

 kind DIO_INTERNAL（System）

DIO_EXTERNAL（Expansion DIO board）

 dio Designates digital output value by structure “DIOSTATUSP”.

Explanation:

 Designates standard digital output value by structure “DIOSTATUSP”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_inp_dio Digital input (32ch. unit output)

 pa_get_dio Digital input (1ch. unit output)

 pa_set_dio Digital output (1ch. unit output)

 pa_rst_dio Digital output (1ch. unit output)

Description example:

 :

 DIOSTATUS dio;

 :

 dio.io1 = 0x00;

 dio.io2 = 0x20;

 dio.io3 = 0x24;

 dio.io4 = 0xff;

 pa_oup_dio(ARM1, DIO_EXTERNAL, &dio);

 :

 Chapter 8 PA Library

8-144

ｐａ＿ｇｅｔ＿ｄｉｏ

Function:

 Channel unit digital input

Syntax:

 long pa_get_dio(ARM armno, DIOKIND kind,

DIOPORT port, DIOCH ch, unsigned char* in);

 armno Arm number (No.)

 kind DIO_INTERNAL（System）

DIO_EXTERNAL（Expansion DIO board）

 (*)port Designates input port by “enum DIOPORT”.

 ch Designates input channel by “enum DIOCH”.

 in Input data area:

 If in = 0 : OFF

 If in < > 0 : ON

Explanation:

 Channel unit input for standard/Expansion digital input.

 Loads port channel “ch” value indicated by “port”.

 ＜NOTE＞ (*) Not only digital input information, but also output information can be

acquired.

 port =

 DP_XXXXX: acquires input information as usual.

 DPO_XXXXX: is information set to output by PA library.

DPX_XXXXX: is information for current output value (output value created

by PA library or information in playback data).

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_inp_dio Digital input (32ch. unit input)

 pa_oup_dio Digital output (32ch. unit output)

 pa_set_dio Digital output (1ch. unit setting)

 pa_rst_dio Digital output (1ch. unit resetting)

Description example:

 :

 unsigned char io;

 :

 pa_get_dio(ARM1, DIO_EXTERNAL, DP_PORT1, DC_CH4, &io);

 :

 Chapter 8 PA Library

8-145

ｐａ＿ｓｅｔ＿ｄｉｏ

Function:

 Channel unit setting for digital output.

Syntax:

 long pa_set_dio(ARM armno, DIOKIND kind,

DIOPORT port, DIOCH ch);

 armno Arm number (No.)

 kind DIO_INTERNAL（System）

DIO_EXTERNAL（Expansion DIO board）

 port Designates output port by “enum DIOPORT”

 ch Designates output channel by “enum DIOCH”.

Explanation:

 Channel unit setting for standard output.

 Sets port channel “ch” indicated by “port”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_inp_dio Digital input (32ch. unit input)

 pa_oup_dio Digital output (32ch. unit output)

 pa_get_dio Digital input (1ch. unit input)

 pa_rst_dio Digital output (1ch. unit resetting)

Description example:

 :

 pa_set_dio(ARM1, DIO_EXTERNAL，DP_PORT1, DC_CH4);

 :

 Chapter 8 PA Library

8-146

ｐａ＿ｒｓｔ＿ｄｉｏ

Function:

 Channel unit resetting for digital output.

Syntax:

 long pa_rst_dio(ARM armno, DIOKIND kind，

DIOPORT port, DIOCH ch);

 armno Arm number (No.)

 kind DIO_INTERNAL（System）

DIO_EXTERNAL（Expansion DIO board）

 port Designates output port by “enum DIOPORT”.

 ch Designates output channel by “enum DIOCH”.

Explanation:

 Channel unit resetting for standard output.

 Resets port channel “ch” indicated by “port”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_inp_dio Digital input (32ch. unit input)

 pa_oup_dio Digital output (32ch. unit output)

 pa_get_dio Digital input (1ch. unit input)

 pa_set_dio Digital output (1ch. unit setting)

Description example:

 :

 pa_rst_dio(ARM1, DIO_EXTERNAL，DP_PORT1, DC_CH4);

 :

 Chapter 8 PA Library

8-147

ｐａ＿ｄｉｏ＿ｍｓｋ

Function:

 DIO mask setting

Syntax:

long pa_dio_msk(ARM armno, long dio, long kind, long msk);

armno Arm number (No.)

dio DOMSK or DIMSK

kind Board type

msk Mask bit（System is only lower 8bit, expansion 32bit）

Explanation:

 Sets DIO mask.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-148

ｐａ＿ｇｅｔ＿ｍｓｋ

Function:

 DIO mask acquisition

Syntax:

long pa_get_msk(ARM armno, long dio, long kind, long* msk);

armno Arm number (No.)

dio DOMSK or DIMSK

kind Board type

msk Mask bit（System is only lower 8bit, expansion 32bit）

Explanation:

 Acquires DIO mask.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-149

ｐａ＿ｓｅｔ＿ｔｏｌ

Function:

 Sets tool information.

Syntax:

 long pa_set_tol(ARM armno, float x, float y, float z, float off);

 armno Arm number (No.)

 x Offset value toward “x” from arm tip to tool tip [mm]

 y Offset value toward “y” from arm tip to tool tip [mm]

 z Offset value toward “z” from arm tip to tool tip [mm]

 off Offset value toward “z” from tool tip to work face [mm]

Explanation:

Sets tool information (offset value from arm tip to tool tip) of controller parameter

file.

All tool information default values are 0 [mm].

 This value cannot be set during RMRC control.

 This value is vanishing when power supply is off.

 If intending to change parameter file default value, use parameter setting.

As this offset is added for arm mechanical interface coordinate system, added

points are kept even if in orientation rotation. Only tip direction changes.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_prm

 pa_set_vel

Description example:

 :

 pa_set_tol(ARM1, 100.0, 50.0, 300.0, 40.0);

 :

 Chapter 8 PA Library

8-150

ｐａ＿ｓｅｔ＿ｖｅｌ

Function:

 Alters default velocity.

Syntax:

 long pa_set_vel(ARM armno, VELTYPE vtype, float vel[]);

 armno Arm number (No.)

 vtype Default velocity classification

 (*) vel[] Default velocity alteration value

Explanation:

 Alters default velocity indicated by “vtype” to “vel[rad/sec]”.

 It vanishes with power supply: OFF.

 VT_ONEVEL：Axis default velocity alteration [rad/sec]

 VT_XYZVEL：Tip position default velocity alteration [mm/sec]

 VT_YPRVEL：Tip orientation default velocity alteration [rad/sec]

 (*) ＜NOTE＞

 When in “VT_ONEVEL”, default velocity for 7 axes can be set by “vel[7]”.

 When in “VT_XYZVEL、VT_YPRVEL: vel[1].

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_prm

 pa_set_tol

Description example: (1)

 ANGLE angle;

 float vel[7];

 :

 vel[0] = 0.6; ･･･ S1 axis [rad/sec]

 vel[1] = 0.6; ･･･ S2 axis [rad/sec]

 :

 vel[6] = 3.14; ･･･ W2 axis [rad/sec]

 pa_set_vel(ARM1, VT_ONEVEL, vel); ... Axis default velocity alteration

 angle.s3 = 3.14;

 pa_exe_axs(ARM1, S3, &angle, WM_NOWAIT); ... Axis control only for S3 axis

 :

Description example: (2)

 float vel;

 vel = 40.0; ･･･ Tip position default velocity

[mm/sec]

pa_set_vel(ARM1, VT_XYZVEL, &vel); ･･･ Tip position default velocity alteration

pa_mov_XYZ(ARM1, 50.0, 100.0, 0.0, WM_WAIT);

 ･･･ RMRC base coordinate position deviation control

 Chapter 8 PA Library

8-151

ｐａ＿ｌｏｄ＿ｃｔｌ

Function:

 Downloads parameter to the controller.

Syntax:

 long pa_lod_ctl(ARM armno, char* file);

 armno Arm number (No.)

 file Parameter file name

Explanation:

Downloads parameter designated by “file” to the controller designated by “armno”.

When intending to change parameter file contents, use parameter setting.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Description example:

 :

 pa_lod_ctl(ARM1, "CTRL.PAR");

 :

 Chapter 8 PA Library

8-152

ｐａ＿ｔｓｔ＿ｎｏｍ

Function:

 RETRAC parameter creation mode ON/OFF setting

Syntax:

long pa_tst_nom(ARM armno, long sw);

armno Arm number (No.)

sw 0：OFF

 1：ON

Explanation:

 Sets RETRAC parameter creation mode ON/OFF.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Reference:

 pa_get_rmd

 Chapter 8 PA Library

8-153

ｐａ＿ｇｅｔ＿ｒｍｄ

Function:

 RETRAC parameter creation mode ON/OFF acquisition.

Syntax:

long pa_get_rmd(ARM armno, long* sw);

armno Arm number (No.)

sw 0：OFF

 1：ON

Explanation:

 Acquires RETRAC parameter creation mode ON/OFF.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Reference:

 pa_tst_nom

 Chapter 8 PA Library

8-154

ｐａ＿ｌｏｄ＿ｒｏｂ

Function:

 Robot model file loading

Syntax:

long pa_lod_rob(ARM armno,char *file);

armno Arm number (No.)

file Robot model file name

Explanation:

 Loads robot model file.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Reference:

 pa_lod_tol

 pa_sav_rob

 Chapter 8 PA Library

8-155

ｐａ＿ｌｏｄ＿ｔｏｌ

Function:

 Tool model file loading

Syntax:

long pa_lod_tol(ARM armno,char *file);

armno Arm number (No.)

file Tool model file name

Explanation:

 Loads tool model file.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Reference:

 pa_lod_rob

 pa_sav_rob

 Chapter 8 PA Library

8-156

ｐａ＿ｓａｖ＿ｒｏｂ

Function:

 Robot model file saving

Syntax:

long pa_sav_rob(ARM armno);

armno Arm number (No.)

Explanation:

 Saves robot model file.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_lod_tol

 pa_sav_rob

 Chapter 8 PA Library

8-157

ｐａ＿ｅｎａ＿ｎｏｍ

Function:

 RETRAC calculation switching

Syntax:

long pa_ena_nom(ARM armno,long sw);

armno Arm number (No.)

sw 0：T Matrix calculation

 1：RETRAC calculation

Explanation:

 Switches to RETRAC calculation.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_nom

 pa_thk_nom

 Chapter 8 PA Library

8-158

ｐａ＿ｇｅｔ＿ｎｏｍ

Function:

 Acquires either T-matrix calculation or RETRAC calculation processing.

Syntax:

long pa_get_nom(ARM armno, long* nom);

armno Arm number (No.)

nom 0： in T-matrix calculation

 1： in RETRAC calculation

Explanation:

 Acquires either T-matrix calculation or RETRAC calculation.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_ena_nom

 pa_thk_nom

 Chapter 8 PA Library

8-159

ｐａ＿ｔｋｎ＿ｎｏｍ

Function:

 Acquires whether or not the ability to perform RETRAC calculation.

Syntax:

long pa_tkn_nom(ARM armno, long* nom);

armno Arm number (No.)

nom 0： Not possible

 1： Possible

Explanation:

 Acquires whether or not the ability to perform RETRAC calculation.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_get_nom

 pa_ena_nom

 Chapter 8 PA Library

8-160

ｐａ＿ｍａｐ＿ｃｔｌ

Function:

 Mapping area shared with the controller.

Syntax:

 long pa_map_ctl(ARM armno);

 armno Arm number (No.)

Explanation:

 Mapping the controller area designated by “controller.armno” to man-machine

controller.

 For mapping details, refer to the chapter 4.

 This function is the first one to be called in all PA libraries. Therefore, this

function is not performed alone.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

RReeffeerreennccee

 Chapter 8 PA Library

8-161

ｐａ＿ｆｓｈ＿ｃｈｋ

Function:

 Waiting for command completion.

Syntax:

 short pa_fsh_chk(ARM armno);

 armno Arm number (No.)

Explanation:

 When command processing is finished, the controller computes by adding the

count of the inner variable. With this function, comparing inner variable before and

after issuing command, users can recognize processing termination for command.

This function is the first one to be called in all PA libraries. Therefore, this

function is not performed alone.

Return value:

 0 Processing is completed.

 1 Processing is not completed.

 Chapter 8 PA Library

8-162

ｐａ＿ｆｓｈ＿ｓｕｂ

Function:

 Waiting for command completion.

Syntax:

 short pa_fsh_sub(ARM armno);

 armno Arm number (No.)

Explanation:

 When command processing is finished, the controller computes by adding the

count of the inner variable. With this function, comparing inner variable before and

after issuing command, users can recognize processing termination for command.

 This function is employed when issuing following PA libraries. But, this function is

not employed alone.

 pa_odr_xyz：Tip position offset setting

 pa_swt_dio：Teach point DO data valid/invalid setting

pa_set_inc：Real-time velocity setting

Return value:

 0 Processing is completed.

 1 Processing is not completed.

Reference:

 pa_fsh_chk

 Chapter 8 PA Library

8-163

ｐａ＿ｒｅｑ＿ｃｔｌ

Function:

 Writing completion/interruption occurrence

Syntax:

 long pa_req_ctl(ARM armno, long num);

 armno Arm number (No.)

 num Retry times

Explanation:

 The controller recognizes completion of writing data to PCI shared area by

“writing completion interruption”.

 Interruption retry is performed at certain times designated by “num”.

This function is called in all PA libraries and not performed alone.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_req_sub

 Chapter 8 PA Library

8-164

ｐａ＿ｒｅｑ＿ｓｕｂ

Function:

 Writing completion/interruption occurrence

Syntax:

 long pa_req_sub(ARM armno, long num);

 armno Arm number (No.)

 num Retry times

Explanation:

 The controller recognizes completion of writing data to PCI shared area by

“writing completion interruption”.

 Interruption retry is performed at certain times designated by “num”.

When command is issued employing “pa_req_ctl”, the same as “pa_fsh_sub”, this

function is employed to issue simultaneously another command.

 This function is employed when issuing following PA libraries. But, this function is

not performed alone.

 pa_odr_xyz：Tip position offset setting

 pa_swt_dio：Teach point DO data valid/invalid setting

pa_set_inc：Real-time velocity setting

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

Reference:

 pa_req_ctl

 pa_fsh_sub

 Chapter 8 PA Library

8-165

ｐａ＿ｒｓｔ＿ｃｔｌ

Function:

 Performs error information resetting.

Syntax:

 long pa_rst_ctl(ARM armno);

 armno Arm number (No.)

Explanation:

Requests error information resetting, set by arm controller designated by “armno”.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination (Refer to error table)

 Chapter 8 PA Library

8-166

ｐａ＿ｅｒｒ＿ｍｅｓ

Function:

 Acquires error message.

Syntax:

 long pa_err_mes(ERR errNo ,cahr* err);

 errNo Error number

 err The area to load error message.

Explanation:

 Acquires an error message responding to a error number.

Return value:

 ERR_OK Normal termination

 Others: Anomalous termination

（＝ERR_MES: No error message responding to the error number.）

Appendix 1

Appendix 1-1

Appendix 1
 PA library summary table

 Table summarizing each PA library control condition. This can be used for programming
employing PA libraries.
 If the library can be issued, it is indicated with ○. If the library can be issued in any condition,
it is indicated with <ALL>.
 If each PA library is obtaining synchronization between controllers, it is indicated with ○. If not,
it is indicated with ×.
 Here, below, shows the summary table for control number and its description.

 Arm control number & description table
Status No. Indicated message Control description Status class.

 3 Brake stop status All axes brake-stop (a)
 8 Each axis angle control

status
In motion with axis control (d)

 9 Each axis velocity control
status

Axis velocity control mode (f)

10 Servo lock status All axes servo-lock in direct control (i)
12 Self weight compensated

status
Weight compensation control in direct control (i)

13 RMRC control status In motion with RMRC control (e)
14 RMRC redundant axis interpolation

status
Redundant axis correction when switching to RMRC mode

15 Each Axis control servo lock
status

Each axis pause (temporary stop) in playback control
Step-stop. Playback control continuation possible.

(b)

17 Playback each axis
correction status

Motion created by axis interpolation to current point. (d)

18 Playback circle interpolation
status

Motion created by circle interpolation in playback control. (e)

19 Playback linear interpolation
status

Motion created by linear interpolation in playback control. (e)

20 Playback arc interpolation
status

Motion created by arc interpolation in playback control. (e)

21 RMRC control servo lock
status

RMRC pause (temporary stop) in playback control,
Playback step-stop

(c)

22 Waiting Playback start
Status

Playback control start waiting
Each axis servo-lock

(b)

23 Each axis control servo lock
status

Target value lock in axis feedback control (b)

24 RMRC control servo lock
status

Target value lock in RMRC feedback control (c)

25 Waiting Playback start
Status

Waiting for playback control start command.
RMRC servo-lock

(c)

26 Playback tip correction
status

Motion created by linear interpolation to current point. (e)

27 Redundant axis control
status

Redundant axis parameter operation mode (h)

28 RMRC real-time control
status

Tip position/orientation real-time control mode (k)

29 Playback each axis
interpolation status

Motion created by axis interpolation in playback control (d)

30 Coordinate conversion
position correction status

Shifting position/orientation to playback trajectory
by coordinate conversion

(e)

31 Redundant axis S3
interpolation control status

Redundant axis (elbow) in motion without changing
tip position/orientation

(h)

32 Axis real-time control
status

Each axis real-time control mode (j)

33 Move between Teaching
data (RMRC control)

In motion of RMRC control to move between one
Teaching Data and another in playback control.

(e)

34 Move between Teaching
data (Each axis control)

In motion of each axis control to move between
one Teaching Data and another in playback control.

(d)

Appendix 1

Appendix 1-2

 Arm Condition Classification
 ＜STOP＞
 Brake-stop ･･････(a)
 Axis control servo-lock (Axis feedback) ･･････(b)
 RMRC servo-lock (Axis feedback) ･･････(c)
 ＜IN MOTION＞：Shifts to stop after moving with one motion command.
 Axis control (Axis feedback) ･･････(d)
 RMRC control (RMRC feedback) ･･････(e)
 ＜IN MOTION MODE＞：Control is not changed until termination command is issued.
 Axis velocity control mode (Axis feedback) ･･････(f)
 RMRC velocity control mode (RMRC feedback) ･･････(g)
 Redundant axis control mode (RMRC feedback) ･･････(h)
 Direct control mode (torque control, axis feedback) ･･････(i)
 Axis real-time control mode (axis feedback) ･･････(j)
 RMRC real-time control mode (RMRC feedback) ･･････(k)

Appendix 1

Appendix 1-3

 【Supplementary Explanation】

 Supplementary explanation on PA library temporary stop and temporary-stop release function
(pa_sus_arm、pa_rsm_arm) is as follows:

 Temporary stop (pause) means to stop renewing target value and create servo-stop . It does not
mean the whole control stops. Therefore, redundant axis (elbow) might move in RMRC servo-lock.
 Temporary-stop release (restart) means basically to restart the prior motion. It might happen
not to restart.

 “pa_sus_arm” (pause, temporary stop) & “pa_rsm_arm” (restart, temporary-stop release) table to be

issued.

Status No. Control pa_sus_arm Status NO. after pause pa_rsm_arm

 3 Brake-stop （○） － －

 8 Axis velocity control ○ １５ ○

 9 Axis velocity control ○ １５ ×

10 Servo-lock ○ １５ ×

12 Weight compensation × － －

13 RMRC control

(RMRC velocity control)

○

○

２１

２１

○

×

14 RMRC redundant axis correction ○ １５ ○

15 Axis control servo-lock （○） － －

17 Playback axis correction ○ ２３ ○

18 Playback circle interpolation ○ ２４ ○

19 Playback linear interpolation ○ ２４ ○

20 Playback arc interpolation ○ ２４ ○

21 RMRC control servo-lock （○） － －

22 Playback start waiting ○ ２３ ○

23 Axis control servo-lock （○） － －

24 RMRC control servo-lock （○） － －

25 Playback start waiting ○ ２４ ○

26 Playback tip correction ○ ２４ ○

27 Redundant axis control ○ ２１ ×

28 RMRC real-time control ○ ２１ ×

29 Playback axis interpolation ○ ２３ ○

30 Coordinate conversion position correction ○ ２４ ○

31 Redundant S3 axis interpolation control ○ ２１ ○

32 Axis real-time control ○ １５ ×

33 Move between Teaching data
(RMRC control)

○ 24 ○

34 Move between Teaching data
(Each axis control)

○ 15 ○

 ○ ： Valid (possible)

 × ： Invalid (not possible)

 （○）： Valid, but, not changing status.

A
ppendix

１

A
ppendix

１
-4

Control Function ＩＤ 3 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Syncron

ization

Status Control pa_stp_arm < A L L > ○

 pa_sus_arm < A L L > ○

 pa_rsm_arm ○ ○ ○ ○ ○

 pa_exe_axs ○ ○ ○ ○ ○ ○ ○

 pa_exe_hom ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_exe_esc ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_exe_saf ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Axis motion control pa_mov_XYZ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_mov_YPR ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_mov_xyz ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_mov_ypr ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_mov_mat ○ ○ ○ ○ ○ ○ ○ ○ ○

Tip pa_axs_pnt ○ ○ ○ ○ ○ ○ ○ ○

position/orientation pa_mov_pnt ○ ○ ○ ○ ○ ○ ○ ○

control pa_ply_pnt ○ ○ ○ ○ ○ ○

 pa_tct_tim < A L L > ×

Playback control pa_add_pnt ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_del_pnt ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_rpl_pnt ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_set_pnt ○ ○ ○ ○ ○ ○ ○ ○

 pa_set_idn ○ ○ ○ ○ ○ ○ ○ ○

 pa_chg_dio ○ ○ ○ ○ ○ ○ ○ ○

 pa_vel_pnt < A L L > ○

 pa_swt_dio < A L L > ×

 pa_set_cmt < A L L > ○

A
ppendix

１

A
ppendix

１
-5

Control Function ＩＤ 3 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Syncroni

zation

Teach pa_chg_pnt PM_TOP

point PM_NEXT ○ ○ ○ ○ ○ ○ ○

operation(1) PM_PRIV

 PM_BTM

 PM_JMP ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 PM_CIR ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 PM_ARC ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_jmp_cmt ○ ○ ○ ○ ○ ○ ○

Teach pa_get_pnt ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

point pa_get_cur < A L L > ×

operation(2) pa_get_num < A L L > ×

 pa_get_idn < A L L > ×

 pa_get_cpt ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_get_pvl < A L L > ×

 pa_get_pdo < A L L > ×

 pa_lod_pnt ○ ○ ○ ○

 pa_sav_pnt ○ ○ ○ ○

 pa_set_dlc < A L L > ○

 pa_get_dlc < A L L > ×

Area-Cube pa_set_cub ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 operation pa_get_cub ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_cub_len ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_cub_cmt ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_del_cub ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_ena_cub ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_inf_cub ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

A
ppendix

１

A
ppendix

１
-6

Control Function ＩＤ 3 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Syncroni

zation

Teach pa_ply_set < A L L > ○

data pa_act_pnt ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

operation pa_ply_mod ○ ○

 pa_chg_key ○ ○ ○ ○ ○ ○ ○

 pa_get_key < A L L > ×

 pa_mon_pnt < A L L > ×

 pa_get_pmd < A L L > ×

 pa_get_prj < A L L > ○

 pa_set_prj < A L L > ○

 pa_sav_prj ○ ○ ○ ○

 pa_lod_prj ○ ○ ○ ○

Playback pa_jmp_set < A L L > ○

 JUMP attribute pa_get_jmp ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 operation pa_set_jmp < A L L > ○

 pa_ena_jmp < A L L > ○

 pa_get_ena < A L L > ×

 pa_del_jmp ○ ○ ○ ○ ○ ○ ○

 pa_sav_ptj ○ ○ ○ ○

 pa_lod_ptj ○ ○ ○ ○

Velocity Control pa_mod_vel VM_XYZ

 Function VM_YPR

 VM_xyz ○ ○ ○ ○ ○ ○ ○ ○

 VM_ypr

 VM_XYZYPR

 VM_xyzypr

 VM_one ○ ○ ○ ○ ○ ○ ○ ○

 pa_odr_vel < A L L > ○

A
ppendix

１

A
ppendix

１
-7

Control Function ＩＤ 3 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Syncroni

zation

Redundant axis pa_mod_jou JM_OFF

control function JM_ON

 JM_S3ON ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 JM_S3DIV

 JM_S3HOLD

 JM_VSET ○ ○ ○ ○ ○ ○

 JM_SET ○ ○ ○ ○ ○ ○

 JM_RESET ○ ○ ○ ○ ○ ○

 pa_odr_jou < A L L > ○

 pa_mov_jou ○ ○ ○ ○

 pa_get_jou < A L L > ×

Real-time control pa_mod_dpd ○ ○ ○ ○ ○

function pa_odr_dpd < A L L > ○

 pa_mod_axs ○ ○ ○ ○ ○ ○ ○

 pa_odr_axs < A L L > ○

Direct control pa_mod_dir DM_START ○ ○ ○ ○ ○ ○

function DM_STOP ○ ○

 pa_wet_ded ○ ○ ○

 pa_drt_ded ○ ○ ○ ○

 pa_chk_cnt < A L L > ○

 pa_set_tim < A L L > ○

 pa_get_tim < A L L > ×

 pa_get_drt < A L L > ×

A
ppendix

１

A
ppendix

１
-8

Control Function ＩＤ 3 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Syncroni

zation

Orientation setting & pa_set_hom ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

definition function pa_set_esc ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_set_saf ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_def_hom ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_def_esc ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_def_saf ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Tip offset function pa_set_mtx ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_set_mat ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 pa_set_wav < A L L > ○

 pa_odr_xyz < A L L > ○

 pa_lmt_xyz < A L L > ○

 pa_get_mat < A L L > ×

 pa_get_sns < A L L > ×

 pa_get_lmt < A L L > ×

Status information pa_get_mod < A L L > ×

 Loading function pa_get_ver < A L L > ×

 pa_get_com < A L L > ×

 pa_get_sts < A L L > ×

 pa_get_cnt < A L L > ×

 pa_get_err < A L L > ×

 pa_get_agl < A L L > ×

 pa_get_xyz < A L L > ×

 pa_get_noa < A L L > ×

 pa_get_ypr < A L L > ×

 pa_get_prm < A L L > ×

 pa_get_tar < A L L > ×

 pa_get_sav < A L L > ×

 pa_sav_sts < A L L > ×

 pa_get_smd < A L L > ×

A
ppendix

１

A
ppendix

１
-9

Control Function ＩＤ 3 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Syncroni

zation

Digital input/output pa_inp_dio < A L L > ×

function pa_oup_dio < A L L > ×

 pa_get_dio < A L L > ×

 pa_set_dio < A L L > ×

 pa_rst_dio < A L L > ×

Functionr pa_set_tol ○ ○ ○ ○ ○

 on parameter pa_set_vel ○ ○ ○ ○ ○ ○

 pa_lod_ctl < A L L > ○

Error pa_rst_ctl < A L L > ○

processing function pa_err_mes < A L L > ×

 pa_clr_log < A L L > ×

 pa_sav_log < A L L > ×

【Other PA library function】 【Special PA library function】

Control Function Control Function

Control Function Simulation rate pa_set_sim

Control minimum pa_ini_sys pa_get_sim

required function pa_ter_sys Real-time speed rate pa_set_inc

（Employed as a pair） pa_opn_arm pa_get_inc

 pa_cls_arm

 pa_sts_arm 【SystemPA library function 】

 pa_ext_arm Control Function

 pa_sta_sim Dead-Man Switch disable/enable pa_set_ddm

 pa_ext_sim set and refer pa_get_ddm

Function not needed for pa_map_ctl TEACH-LOCK set and refer pa_set_lok

programming pa_fsh_chk pa_get_lok

 pa_fsh_sub Arm max number (To be able to control) pa_get_max

 pa_req_ctl Self arm number pa_get_spt

Appendix ２

Appendix2-1

Appendix 2
 PA Library Return Value (Error Code)

 “Previous error code remaining.”

 After issuing PA library from the operation control section, when the processing is completed,
error code written on ISA (or VME) shared memory at this moment is defined as library return
value.

 If anomaly occurs during processing in the motion control section, error code fitting to its
anomaly becomes return value. If processing is terminated normally, error code fitting to previous
error code becomes return value. Because error information on ISA (VME) shared memory is
overwritten only when anomaly occurs during processing in the motion control section.

For PA library (refer to appendix 1) not acquired synchronization between controllers, if it is
issued from the operation control section, information on ISA (VME) shared memory is loaded.
When loading finishes, error code on ISA (VME) shared memory becomes return value. This error
code has no connection with PA library processing not acquired synchronization, issued this time.
Library acquired synchronization and its error occurred during previous processing are culprits.

 Taking into account the above, use PA library return value (error code) practically.

 Here, below, explains how to deal with error codes.

① Every time PA library synchronized is issued, check errors. When error occurs, perform

brake-stop, etc.

if((err = pa_mov_xyz(arm, 0.0,200.0,0.0,WM_WAIT)) != ERR_OK) Brake-stop.;

② Employing function “pa_rst_ctl” for resetting an error, reset (error code: 0) previous error
code.

③ When issuing function not synchronized, do not obtain return value.

Appendix 3

Appendix 3-1

Appendix 3
 Control restart function after temporary stop during playback control

 If PA library is issued while in temporary stop (pa_sus_arm) during playback control, two options
for playback control can be possible either to restart or not.

 ・Playback control restart: possible

 With temporary-stop release (pa_rsm_arm), playback control can be restarted.
 ・Playback control restart: impossible

 On account of playback control termination, playback control cannot be restarted with
temporary-stop release (pa_rsm_arm).
When intending to perform playback control again, if it is needed, after altering
(pa_chg_pnt) the current point, move (pa_mov_pnt) to the current point, start playback
control.

 There are two playback controls: the one is in RMRC feedback control and the other one, in axis
feedback control. Even if issuing the same PA library, on account of a different feedback system,
control restart might not work..

 Table for PA library function issuing after temporary stop in playback control and playback
control restart possibility.

＜Playback control restart function in PA library issued after temporary stop＞

Playback
Restart

Function Function
Possible

Not
possible

Remarks

pa_chg_pnt Teach point pointer alteration ○
pa_add_pnt Teach point addition ○
pa_del_pnt Teach point deletion ○
pa_rpl_pnt Teach point replacement ○
pa_set_pnt Teach point attribution setting ○
pa_set_idn Teach point ID_No. setting ○
pa_chg_dio Teach point (PTP) DO attribution setting ○
pa_get_pnt Current point teach point information loading ○
pa_get_cpt Current point circle (arc) teach data loading ○

JM_OFF :No restriction ○
JM_ON :All axes restricted ○

 ○ RMRC feedback control
JM_S3ON:S3 axis restriction

○ Axis feedback control

 ○ RMRC feedback controlJM_S3DIV:
S3 axis interpolation ○ Axis feedback control

pa_mod_jou

Redundant
axis control
mode
setting

JM_S3HOLD:S3 axis fixed ○
pa_set_hom Home position setting ○
pa_set_esc Escape orientation setting ○
pa_set_saf Safety orientation setting ○
pa_def_hom Current axis value defined as home

position
○

pa_def_esc Current axis value defined as escape
position

○

pa_def_saf Current axis value defined as safety
position

○

 RMRC feedback control
pa_set_tol Tool information setting

○ Axis feedback control
pa_set_vel Default velocity alteration ○

Appendix 4

Appendix 4-1

APPENDIX 4

 SAMPLE PROGRAM INSTRUCTION

 １．Sample Program ：ＥＸ１

 （１）Operation

 ２．Sample Program：ＥＸ２(VisualBASIC Version)

 （１）Operation

 ３．Sample Program：ＥＸ３(VisualBASIC Version)

 （１）Operation

 （２）Program

 ４．Sample Program：ＥＸ2(VisualC++ Version)

 （１）Operation

Appendix 4

Appendix 4-2

Shifts to the previously set position.

Displays arm joint

angle in actual time.

All axes brakes: ON.

All axes servo: ON.

Terminates arm control

and program.

Operates each axis motion: UP（Joint angle increase）and DOWN

（Joint angle decrease）for the axis selected by the operation axis

located in the right area. Usually, every one push moves 0.01[rad]. If

the turbo is chosen, moves 0.1[rad.].

Displays message on arm

control

Displays message on

arm error.

１． SAMPLE PROGRAM ：ＥＸ１

Sample program “E×1” employs VisualBASIC、VisualC++ and MFC for each development

environment, having similar operation display.

Each is installed to the directory path below:

① Visual Basic Version

\winpapci\src\sample\VB\EX1

② Visual C++ Version

\winpapci\src\sample\VC\EX1

③ MFC Version

\winpapci\src\sample\MFC\EX1

”\winpapci” stands for the directory designation of “winpapci” for installation.

（１）Operation

Screen below displayed when EX1.exe is activated.

As this program operation is equivalent to each development environment, explains

the operation employing MFC as an example. Screen below shown when Ex1.exe is

activated. Arm is already controllable in actual machine mode, when displayed on screen.

Appendix 4

Appendix 4-3

Operation is the same as EX1.

Loads project data.

Starts/terminates serial operation.

Performs forward serial operation

for loaded “project” jumping to the

JUMP destination designated by

its JUMP data.

Shifts to the current point

with axis motion or linear

motion

Deletes loaded project.

２．SAMPLE PROGRAM：ＥＸ２ (VisualBASIC Version)

Sample program “ＥＸ２” loads project data on the basis of EＸ1 and is added a serial operation

function. However, this function is created only in VisualBASIC development environment.

Installed to the following directory path:

\winpapci\src\sample\VB\EX2

”\winpapci” stands for the directory designation of “winpapci” for installation.

（１）Operation

 Screen below shown when “EX2.exe” is activated.

Appendix 4

Appendix 4-4

３．SAMPLE PROGRAM: ＥＸ３ （VisualBASIC Version）

 Sample program ＥＸ３: programmed to actuate arms with velocity control using game joystick.

However, ＥＸ３ is created only in VisualBASIC development environment.

Installed to the following directory path:

\winpapci\src\sample\VB\EX3 ＥＸ３ program File

\winpapci\src\sample\VB\EX3\DLL ＥＸ３ Velocity Control DLL File

\winpapci\src\sample\VB\EX3\OCX ＥＸ３ ＯＣＸ File

”\winpapci” stands for the directory designation of “winpapci” for installation.

（１）Operation

Screen below shows when EX3.exe is activated.

While in velocity control, the arm can be actuated to front/back, right/left and rotated

by keeping on pushing the joystick button. Arm motion velocity can be controlled by

the joystick slant.

Shows arm control status.
Servo ON：

Arm status: servo ON.

Brake on all axes：

Brake ON to all axes.

Move to Safety Position：

Keeps arm in safe position..

Shows arm joint angle.

Shows command velocity

created by joystick.

Start/End velocity control.

Shows arm error information.
Switches velocity control in position or

orientation. However, Not changeable while in

velocity control.

Appendix 4

Appendix 4-5

 （２）Program

EX3 program motion is as follows:

For EX3, the joystick can be simply moved by inserting OCX for joystick (J/S).

Joystick (J/S) OCX contains properties and methods as follows.

PROPERTY

・pa_arm_no Sets motion target arm number within 0～15.（Default: ０）

・pa_arrow Switches into position or orientation velocity control. （ Default:

Position）

・pa_axis Switches into base or tip coordinate.（Default: Base coordinate）

・pa_device_no Selects device number 1 or 2 connected with the joystick.（Default is

1：JOYSTICKID1）

・pa_interval Sets velocity command output cycle with “mSec” unit. （Default:100

［mSec］. If setting for a long cyclic period it may cause over

surveillance time and error-stop.）

・pa_offset_deg Sets dead zone for joystick input value while in rotational velocity

control.（Default: 1000）

・pa_offset_mm Sets dead zone for joystick input value while in linear velocity control.

（Default: 1000）

EX3
（EX3.exe）

J/S OCX
（Pajs.ocx）

J/S DLL
（Pajs.dll）

Joystick

PA Library DLL

Periodic velocity command

J/S slant loading

Appendix 4

Appendix 4-6

METHOD（ Method entity presence in J/S DLL, performed on thread. ）

・pa_js_start Starts velocity control.

Arm initialization operation is performed on another thread. Loading J/S slant at

designated cycle. Velocity control command output is performed to the arm.

Velocity control is not interrupted even if dragging EX3 operation display window on

account of employing another thread.

Joint angle display on screen cannot be renewed while dragging.

The following parameter is needed to call this method.

Object.pa_js_start(Mode,ArmNo,Axis,Interval,OffsetMM,OffsetDEG,DevNO)

Mode： Arm control mode （０：Actual machine １：Simulation）

ArmNo： Arm Number

Axis： Coordinates VM_XYZ1（Base coordinate linear velocity control）

 VM_XYZ2（Tip coordinate linear velocity control）

 VM_YPR1（Base coordinate rotational velocity

 control ）

 VM_YPR2（Tip coordinate rotational velocity

 control ）

Interval： Velocity command output cycle [mSec]

OffsetDEG： Dead zone when in orientation control

OffsetMM： Dead zone when in position control

DevNO： Joystick device number

・pa_js_continue Acquires velocity command.

Acquires velocity command value while in velocity control.

The following parameter is needed to call this method.

Object.pa_js_continue(x,y,z,yaw,pitch,roll)

X： Command velocity toward Ｘ

Y： Command velocity toward Ｙ

Z： Command velocity toward Ｚ

Yaw： Yaw direction command velocity

Pitch： Pitch direction command velocity

Roll： Roll direction command velocity

・pa_js_stop Terminates velocity control（thread is also deleted.）

Parameter is not specially needed to call this method.

Object.pa_js_stop()

Appendix 4

Appendix 4-7

４． SAMPLE PROGRAM：ＥＸ２ (VisualC++ Version)

Sample program “E×1” adds real-time control function employing “pa_odr_dpd･pa_odr_axs” on

the basis of EX1. However, this function is created only in VisualC++

development environment.

Installed to the directory path below:

\winpapci\src\sample\VC\EX2

”\winpapci” stands for the directory designation of “winpapci” for installation.

（１）Operation

 Screen below shown when EX2.exe is activated.

Operation is the same as EX1.

RMRC real-time

control ON/ OFF.

↑（Increase ）↓（De-

crease）. .Axis value

provided in every control

cycle (2 msec) when in axis

real-time control.

AXIS real-time

control ON / OFF.

↑（Increase ）↓（Decrea-se）.

Absolute position/ orientation

provided in every control cycle

(2 msec) when in RMRC

real-time control.

Axis real-time control is performed employing

indicated value as axis value every control

cycle (2 msec). In this sample, axis

real-time control function is issued every 200

[msec].

RMRC real-time control is performed employing

indicated value as absolute position/orientation

value every control cycle (2 msec). In this sample,

RMRC real-time control function is issued every 200

[msec].

・ Microsoft, Windows, Visual Basic and Visual C++ are the registered brand names of the U. S.

Microsoft Corporation used in the U. S. and other countries.
・ WinRT is the brand name of the U. S. BSQUARE Corporation.
・ Names of the companies and products described in this manual are their trade marks or registered

brand names.

List of Instruction Manuals for PA10 Series (PA10-6CE)

 Subject Administrative No.

(1)
MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-6CE
INSTRUCTION MANUAL FOR INSTALLATION, MAINTENANCE & SAFETY

91-10014

(2)
MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-6CE
OPERATION MANUAL FOR OPERATION SUPPORT PROGRAM

91-10015

(3) MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
INSTRUCTION MANUAL FOR SERVO DRIVER

SKC-GC20004

(4)
MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
SOFTWARE INSTALLATION MANUAL (WindowsNT/2000/XP)

SKC-GC20001

(5) MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
PROGRAMING MANUAL

SKC-GC20002

(6) MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
PARAMETER SETTING MANUAL

91-10020

(7)
MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
OPERATION MANUAL FOR SIMPLE SIMULATOR

SKC-GC20003

(8) MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
INSTRUCTION MANUAL FOR TEACHING PENDANT

91-10016

List of Instruction Manuals for PA10 Series (PA10-7CE)

(1) MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-7CE
INSTRUCTION MANUAL FOR INSTALLATION, MAINTENANCE & SAFETY

91-10023

(2) MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-7CE
OPERATION MANUAL FOR OPERATION SUPPORT PROGRAM (ADDITIONAL EDITION)

91-10024

Above documents are described in our home page (http://www.robot-arm.com/), which can be down

loaded if required.

Specifications described in this manual are subject to changes for modification without previous

notification.

MITSUBISHI HEAVY INDUSTRIES, LTD. General purpose Robot
PA10 SERIES

PROGRAMMING MANUAL

SKC-GC20002
REV.3

S a l e s , M a n u f a c t u r e s a n d A f t e r s e r v i c e s

HEAD OFFICE

Laser & Electronics group

Turbomachinery & General Machinery Department
MITSUBISHI HEAVY INDUSTRIES，LTD．
E-mail: kazuhiro_iijima@mhi.co.jp
Phone: +81-3-6716-3845
Fax: +81-3-6716-5798

16-5,Konan2-chome,Minato-ku
Tokyo 108-8215 Japan

