MITSUBISHI HEAVY INDUSTRIES, LTD.

General Purpose Robot
PA10 SERIES

PROGRAMMING MANUAL

MITSUBISHI

HEAVY INDUSTRIES, LTD.

Chapter 1

Chapter 2

Chapter 3

NSNS

a b wN-=

INDEX

Foreword

Chapter 4 Motion and operation control section
4. 1 Motion control section

Chapter 5

oo oo
a P wN-=

Notes for the application development employing Visual BASIC

5-1
5-2

5-3
5-6
5-8

Chapter 6
6.

6
6

6.
6

Programming

1 Controlarm

2 Axis orientation Control

. 3.
. 3.

4 Tip position / orientation (RMRC) control: 6 (six) axisarm
. 4.1 Tip position / orientation (RMRC) control

6. 4. 2. 1 Types of peculiar points
6. 4. 2. 2 Singularity avoidance motion
6. 4. 2. 3 Control around angle limit

6. 5 Tip position / orientation (RMRC) control: 7-axisarm
6. 5. 1 Tip position / orientation (RMRC) control
6. 5. 2 Elbow actuating control changing tip position / orientation
6. 5. 3 Elbow actuating control not changing tip position / orientation
6. 5. 4 Notes for RMRC control |
6. 5. 5 Redundant axis control |

6. 5. 5. 1 Redundant axis controlmode
6. 5. 5. 2 Redundant axis operation control

6. 6 Velocity Control
6. 6. 1 Axis velocity control |
6. 6. 2 Tip position velocity control |
6. 6. 3 Tip orientation velocity control
6. 6. 4 Tip position / orientation velocity control
6. 6. 5 Redundant axis velocity control

6.
6
6

6.

6

8 Real-Time Control

1 Axis real—time control

. 8.
. 8. 2 RMRC real-time control mode

9 DIO Control

. 10. 4 Starting of playback motion (check—up operation)

6-11
6-11
6-19
6-20
6-21
6-23

6-24
6-24
6-26
6-33
6-34
6-35
6-36
6-41

6-44
6-45
6-47
6-49
6-51
6-53

6-55

6-57
6-58
6-60

6-67

6-70
6-72
6-77
6-78
6-80
6-81
6-82
6-83

PA10 Series
Programing Manual
SKG-GC20002
Rev. 0

chagter 1. FOREWORD

Chapter 7. Foreword

This is the programming manual of the new concept robot “Mitsubishi
heavy Industries, Ltd. — General Purpose Robot: PA” to be employed in various

ways for a wide range of customers.

The “PA” has two controllers: at the operation and motion control section.
At the operation control section, the C— language library (PA library) is
provided to access the motion control section.

This manual explains how to use this “PA library” in C and BASIC

language.

In this manual both 6—axis and 7—axis arm are explained as the same. If there is a
different function either in 6 or 7 axis, it is respectively shown as follows.

*The only function obtained by 6—axis arm [6 axis arm function /
*The only function obtained by 7—axis arm / 7 axis arm function 7

Chapter 2. ARM DESIGNATION AND MOTION

Chapter 2. Arm Designation and Motion

Chapter 2. ARM DESIGNATION AND MOTION

2. 1 AXIS DESIGNATION

Joint structure, axis designation and motion of “Mitsubishi heavy Industries,
Ltd. — General Purpose Intelligent Robot PA” are shown in the drawing below.
It might have a difference between configuration of the actual machines and
this illustration. However, the coordinate system is the same to both.

6 —AXIS ARM

Mechanical Interface
WRIST Coordinate System

A Y]

6th AXIS
(HAND ROTATION)

Sth AXIS (HAND PIVOT)

W, (+)
1\&(‘d‘!va E, (4)
3rd AXIS 4 ,ff, ath AXIS (ARM ROTATION)
(ARM UP/DOWN FIVOT) E, l EJDWER ARM
UPPER ARM

Znd AXIS
{ARM UP/DOWN PIVOT)
FB CONNECTORS

lit AXIS

(ARM LEFT/RIGHT ROTATIIONIF
('S (+)

SHOU LER I
BASE COORDINATE SYSTEM

Chapter 2. ARM DESIGNATION AND MOTION

1 -AXIS ARM

Mechanical Interface Coordinate System

6th AXIS [(N
(HAND PIVOT) W, - 7th AXIS
\;;,-.5) (HAND ROTATION) W, [+

5th AXIS
— (ARM ROTATION} E, (+]

. LOWER ARM
4th AXIS 4

(ARM UP/DOWN PIVOT) E,

2nd AXIS / .
(ARM UP/DOWN PIVOT) §, %"

b
IXt AXIS
(ARM LEFT/RIGHT ROTAT

SHOULDER

BASE COORDINATE SYSTEM

Chapter 2. ARM DESIGNATION AND MOTION

2. 2 COORDINATE SYSTEMS

In manipulator control, to indicate the current position/orientation and the target
position/orientation, the standard coordinate system is needed. Inputting the deviation
of position and orientation (rotation angle on the standard axis) for coordinates they can be
controlled.

The coordinate systems used in the motion controller are as follows:
*Base Coordinates - -The manipulator origin is the basic standard.
Its standard is for all coordinate systems and will never change.

*Mechanical Interface Coordinates --The coordinate system is altered by changes of
each axis angle in the manipulator tip coordinate (included tool +
offset.)

(Tip coordinate system)

El
________ -~ E2 O
'-‘.'\: Z
%, Mechanical Interface 0) 52
% Coordinates _» S1
\..\"“ —"—.'—A'—"_““ X
e Base
Operation Coordinates
Area

[Remark | .

This illustration is the 7—axis arm composition. For the 6—axis arm, there is no S3—axis.

([Memo)

Later on, this kind of coordinate system will be needed if combining with motion

mechanism or attaching sensors.

World Motion Mechanism
Coordinates Coordinates

()

Mech. Interface (Tool
Coordinates Coordinates
A\ v

Base
Coordinates

.
Sensor
. Coordinates
(*)In “PA,” the tool coordinates (include
regarded as the mechanical interface coordina
Operation
Coordinates

For the coordinate systems not existing in
the motion control section, following the application,
make coordinate—calculations inside the operation control section.

Chapter 2. ARM DESIGNATION AND MOTION

2. 3 COORDINATE SYSTEM CREATION
How should the coordinate system shown in the section 2.2 be created:
Here it is explained how to assign coordinate to each link which constructs a

manipulator.
[joint coordinate]
w le . Is . b
J\® R\ ZS%\@
J S
E2 E1l S3
Zy
o)
a Mech. interface Coordinate Base
(Tip Coordinate) Coordinate
y o Y
X n X

[Link parameters]

Axis Axis Des. | Twisting Angle ||Rotation Angle X Y Z
Link 1 1st S Roll o) 0 0 1b
Link 2 2nd S2 Pitch s 0 -1s 0
Link 3 3rd S3 Roll O 0 0 0
Link 4 4th E1 Pitch D e 0 -le 0
Link 5 5th E2 Roll D, 0 0 0
Link 6 6th Wi Pitch D wi 0 -1w 0
Link 7 Tth W2 Roll D wo 0 0 0

This chart shows only the 7—axis arm composition. For the 6—axis arm, there is no Link 3.

Twisting Angles
Roll :Rotation around Z—axis of the base coordinate.
Pitch: Rotation around Y—axis of the base coordinate.
Yaw : Rotation around X—axis of the base coordinate.
Joint Coordinates
Roll coordinate : the same as the base coordinate.

Pitch coordinate : 90 degrees diverted around X—axis of the base coordinate.
Yaw coordinate : 90 degrees rotated around Y axis of the pitch coordinates.
< A-Matrix>
Any manipulator is constructed with a series of links connected by joints. At each
link (each axis) the coordinate is fixed one by one. At this point, the conversion
matrix showing the relation between a link and another one is called A—-matrix. To
summarize: the A—matrix indicates a relative translation and rotation between link

coordinates.

< T-Matrix>
It can be indicated by the A-matrix product if seeing each link from the base
coordinate (the origin. of the manipulator coordinate.) This A—-matrix product is

called T-matrix. T—matrix of each link seeing from the base coordinate is indicated
with T,(=°T)).

Chapter 2. ARM DESIGNATION AND MOTION

(1)Base Coordinate Systems
The base coordinate is the origin of a manipulator. This coordinate itself becomes the
standard coordinate system (the absolute coordinate system) as follows:

Ty =

o O o =
o o = O
o = O o
- O O O

Chapter 2. ARM DESIGNATION AND MOTION

(2)Mechanical Interface Coordinates
Mechanical interface coordinates (tool tip coordinate) will be created as follows:

*First of all, create the conversion matrix A1 from the manipulator origin, indicating the S1 origin.
—The coordinate of S1 origin located at base coordinate:
T,=ToA,
*Then, create conversion matrix: A2 indicating the S2 origin for the S1 origin (T1 coordinate.)
—The coordinate of S2 origin located at the base coordinate:
T,=T,A,=A A,
*Then, create conversion matrix: A3 indicating the S3 origin for the S2 origin (T2 coordinate.)
—The coordinate of S3 origin located at the base coordinate:
T;=T,A;=AAA;
*Then, create conversion matrix: A4 indicating the E1 origin for the S3 origin (T3 coordinate.)
—The coordinate of E1 origin located at the base coordinate:
T,=TA,=AAAA,
*Then, create conversion matrix: A5 indicating the E2 origin for the E1 origin (T4 coordinate.)
—The coordinate of E2 origin located at the base coordinate:
Ts=T,As=A;AA;A, A
*Then, create conversion matrix: A6 indicating the W1 origin for the E2 origin (T5 coordinate.)
—The coordinate of W1 origin located at the base coordinate:
Te=TsAs=A A A;AAA,
*Then, create conversion matrix: A7 indicating the W2 origin for the W1 origin (T6 coordinate.)
—The coordinate of W2 origin located at the base coordinate:
T,=TcA;=AALA;AAAA,
*Then, create conversion matrix: A tool indicating tool tip for the W2 origin (T7 coordinate.)
—The tool tip coordinate located at the base coordinate:
Tiool = T7Awol = A1A2A3ALAsAc A7 Ao,

tool tool

Thus, if it is successively indicated with a conversion for new coordinates, multiply the
conversion matrix of each joint on the right.

To summarize: the finally created T, (°T,) matrix indicates the position / direction of
the mechanical interface coordinate (included the tool) seen from the base coordinate.
Using this matrix, it also makes the conversion from the mechanical interface coordinate

to the base coordinate.

. A
ne o A

Trooo = [NOAP = hy o & 7 ,\1
n, n, a, N

Tip Orientation Tip position

This is the 7—axis arm composition. For 6—axis arm, there is no A3.

Chapter 2. ARM DESIGNATION AND MOTION
2. 4 ROTATION DIRECTION FOR COORDINATE SYSTEMS

Input values for each coordinate as follows.

(1) Input values in the base coordinate

< Position>
*Deviation toward X (AX)
*Deviation toward Y(AY)
*Deviation toward Z(AZ)
*Velocity toward X (VX) Roll
*Velocity toward Y (VY)
*Velocity toward the V-axis (VZ)

< Orientation>
*Rotation deviation on X(AYaw)
*Rotation deviation on Y (APitch)
*Rotation deviation on Z(ARoll)
*Rotation velocity on X(VYaw)
*Rotation velocity on Y (VPitch)
*Rotation velocity on Z(VRoll)

Pitch

X Yaw

(2)Input value in the mechanical interface coordinate

< Position>
*Deviation toward X (Ax)
*Deviation toward Y (Ay) ,
*Deviation toward Z (Az)
*Velocity toward X (Vx)
*Velocity toward Y (Vy) roll
*Velocity toward Z(Vz)

< Orientation>
*Rotation deviation on X (Ayaw)
* Rotation deviation on Y (Apitch)
*Rotation deviation on Z(Aroll)
*Velocity toward X (Vyaw)
*Velocity toward Y (Vpitch)
*Velocity toward Z (Vroll)

Chapter 2. ARM DESIGNATION AND MOTION

2. 5 CONVERSION

Space conversion with a 4x4 Matrix can indicate the conversion of translation and rotation.
Using these conversions and coordinates, they designate the position and orientation of a

manipulator.

(1)Position designation

Position designation (conversion) is to translate X, Y and Z directions of the basic
coordinate T.

Trans(x, vy, z)=

o(DO_k
oo —=©°
o—~o©°
- N < X

(2) Orientation designation (Roll, Pitch, Yaw)
Roll, pitch and yaw is generally used for the orientation designation
(conversion).
In a standard coordinate T, Yaw is the rotation around X-axis. Pitch is the

rotation around Y—axis. Roll is the rotation around Z—axis.

{ Memo |

As these three conversions are based on the original coordinate, pay attention
to the conversion formula, the multiplication order is reversed.

RPY (roll, pitch, yaw)

Processing order
= Rot(z roll)Rot(y, pitch)Rot(x, vyaw)

C, -S, 0 O c, 0 s, 0 1.0 0 O
= |s ¢ o o O 1 0 0 0 G -S, 0
0 0 1 0 s, 0 C, 0 0s, G 0
_0 0 O 1 0 0 0 1 0 O 0 1
(" ¢.c, C,S,S,-S.C, GC.S,C+SS, 0
= s. C, S.S, S, +GC, G, S.S,C,-GC.S, 0
-s, C, S, c, G, 0
. O 0 0 1
However. S, = sin (yaw), C, = cos (yaw)
S, = sin (pitch), C, = cos (pitch)
S, = sin(roll), C, = cos (roll)

Chapter 2. ARM DESIGNATION AND MOTION

(Memo)

Conversions responding to the rotation angle 6 around X, Y and Z-axis are:

1 0 0 0
Rot(x, 8) = 0 cos@ -sinf 0
0 sin@ cosfB 0

L 0 0 0 1
cos O 0 sin @ 0
Rot(y, 0) = 0 1 0 0
-sin 0 0 cos B 0

0 0 0 1]

[cos® -sinB 0 0 |
Rot(z, 6) = sin@ cosB 0 0
0 0 1 0
0 0 0 1

2—10

Chapter 3. CONTROL MODE

Chapter 3. CONTRPOL MODE

Looking at the nearest point to H/W in the manipulator control, command
values are given to each axis. As the actual operation method, not only makes
each axis move, but also needs complex movements controlling orientation or
the tip position to be straight.

Chapter 3. CONTROL MODE

3. 1 ACTUATING CONTROL MODE

Actuating control methods for PA, are provided as follows:
Also data interpolation will be performed when it operates for all modes.

= Axis angle control

= Axis speed control

=6 direction deviation control for the RMRC base coordinate system

=6 direction velocity control for the RMRC base coordinate system

*Tip coordinate matrix control for the RMRC base coordinate system

6 direction deviation control for the RMRC mechanical interface coordinate
system

6 direction velocity control for the RMRC mechanical interface coordinate system

*Redundant axis control for RMRC control

= Teach data acquisition control

*Playback (axis / linear / circle / arc interpolation) control

*Coordinate conversion control for playback

*redundant axis control for playback / 7-axis arm function /

*Direct control .. optional function

= Axis angle real—-time control

*RMRC real-time control

- Absolute target position / orientation designation control
*others

Direct teaching is optional.

Chapter 3. CONTROL MODE

(1) Axis angle Control
Operation method ordering each axis target angle or previously defined each axis
value, through the operation controller.

Reference |

Programming is explained in Section 6-3.

(2)Tip Position /Tip Orientation Control

Method to shift the tip straight or rotate the tip direction by inputting the tip
position/orientation deviation for the defined coordinate axis by the operation
controller.

The Motion controller calculates the linear interpolation for each tip
position/orientation and control position/orientation feedback.

In PA10, tip position/orientation control is called RMRC control.

Reference |

Programming for the 6 axis arm is explained in section 6—4 and for the axis arm,

in section 6-5.

(8) Velocity Control

Operation method to select the axis for velocity control and input command value.
Input to each axis or to the coordinate system axis is accessible.

Reference |

Programming is explained in section 6-6.

(4)Redundant Axis Control / 7-axis arm function /

For the 7—axis arm, the same as PA, there are several axis values at the same tip
position/orientation. The arm, with these characteristics, is called “Redundant axis
arm”.

By controlling this redundant axis, complex movements can be achieved.
For instance, even if the elbow encounters obstacles, this elbow position can be

shifted, without changing the tip position/orientation.

The redundant axis control is the mode restricting each axis of the 7—arm axis to any

direction.

There are two types of redundant axis control, as follows:
= The control restricts the redundant axis altering the tip position/ orientation.
*The control shifts, only, the redundant axis (elbow) position not altering the tip
position/orientation.

Reference |

Programming is explained in section 6-5.

11.1
11.
11.
11.
11.
11.
11.

o000 000
NoohwN

Appendix 1
Appendix 2
Appendix 3
Appendix 4

Differences between current point operation and playback control |
JUMP rules

PA library issuable status table
On PA library return value (error code)

On restart control function after momentary stop during playback control

Sample program instruction

6-84
6-85
6-86
6-88
6-89
6-91
6-92
6-94

6-95
6-96
6-104

6-110

6-112

6-114

6-114

7-1
7-2
7-14
7-26
7-34

8-1

Chapter 3. CONTROL MODE

(7)Real-Time Control
This mode controls the arm in position/orientation or each axis angle, at actual time,
inputting tip position/ orientation or each axis angle every control cyclic time.
The command (tip position/orientation Matrix or each axis angle every control cyclic

time) has to be issued every time—out.

{ Reference |

Programming is explained in the section 6.8.

Chapter 3. CONTROL MODE

(5)Direct Control (Optional function)
After switching on the torque control and releasing the brake, this direct control is for
the manually arm operation mode.
This control mode memorizes each axis data as the teach (PTP) data when an arm is
operated manually. It revives the movements through the playback control.

*Simple weight compensation control

Reference |

Programming is explained in section 6-7.

(6)Playback Control
This playback control is managed by continuous teach data (each axis value or NOAP)
Between a non continuous teach data the playback control will be interpolated
adjusting the data types.

Teachdata1 (B¢y, Ogor, *=° Ouar)
Teach data 2 (6 s12» 6 s22, " 7" 6 W22)
Teach datan (B¢y, Bson ~=* Owan)

The teach data is as follows:
*PTP for axis interpolation each axis(0 g;~ 6 ,) data
*PTP for linear interpolation each axis(8 g;~ 6 y,)data
*PTP for arc interpolation each axis(8 g~ 8) data
*PTP for circle interpolation each axis(6 g;~ 0 y,)data

*PTP for linear interpolation tip (NOAP)data
«PTP for arc interpolation tip (NOAP) data
*PTP for circle interpolation tip (NOAP)data

Interpolation methods are as follows:
*Axis angle interpolation
=Tip linear interpolation
*Tip arc interpolation
*Tip circle interpolation

Reference |

Interpolation methods are explained in the section 3.2 — 3.5.
Programming is explained in the section 6.10 and 6.7.

(Memo)

The teaching data is the PTP data. The PTP data is the abbreviation for
“Point to Point”. The trajectory between different data is haphazard. But
when the playback control is operated, the interpolation has to be surely
performed between different PTP data.

Chapter 3. CONTROL MODE

3. 2 Trajectory Control Mode

How to operate each axis or tip position/orientation of a manipulator:
In PA10, the interpolation is as follows:

a. Trajectory Interpolations
=Axis angle interpolation
=Tip linear interpolation
=Tip arc interpolation
=Tip circle interpolation

=Tip orientation interpolation

b. Velocity Control

=Constant velocity interpolation

(Acceleration + Constant velocity) Interpolation /

-(Constant velocity + deceleration) Interpolation

- (Acceleration + Constant velocity + deceleration) Interpolation f

A -

Control Mode a. Trajectory interpolation b. Velocity Control

Each Axis Control Each Axis Interpolation

Tip Position Control Tip Linear Interpolation I
Tip Orientation Control | Tip Orientation Interpolation

s

Each Axis Interpolation

Tip Linear Interpolation /

Tip Orientation Interpolation

Playback Control
Tip Arc Interpolation

Tip Orientation Interpolation /

Tip Circle Interpolation

-

Chapter 3. CONTROL MODE

3. 3 Axis Angle Interpolation
Here is the explanation for each axis angle control in the trajectory control mode.

Each axis angle control
<Input value >
target angle(Orgy, Orgy, - Oryy)

< Calculation>
(@ Calculate deviation angle and subtract the current value from the target one,
at each axis.

ABg Ors; - Bcs
A 632 B Grsg_ 6032
A8y, Ory, — Bcw

@ From the calculation, dividing each axis deviation by each axis default
velocity, the axis, obtaining the biggest shifting time, is defined as the basic axis
of interpolation.

AT, A6 / Vg
AT, = ABs,/ Vg

The axis obtained the biggest AT, is defined as the standard of interpolation.

@ Calculate each axis command angle on the basis of the interpolation basic axis
deviation(A 8,). In the interpolation method, calculate the target trajectory

(command angle) to control the velocity to form the letter “S” shape.

[Reference)

For the velocity control, refer to the section 3.5.

Chapter 3. CONTROL MODE

3. 4 RMRC Tip Intervolation

The method to shift a manipulator tip position/orientation to the next target

position/orientation in the trajectory control mode is explained here.

Tip position/orientation interpolation methods currently provided in PA10 are three as
follows:

‘Linear Interpolation ---The tip trajectory is straight. The tip orientation is
concurrently interpolated, too.

-Arc Interpolation ---The tip trajectory is an arc. The tip orientation is
concurrently interpolated, too.

*Circle Interpolation ---The tip trajectory is a circle.

The target tip position/orientation “Tr.” is calculated from interpolation every
sampling period to shift on the trajectory to the target position/orientation from the
current position/orientation.

/ 7-axis arm function /

For the 7-axis arm, when the redundant axis control modes - “S3-axis restriction”
and “S3-axis interpolation” — are selected and the interpolation above is operated,
the S3-axis angle deviation (difference between the current angle and the target
angle) is simultaneously interpolated and target “S3-axis” angles are calculated every
sampling period.

For trajectory interpolation methods, the target tip position/orientation trajectory

(command angle) is calculated for velocity to form the letter “S” shape.

[Reference)

Refer to the section 3.5 for velocity control.

Chapter 3. CONTROL MODE

(1) Linear interpolation

Tip orientation rotation angle: e

interpolation

Pc ™
Tip position shifting value: L

<When the redundant axis control mode is NOT “S3-axis restriction” and “S3-axis
interpolation mode in 6—axis and 7—axis arm>

OUTLINE PROCEDURE FOR LINEAR INTERPOLATION
Calculate the current tip position and the tip orientation (Tc).
Calculate the target tip position and the tip orientation (Tr).
Calculate the tip moving distance (L) from the current tip position and the target
position.
Calculate the tip orientation/rotation angle (6) from the current orientation and the
target tip orientation.
To simultaneously operate the position and the orientation, the standard must be

chosen.

Following the selected velocity control method, interpolate and calculate the target tip
position/target orientation (Try, -+ , Tr,_4, Tr,, -*- Tr) of each sampling.

If the work coordinate conversion Matrix is designated, multiply “Tr_.” by the

coordinate conversion Matrix.

<When the redundant axis control mode is “S3-axis restriction” and “S3-axis
interpolation mode >

/ 7-axis arm function /

OUTLINE PROCEDURE FOR LINEAR INTERPOLATION
Calculate the current tip position and the tip orientation (Tc).
Calculate the target tip position and the tip orientation (Tr).
Calculate the tip moving distance (L) from the current tip position and the target

position.

Calculate the tip orientation/rotation angle (6) from the current orientation and the
target tip orientation.

Calculate the S3-axis angle/rotation angle(8 g3) from the current S3-axis angle and
the target S3—axis angle.

To operate the position and the orientation, the standard for interpolation must be
chosen from the position, the orientation or the S3—axis.

Following the selected velocity control method, interpolate and calculate the target tip
position, the target orientation and the S3—axis of each sampling.

If the work coordinate conversion Matrix is designated, multiply “Tr,” by the coordinate
conversion Matrix.

Chapter 3. CONTROL MODE

(2) Arc & Circle Interpolation

‘Arc Interpolation Circle Interpolation
Tip Shifting Direction

Orientation Rotation A Orientation rotation Angle:0 ,=0

Position Shifting rotation Angle: 8 ,=27

Pl mmmhem

<When the redundant axis control mode is NOT “S3-axis restriction” and
“S3-axis interpolation mode in 6—axis and 7-axis arm>

OUTLINE PROCEDURE FOR ARK & CIRCL INTERPOLATION

Calculate the current tip position (P1) and the tip orientation (T1).

2. Calculate the tip position and the tip orientation (T2) of the passing point (P2).

3. Calculate the tip position and the tip orientation (T3) of the target value (P3). In the
case of the circle, P3—point is also the passing point.

4. Calculate the center point (O), the semi—diameter (r) and the normal vector (Vec) of
the circle trajectory from three points.

5. Calculate the angle of the tip accurate motion (6 ,) from the tip position of the current
value P1 and P3. For the circle,8 , =2 7.

6. Calculate the rotation angle of the tip orientation (8 ,) from the tip position of the
current value P1 and P3. For the circle, 8 , = 0 (current orientation maintained.)

7. To simultaneously operate the position and the orientation, the standard must be

chosen.

8. Following the selected velocity control method, interpolate and calculate the target tip
position/target orientation (Tr,, -+ , Tr,_;, Tr,, == Tr) of each sampling.

9. If the work coordinate conversion Matrix is designated, multiply “Tr,_.” by the

coordinate conversion Matrix.

<When the redundant axis control mode is “S3-axis restriction” and “S3-axis
interpolation mode>

/ 7-axis arm function /

OUTLINE PROCEDURE FOR LINEAR INTERPOLATION

Calculate the current tip position (P1) and the tip orientation (T1).

Calculate the tip position and the tip orientation (T2) of the passing point (P2).
Calculate the tip position and the tip orientation (T3) of the target value (P3). In the
case of the circle, P3—point is also the passing point.

Calculate the center point (O), the semi—diameter (r) and the normal vector (Vec) of the
circle trajectory from three points.

Calculate the angle of the tip accurate motion (8 ,) from the tip position of the current
value P1 and P3. For the circle,8 ,=27.

Calculate the rotation angle of the tip orientation (8 ,) from the tip position of the
current value P1 and P3. For the circle, 8 , = 0 (current orientation maintained.)

3 —10

Chapter 3. CONTROL MODE

7. Calculate rotation angle (0 g3) if S3-axis orientation from the S3-axis
angle, of the current value (P1) and the S3-axis angle of the target value
(P3). In the case of the circle, it is (0 g3) = 0.0 [rad] (in the case of
circle interpolation, S3—axis DOES NOT move and make the same motion as
“S3—axis fixed”.

8. To operate the position and the orientation, the standard for interpolation
must be chosen from the position, the orientation or the S3-axis

9. Following the selected velocity control method, interpolate and calculate the
target tip position/target orientation/target S3—axis angle of each sampling.

10. If the work coordinate conversion Matrix is designated, multiply “Tr,” by

the coordinate conversion Matrix.

3—11

Chapter 3. CONTROL MODE

3. 5 Velocity Control

When a manipulator plus a machine operator perform, if, command value is given
intermittently, it causes undesirable mechanical oscillation. For this reason, the
command speed at the start has to be controlled, to gradually accelerate and at stop to
gradually decelerate.

On manipulator trajectory, velocity is generally controlled to make a trapezoid wave.

With this trapezoid wave, the acceleration wave becomes non continuous. It causes
acceleration shock and mechanical oscillation. In PA10, to create a target trajectory to
reduce acceleration shock, interpolation methods are employed to create the letter “S”
shaped target trajectory for velocity.

This satisfies conditions to keep each curve continuity and hold the maximum velocity,
lower. The most reliable curve, even if used in a situation when the load characteristic
is unpredictable, the maximum velocity is lowered

Start (Acceleration) Uniform Velocity Start (deceleration
- Angle

\ Interpolation
Target Angle: 6

Angle: 6 - Position

Velocity:v

Accelelation:

These options below are available for a velocity control type.

O : Uniform velocity

1 :with Acceleration _/
2 :with Deceleration \
3 :with Acceleration and Deceleration f \

(Memo)

For position change, the trapezoid control is available. Not available for velocity

change. When in a continuous movement as:(ex)p1—p2 is vi[mm/s], p2—p3 is
v2[mm/s], velocity command is intermittently changed at p2 point. In this case,
velocity command intermittent change has to be lowered and controlled at the
servo driver side.

3 —12

Chapter 4 Motion & Operation Control Section

Chapter 4. Motion & OperatiornnfControl Section

The PA controller consists of two sections shown below:
- Motion Control Section
- Operation Control Section (man—machine controller)

4-1

Chapter 4 Motion & Operation Control Section

4. 1 Motion Control Section

The motion control section — the controller handles the basic control for PA -
operates following each control mode explained in chapter 3. The limitation cycle is
2ms.

Regarding the program for this section, as long as PA is employed, even if the
operation contents are changed, the program remains the same.

Chapter 4 Motion & Operation Control Section

4. 2 Operation Control Section

The operation control section — the controller handles the operation procedures. The
program for this section changes depending on the operation: (on each application: weddings,
painting, etc)

The standard software for PA: the operation support program (man— machine) and PA

Library (the motion and control section and interface section) are provided.

The motion control board is compatible with PCI bus. Employ a PC with PCI bus sold in

the market.
N
ﬁperation Control Section Written by G,
basic language
Operation
support program
Operation Control PC PPOTE PEOBE

. IF EEEn EEEEEEEEENy
. / I X Implemented
E PA library with DLL
= — 0= a 11 E device
= . PCI bus Driver Driver
’..IIIIIIII IIIIIIIII".
PCI bus

Motion Control Board
Egmuj”ﬁ ﬂﬂﬂﬂ _% Motion Control Section: control cycle : 2ms j

Application development

To develop and implement an application a device driver is needed besides PA library.
With PCI bus sold in the market, using “WinnRT” (created by bSQUARE Co.).

The PA Library is created through the DLL form. The program will be kinetically linked
when it is employed. The standard Windows version “PA library is created by Compiler
Visual C ++ Ver. 6.0. Some application samples, created by Visual C++ and Visual BASIC,
are attached.

4-3

Chapter 4 Motion & Operation Control Section

4. 38 Operation & Motion Control Section Interface

The Operation section and the Motion Control section are connected by PCI bus.

The memory area is shared at the PCI space.

The operation control section sets the target command (event) to this memory area. The
motion control section operates following a event. The arm movement can be observed at
actual time.

Using this memory area, the one provided to ease the motion control section from the
operation one, is: the “PA library.”

Chapter 5 Program Development & Processing Conditions

Chapterd Program Developmernt & Processing Cornndrtiorns

Chapter 5 Program Development & Processing Conditions

5. 1 Development & Processing Conditions

For processing conditions, if you intend to provide your own operation control section
(Personal Computer), you must need the following:

*0S :Windows NT/2000/XP

*Memory :More than 128 MB

Further more, for development, the following are needed.
*Compiler: Visual C++ Compiler Ver.6.0 or
Visual BASIC Compiler Ver.6.0

5. 2 PA Library Status

The PA library stands for:

A library to develop an application program for the operation control section.

* The interface library to ease the operation of all actuating functions for the motion
control section. To access the motion control CPU, besides the PA library, a driver
for PCI bus created by the device driver — WinRT — sold in the market, is needed.

* The PA library is the DLL (Dynamic—link library) model created employing Visual C++

ver.6.0.
¢ WRUN ‘
/ WPRM . \
. Operation Support
Operation Suppprt Operation
Parameter setting Mode 3D
(WPRM) Simple
Application . . Visual Basic Simulator
Program Visual Basic (3D)

Visual C++

PA library
(Papci.DLL)

Visual C++

PGl bus

\‘ Operation driver WinRT /
¢ trol Secti ¢
LN i~
| PCIbus |

Motion Control

Software

Chapter 5 Program Development & Processing Conditions

5. 38 PA library Directory Composition

The PA library is provided by the CD—ROM.
When the CD-ROM is set, installation starts automatically. (For further information,
refer to the installation manual.)

(Reference |

The PA library compositions provided in PA are as follows:

¥ WinPApci (Default name of installation destination)
— BIN - Execution file
Passage.exe
Wprm.exe
—— INCLUDE - Header file of PA library
PAH PA library prototype declaration (for development employing Visual C++)
PAERR.H PA library error information declaration (for development employing Visual C++)
PACMD.H
PACTLH File needed for PA library construction
PAMMC.H
PABAS
PAERR.BAS for development with Visual BACIS
— HELP - Online help file
PAHELP.HLP
—— SRC——— LIB --- PA library source file
PA_CUB.C CUBE information
PA_DIO.C Digital I/0
PA_DIR.C Direct control mode
PA DPD.C Real-time T—matrix control
PA EGT.C Relatedto additional functions (information acquisition)
PA ETC.C VMEinterface connected to the motion control section
PA EXT.C Related to additional functions (control)
PA GET.C Arm information acquisition
PA_JUMP.C JUMP data
PA_JOU.C Redundant axis/velocity control
PA_ MOD.C Related to teach mode
PA_ MOV.C initial setting/each axis control/RMRC
PA_MTX.C Coordinate conversion matrix setting
PA_PNT.C Teach/playback control
PA_ PRM.C Parameter alteration
PA_PRV.C Related to parameter loading/saving
PA_SET.C Basic orientation registration
PA_VEL.C Velocity mode selection
PCI --- PA library (for PCI) project file
PA_PCIC related to PCI-bus access
PCI.DEF Default definition file
PCIL.DSW Project work space
PCIDSP project file

Chapter 5 Program Development & Processing Conditions

L SAMPLE —-T— MFC —— EX1 = Sample program employing MFC
EX1.CPP EX1.ICO
EX1.H EX1.RC2
EX1.RCEX1DLG.CPP
EX1DLG.H RESOURCE.H
STDAFX.CPP STDAFXH
EX1.DSW EX1.DSP

— VC EX1--Sample program employing VisualC++

DLGPROC.CPP MAIN.CPP

RESOURCE.H EX1.RC
EX1.DSW EX1.DSP
EX1.EXE

EX2--Sample program employing VisualC++
DLGPROC.CPP MAIN.CPP

WINDOWS —— SYSTEM
PAPCI.LIB
PAPCI.DLL

Asycfilt.DLL
FLGDJP.DLL
olepro32.DLL

RESOURCE.H EX2.RC
EX2.DSW EX2.DSP
EX2.EXE
— EX1--Sample program—1 employing VisualBasic
MAIN.BAS DEFINE.BAS
FUNC.BAS AXISOPE.FRM
EX1MAIN.FRM EX1.VBP
EX1.EXE
——EX2--Sample program—2 employing VisualBasic
MAIN.BAS DEFINE.BAS
FUNC.BAS EX2MAIN.FRM
EX2.EXE EX2.VBP
—EX3 ~Sample program—3 employing VisualBasic
EX3.VBP EX3.FRM
JS.BMP EX3.EXE
— DLLJS

PAJS.DEF PAJS.DSP
PAJS.DSW PAPAJS.C

— OCXJS
PAJS.VBP MODULE1.BAS
PAJS.LIB PAJS.CTL

PA library (for PCl-bus) — Import library
PA library (for PCl-bus) — DLL

CMDLGJP.DLL COMCAT.DLL
Msvbvm60.DLL oleaut32.DLL
VB6JP.DLL mfc42.DLL

SPR32X30.0cx ComdIg32.ocx MSFLXGRD.ocx

Stdole2.tlb

Chapter 5 Program Development & Processing Conditions

Additionally, if the operation support software is purchased together, the following files
are installed into the system directory.
CMCTLJP.DLL MSSTDFMT.DLL msvert.DLL scrrnjp.DLL
Scrrun.DLL STDFTJP.DLL MSCMCJP.DLL MSCOMJP.DLL
MSCOMM32.0cx MSCOMCTL.ocx

* Files needed to develop an application program for the operation control section
employing Visual C++ (Ver.6.0) are the following, indicated on gray background:
PAH
PAERR.H
PAPCI.LIB
PAPCIDLL (needed for implementation)

* Files needed to develop an application program for the operation control section
employing Visual BASIC (Ver.6.0) are the following, indicated on gray background:
PABAS
PAERR.BAS
PAPCI.DLL (needed for implementation)

Chapter 5 Program Development & Processing Conditions

5. 4 Notes for application development employing Visual C++

(1)Header files are needed to be included.
Using the PA library, if an application program is developed employing Visual C++ ver.6.0,
the following header files have to be included. (using MFC, likewise.)
PAH -+++ PA library prototype declaration is described.
PAERR.H ---- PA library error code declaration is described.
{Setting method> Choose “Setting:*-” inside “Project” of the menu bar, then, choose
“the preprocessor” in the category of C/C++, then, set the path (c:¥winpapc¥include)
to the header file of the PA library.

Project Settings ﬂi'
Settings For: [wina2 elemss]| Genesl | Debug | Ecee | Uik | Resowed (]
T .E;.m
& Category: [Preprocessor | Reset

Preprocessar definitions:
|WIN32,NDEELIG,_WINDDWS,_MEES

Undefined symbols: I Undefine all spmbals

pap

T Mg SR e Btk

Project Optiohs:

/nologo Zp2 AL A3 GR A0Z A L 3dimE A A A
", /D30Frame’" A "c\winpapcitinclude" A
"'c:hmssdkbinchude” /D WIN3Z2" /D "NDEBUG" /D ;I

Cancel

(2)Needed library files to be linked.
As far as developing an application employing Visual C++ Ver.6.0, using the PA library,
the following import library files have to be linked.
PAPCILIB ---- The import library file including the PA library.
{Setting Method> Choose “Setting::*” inside “Project” of the menu bar, then, choose
“general” in the link category, then, set the PA library intended to be linked.

Sedtings For: I\.\.-'in32 Release _'J General i Debug i CC++ Link I Fiesourcé: EE
=
HE Categony; |General vI Reset |

Output file name:
!:.J..H..Jbina’deT[PCl Jexs

.nhiﬂr\}ﬂihl g rnadulas:

ieaut32.lib uuid lib cometl3Z2.ib o hwinnthdpstem324papei lib

[Generate debuginto [lgnore all default lbraries

™ Link incrempéntafy ™ Generate mapfils
I” Enablsfrofiing

?{x.nb d3dwot b fdraw.ib d3dim. b wirmm, ib f]
Yhxguid b dinput lifkemel32.lib user32 ib gdi32 lib
winzpool ib comdig32. lib advapi32 lib shell32. b Ll

/ Cancel |
-/

Windows2000 or NT c:¥winnt¥system32¥papci. |ib
Windows XP ¢ ¥windows¥system32¥papci. | ib

Chapter 5 Program Development & Processing Conditions

(8) Structural Member Alignment Alteration
Structural member alignment has to be set for 2 bytes. (default is 8 bytes)

{Setting Method> Choose “Setting:-*” inside “Project” of the menu bar, then choose
“code creation” in the C/C++ category, then, change the structural

member alignment for 2 bytes.

Settings For: IWin32 Felease _'J General i Debug C/C++ | Link I Fiesnurc:': EE
7 |EEL“. Em
2 Category: |Code Generation 'I Reset |
Proceszor: Use rurctime fibrany:
|Blend * | |singeTheadeds x|
LCalling convention: 2o+ Struct member slignmeant:
I_cdecl 5 LI !2 Bytes ;]
Project Dptions:
/nologo Zp2 ML A3 AGH 02/ U 3dimE A A A .
" #D3DFrame” A Vo winpapeitinclude’ A
"cAmssdkhinclude” /D MwWINIZY /D "NDEBUG" /D _Li
Ok |

(4)Needed DLL file for processing
To process the application program the following DLL is needed to be located in the

designated place:
Windows2000/NT: ¥WINNT¥SYSTEM32,
Windows XP: ¥WINDOWS¥SYSTEM32.
(There is no need to operate any linking or such.)

PAPCIDLL ---- The file keeping the PA library processing module.

Chapter 5 Program Development & Processing Conditions

5. 5 Notes for application development employing Visual BASIC

(1) Necessary header files to include
Using the PA library, if develop an application program employing BASIC ver.6.0, add the
following header files. (the standard module file) to the “project.”
PA.BAS -+++ The prototype declaration is described when load the PA
library created with C—programming language employing BASIC.

<Setting method> Choose “Add the standard module” inside “Project” of the menu bar,
then, add “ps.bas.”

Add Module 2] 11_
Mew Ewisting I
Look in: I‘-c:_i include LI &= I::F -

=

File name: Ipa_bas Open I
Files of tvpe: IBasic Files [*.bas] ;I Cancel I
Help |

I Don't show this dislog in the future

(2)Necessary DLL tile tor implementation
To process the application program the following DLL is needed to be located in the
designated place:
Windows2000/NT: ¥WINNT¥SYSTEM32
Windows XP: ¥WINDOWS¥SYSTEM32.
(There is no need to operate any linking or such.)

PAPCIDLL ---- The file keeping the PA library processing module.

Chapter 6 Programming

Chapter 6 Programrmiing

How to create an application using the PA library.

6-1

Chapter 6 Programming

6. 1 Control Arm

(1)6-axis and 7—axis arm
The PA library for 6—axis and 7—axis is described as the same.
Some libraries can only be used for the 7—axis arm, not for the 6—axis one. A
processable library inter—lock is checked at the motion control side.
For the 6-axis arm, on command values to each axis, the S3-axis
(configuration [2]) value becomes invalid.

(example) Type Declaration 6—axis arm 7T—axis arm
Axis value ANGLE axis
axs.S1 1°t axis: S1 1%t axis: S1
axs.S2 2" axis: S2 2" axis: S2
axs.S3 (not used) 3" axis: S3
axs.E1 3" axis: E1 4% axis:E1
axs.E2 4™ axis:E2 5t axis:E2
axs.W1 5" axis: W1 6% axis: W1
axs.W2 6" axis: W2 7" axis: W2
Velocity command Value | float speed[7]
speed[0] 1t axis: S1 1t axis: S1
speed[1] 2" axis:S2 2" axis : S2
speed[2] (not used) 3 axis: S3
speed[3] 3" axis:E1 4t axis:E1
speed[4] 4 axis:E2 5% axis:E2
speed[5] 5" axis: W1 6t axis:Wi1
speed[6] 6t axis:W2 7% axis: W2

(2)Plural Arm Control
For one operation control PC (Personal Computer), plural motion control boards can
be inserted. Besides, two arms can be controlled with one motion control board. In
the case of plural arms, the controlled arm is classified with its own number.

For the PA library, all arm numbers are needed.
pa_opn_arm(ARM armno,-----)

ARM =ARMO
=ARM1
=ARM2

=ARM16

(Reference)

For arm number settings, refer to “the PROGRAMING MANUAL (ADDITIONAL
EDITION).”

6-2

Chapter 6 Programming

6. 2 Common Items

On the control programming using the PA library, there are some that must be
known and followed through.

(1) Synchronization between controllers

One command is issued for one PA library from the operation control section to
the motion control section. The motion control section performs the
motion/processing, responding to this command.

Synchronization between controllers is operated by the control counter. When the
motion/processing is completed, the count value of the control counter will be
increased one counter value.

During processing, if any error occurs, it stops processing, adds one counter value,
then, returns an error code.

If the return value (error code) of the library shows “ERROR-OK.” It means the
control is normally terminated.

(2)Minimum required programming procedures
If controlling the motion control section using the PA library, the following

descriptions are needed:

(DPA Library Initialization :pa_ini_sys

Declaration to use the PA library.

@0pen Arm (Control Arm Selection) :pa_opn_arm

Plural motion control sections (arm) can be controlled by one operation control
section. The control arm and the number of the arm (ARMO ~ ARM15) have to be
designated by the motion control section.

(Reference)

For the arm number setting, refer to the section 4.3 — the operation & motion
control interface.

@®Control Start (Motion Control Section) : pa_sta_arm or pa_sta_sim

If issuing the “pa_sta_arm” library, the communication with the servo driver will be
started. If issuing the “pa_sim_arm” library, the simulation mode starts. In this
mode, regarding all commands issued from hereafter, the motion and the program
can be confirmed without operating any actual machine.

@Control Stop (Motion Control Section) : pa_ext.arm or pa_ext_sim

If issuing the “pa_ext_arm” library, the communication with the servo driver will be
terminated. If issuing the “pa_ext.arm” library, the simulation mode will be
terminated.

B)Close the arm : pa_cls_arm
Separates the selected arm from the motion control section.

®PA library Exit : pa_ter_sys

6-3

Chapter 6 Programming

Explanation on the programming employing samples.

» Example: for Visual C++ — the one written with the visual C++6.0
programming language is indicated.

* It is the same as other C—programming language (either Windows or not)

» Example: for Visual BASIC — the one written with the visual BASIC
programming language is indicated.

In the sample, making easier to understand the description method, function return

values ARE NOT checked. When you actually make programming, check any error

shown by a return value.

Depending on the error type, the motion control section terminates the control
automatically.

(Reference)

Regarding errors, refer to the error table.

Program Description:

Example: for Visual C++

pa_ini_sys(); ... PA library initialization
pa_opn_arm(ARMO); ... 1% arm open

pa_sta_arm(ARMO); ... Control Start

pa_ext_arm(ARMO); ... Control Stop

pa_cls_arm(ARMO); ... 1t arm close
pa_ter_sys(); ... PA library termination

|

|

|

|

|

’ |
Motion Description Section i
|

|

|

|

|

|

Dim ret As Long

ret = pa_ini_sys() ... PA library initialization

ret = pa_opn_arm(ARMO) ... 1% arm open

ret = pa_sta_arm(ARMO) ... Control Start
Motion Description Section

ret = pa_ext_arm(ARMO) ... Control Exit

ret = pa_cls_arm(ARMO) .. T1%tarm close
ret = pa_ter_sys() ... PA library termination

This is the minimum necessary description library.

6-4

Chapter 6 Programming

(8)Processing during a library performance
Explaining processing methods while a library describing motion is performing.

func = WM_WAIT :Wait until the arm motion is terminated.
= WM_NOWAIT : No wait until the arm motion is terminated.

func = WM_WAIT : Wait until the arm motion is terminated

< Library Processing Contents >
*Issues command to the motion control section.
*Observes the motion termination.
If any error occurs, terminates processing. An error number is shown as a
return value.

if(pa_exe_hom(ARMO, WM_NOWAIT) '= ERR_OK)
Error termination

else
Normal termination

Dim ret As Long

ret = pa_exe_hom(ARMO, WM_NOWAIT)
If ret <> ERR_OK Then

Error termination
Else

|
i
i
i
i
i
i
!
[Normal termination
|

6-5

Chapter 6 Programming

func = WM_NOWAIT : No wait until the arm motion is terminated

< Library Processing Contents >
-Issues commands to the motion control section.
-If any error occurs, terminates processing. An error number is shown as a
return value.
-Confirmation and error observation are not performed at the motion
termination.

Example: for Visual C++

pa_get_cnt(ARMO, &old); ...Control counter setting before the command issue
pa_exe_hom(ARMO, WM_NOWAIT);
while(1){
if((err=pa_get_cnt(ARMO,&new))'=ERR_OK){
An error occurrence processing

lelse if(new != old }{
Motion termination processing
break;

lelse{

|

|

|

|

|

|

|

|

|

!

i break;
|

|

|

|

|

: Processing during performance (Example; axis indication)
|

|

|

Dim new As Long
Dim old As Long
Dim err As Long

|

|

|

|

|

i :

i err = pa_get_cnt(ARMO, old) ...Control counter setting before the command issue
I err = pa_exe_hom(ARMO, WM_NOWAIT)

. Do While 1

i err = pa_get_cnt(ARMO, new)

i If err <> ERR_OK Then

: An error occurrence processing
i Exit Do

i Else

! If new <> old Then

: Motion termination processing

I Exit Do

i Else

: Processing during performance (Example; axis indication)
i End If

i End If

|

Chapter 6 Programming

6. 3 Axis Angle Control

Method to control from the operation control section providing axis target angle.
The motion control section calculates each axis interpolation and controls angle

Current angle of axis
feedback.
=040l 6

Current value

Current angle of axis K
After interpolation e
0=[604--0,,] —| Angle deviation Each angle gain

o +}O AB=[A0s 40w Ksi 0 0 _ |Jdointaxs
Ksz N ™| Velosty commend
0 Kz

The method to provide target values is as follows:

<Method to input angles>
Axis angle control(O, B, = Oy,)

< Axis Angle Control> The method to use a orientation previously registered.
*Basic Orientation Control
*Escape orientation control
»Safety Orientation Control

Axis Angle Interpolation Method

This method to control the selected axis to the target angle, calculating axis
interpolation.

This method interpolates the velocity command to form a letter “S” shape.

The motion velocity is interpolated adjusting to the default velocity.

! Start-up (acceleration) time Shutdown (deceleration) time

i ~—X Uniform Velocity |

Target Angle (command value) |

Axis default velocity

Velocity: v

Acceleration:w

6-7

Chapter 6 Programming

6. 3. 1 Axis Angle Control/
Designates axes to be controlled and provides target angles.
Program Description::

Example: for Visual C++ To control only S1,S2 and E1 at 90 [deg]

ANGLE angle;

angle.s1 = 1.57; (= 90.0 * M_PI / (double)180.0)
angle.s2 = 1.57;

angle.el = 1.57;

pa_exe_axs(ARMO, S1|S2|E1, & angle, WM_NOWAIT);

Dim ret As Long
Dim axs As Long
Dim agl As ANGLE

agls1 =1.57

agl.s2 = 1.57
aglel =157

axs = S1 Or S2 Or E1
ret = pa_exe_axs(ARMO, axs, agl, WM_NOWAIT)

The motion speed is adjusted to the default one and interpolated forming a letter “S”
shape.

6-8

Chapter 6 Programming

6. 3. 2 Axis Orientation Control/
This control method is the same as the axis control.

*Basic Orientation
All Axes :0 [deg]

*Escape Orientation
S2 :30[deg]
E1 :90[deg]
w1 :60[deg]
Others: O[deg]

»safety Orientation

S2 . 45[deg]
E1 : 90[deg]
w1 :—45[deg]

Others : Oldeg]

Alteration methods for each orientation angle are:

*Method to input the angle. (ex) pa_set_hom

*Method to replace with a current angle. (ex) pa_def hom
These values are erased when the power is off. To change the arm parameter
default value, use the parameter setting program.

Program Description:

Example: for Visual C++

~ ANGLE angle; -
pa_exe_esc(ARMO, WM_NOWAIT); to default escape orientation.
angle.s1 = 1.57; [rad](= 90.0[deg]*M_P1/(double)180.0)
angle.s2 = 1.57,;

angle.el = 1.57;

angle.w2 = 1.57;
pa_set_esc(ARMO, & angle); escape orientation alteration
pa_exe_esc(ARMO, WM_NOWAIT); all axes to 90[deg]

angle.s1 = 0.785;
angle.s2 = 0.785;
pa_exe_axs(ARMO, S1|S2, & angle ,WM_NOWAIT); to S1,S2 = 45[deg]

pa_def esc(ARMO); loading as escape orientation

6-9

Chapter 6 Programming

Example: for Visual BASIC

Dim agl As ANGLE
Dim ret As Long
Dim axs As Long

ret = pa_exe_esc(ARMO, WM_NOWAIT) to the default escape orientation.

agls1 =1.57

agl.s2 = 1.57

aglel = 1.57

aglw2 = 1.57

ret = pa_set_esc(ARMO, agl) escape orientation alteration
ret = pa_exe_esc(ARMO, WM_NOWAIT) all axes to 90[deg]
agl.s1 =0.785

agl.s2 =0.785

axs = S1 Or S2

ret = pa_exe_axs(ARMO, axs, agl , WM_NOWAIT)

ret = pa_def esc(ARMO) loading as escape orientation

e e+ e e — d

It would be useful to register angles often used following operation purposes.

(*1) The arm parameter is the file setting data needed for a control, located in the
motion control section.

(Reference)

For further information, refer to “parameter setting” in the section 6.13.

The contents can be seen with the command — pa_get_prm — from the operation
control section. They cannot be directly changed in the program.
But, the operation support program (parameter setting) for alteration is provided.

(Reference)

For the alteration method, refer to the operation support program (parameter
setting) instruction.

Chapter 6 Programming

6. 4 Tip Position/Orientation (RMRC) Control- 6—axis arm

The following explanation about the tip position/orientation control for the 6-axis arm
is the summarized one. For the 7—axis arm, it is explained in the section 6.5.

6. 4. 1 Tip Position/Orientation (RMRC) Control

PA10 tip position/orientation (RMRC) control is the method to control arm
providing its tip position/orientation as the target value from the operation control
section. The motion control section calculates interpolation of each tip
position/orientation and controls the position feedback.

Gurrent position/orientation

At the base coordinate system
T =[noap] Position coordinate < 0
Target position orientation conversion Currnt valie
At the base coordinate Kp
After interpolation Position control e
T =[noap] — | Posttion orenteton osition control gain
iati Kx 0 Joint angl 0 i
4+ deviatio oint angle o Lt as
o »O & Ky — > Coordinate conversion Velocity command
0 \ Kroll ‘“\
6 =J*-v

pw

(Memo)

In PA10, the tip position/orientation control is called RMRC control.

As target value, there are input values below:

*Tip Position Deviation(AX, AY, AZ)
*Tip Orientation Deviation(AYaw, APitch, ARoll)
*Tip Position/Orientation NnX ox ax px

ny oy ay py

nz oz az pz

Tip position/orientation (RMRC) control are as follows:
*Tip position deviation control
*Tip position orientation control
* Absolute position/orientation designation control
= Tip position/orientation/velocity control
* Current point motion control (Tip linear motion)

*Playback control (Except data for PTP axis interpolation)

*RMRC real-time control mode

Chapter 6 Programming

Tip Position/Orientation Interpolation Method

This method calculates the tip position/orientation interpolation and controls the
tip to the input target position/orientation.
This method interpolates the velocity command to form a letter “S” shape.
The motion velocity, adjusting to the position/orientation default velocity, is
interpolated to form a letter “S” shape.

! Start-up (acceleration) time | Shutdown (deceleration) time
i ~—X Uniform Velocity

I /
i Target Position/ Orientation

* Positon/rientzion

- T=[NoAP]

Position/Origntation Default Velocity

Velocity:v

Acceleration: (v

Chapter 6 Programming

(1)Tip Position Deviation Control

Position deviations (AX, AY, AZ) from the current tip position are provided to

each axis in the selected coordinate system.

Base coordinate tip position control: pa_mov_XYZ(ARMO, dX, dY, dZ, WM_WAIT)

Mechanical interface coordinate tip position control: pa_mov_xyz(ARMO, dx, dy, dz,
WM_WAIT)
(Visual BASIC: pa_mov_XYZ0(ARMO,dx,dy, dz, WM_WAIT))
In Visual BASIG, there is no distinction between capital and small letters.

Control Method:

* The target position is defined by adding the current tip position to the input
position deviation.

* The tip position is interpolated linearly.

* The arm parameter default tip linear velocity is interpolated to form the letter
“S” shape

*The tip orientation does not change.

Program Description:

(1D Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of
the ways to enter the RMRC control is to shift to the escape orientation.

@ Chooses the coordinate system and provides deviation. : pa_mov_XYZ

It moves 100 (mm) toward X (axis) in the base coordinate.
A coordinate system selection depends on the intended direction to shift. The
one to be applied should be chosen.

Example: for Visual C++

pa_exe_esc(ARMO, WM_WAIT); ---to RMRC controllable orientation
pa_mov_XYZ(ARMO, 100.0, 0.0, 0.0,WM_WAIT);
: -+ -Proceed X=100.0 in the base coordinate.

Dim ret As Long

ret = pa_exe_esc(ARMO, WM_WAIT)
ret = pa_mov_XYZ(ARMO, 100.0, 0.0, 0.0, WM_WAIT)

Chapter 6 Programming

(2)Tip Orientation Deviation Control

Orientation deviations (A Yaw, A Pitch, ARoll) from the current tip orientation are
provided to each axis in the selected coordinate system.

*Base coordinate tip orientation control:
pa_mov_YPR(ARMO, dYaw,dPitch,dRoll, WM_WAIT)

*Mechanical interface coordinate tip orientation control:
pa_mov_ypr(ARMO,dyaw,dpitch,droll, WM_WAIT)
(In the case of Visual BASIC: pa_mov_YPRO(ARMO,dyaw,dpitch, droll, WM_WAIT))

Control Method:
*The tip position does not change.
*The target orientation is defined by adding the current tip orientation to the input
orientation deviation.
*The rotation angle deviation of the tip orientation is interpolated.
*The arm parameter default tip rotational velocity — the rotational velocity — is
i nterpolated to form the letter “S” shape

Program Description:

(1D Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of
the ways to enter the RMRC control is to shift to the escape orientation.

@ Chooses the coordinate system and provides deviation.: pa_mov_ypr

[t moves around an axis in a mechanical interface coordinate. The tip position

does not change. If tool information/offset values are set, it rotates around the tip.
A coordinate system selection depends on the intended direction to shift. The one
to be applied should be chosen.

Chapter 6 Programming

Example: for Visual C++

pa_exe_esc(ARMO,WM_WAIT);
pa_mov_ypr(ARMO0,0.0,20.0%P1/180.0,0.0 WM_WAIT); --- (a)
: A 20[deg] rotation on Y-axis in the mechanical interface coordinate system

pa_set_tol(ARMO0,0.0,0.0,0.00.0); --- Set tool offset (float type)
pa_mov_ypr(ARMO0,0.0,20.0%P1/180.0,0.0 WM_WAIT); --- (b)
: A 20[deg] rotation on y—axis in the mechanical interface (tool) coordinate
system

(b
(a}

" The arm tip before shifting
0 = Rotation on y—axis (pitch)

y y-axis in the mechanical interface coordinate

RS y y-axis in the mechanical interface (tool) coordinate system

Setting tool information/offset values, the position will be changed even with
the tip orientation conversion function. If to shift the tip to the work face is
to be applied, use “pa_set_tol.”

_Example: for Visual C++
Dim ret As Long

ret = pa_exe_esc(ARMO,WM_WAIT)
ret = pa_mov_YPRO(ARMO0,0.0,20.0%PAI/180.0,0.0, WM_WAIT)

ret = pa_set_tol(ARMO0,0.0,0.0,0.0,0.0)
ret = pa_mov_YPRO(ARMO0,0.0,20.0xPAI/180.0,0.0 WM_WAIT)

... -

Chapter 6 Programming

(3) Designated Absolute Position/Orientation Control

The tip matrix (T-matrix) on the base coordinate system and each axis value for
restriction data are provided.
Nnx oOx ax px
T-matrix || ny oy ay py
nz oz az pz

Target matrixes are as follows:

* Absolute position target matrix: controls only positions and orientation does not
change.

*Absolute orientation target matrix: controls only orientation and positions do not

change.
* Absolute position/orientation matrix: controls positions and orientations.

Control methods:

*The input tip position/orientation becomes the target position/orientation.

*The tip position is interpolated linearly.

*The rotation angle of the tip orientation is interpolated.

*Calculates the motion and the rotational velocity from a default tip motion and
rotational velocity of the arm parameter.

Vxyz : Default tip linear velocity
Vypr : Default tip rotational velocity
Axyz : Tip position motion value
Avypr : Tip orientation rotation angle

Txyz = Axyz./Vxyz : Time taken for tip motion.
Typr = Avypr.”Vypr: Time taken for rotation.

If Txyz = Typr, “Vxyz” becomes the standard.

If Txyz < Typr. “Vypr” becomes the standard.

Chapter 6 Programming

Program Description:

(@ Adjusts the axis value to the RMRC controllable one.: pa_exe_saf

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of
the ways to enter the RMRC control is to shift to the safety orientation.

® The tip position/orientation matrix described in the base coordinate system is
provided. : pa_mov_mat
It moves toward the tip matrix (T-matrix) indicated in the base coordinate.

A coordinate system selection depends on the intended direction to shift. The
one to be applied should be chosen.

MOVEMODE types are:
MM_XYZ . Absolute position target matrix
MM_NOA :Absolute orientation target matrix
MM_XYZNOA :Absolute position/orientation matrix

Example: for Visual C++

MATRIX mat;
ANGLE an;

pa_exe_saf(ARMO, WM _WAIT);

Tip T-matrix :mat set

pa_mov_mat(ARMO,MM_XYZNOA mat,&an,WM_WAIT);

: From the current position, perform the RMRC interpolation and shift to the tip

|
|
|
|
|
|
|
I 13 ” . . .
i Set 0.0 for “an” which is not used for 6—axis arm.
i
|
|
|
|
| position/orientation indicated by “mat.”

|

Dim mat As MATRIX
Dim an As ANGLE
Dim ret As Long

ret = pa_exe_saf(ARMO)

ret = pa_mov_mat(ARMO,MM_XYZNOA mat,an,WM_WAIT)

Chapter 6 Programming

(4)Tip Position/Orientation/velocity Control

Method to control providing linear motion velocity (Vx, Vy, Vz) and rotational
velocity (Vyaw, Vpitch, Vroll) on each coordinate axis in the selected coordinate
system

(Reference)

For further information, refer to “Velocity Control” in the section 6.6

(5) Current Point Motion Control (Tip Linear motion)

Shifts, interpolating the tip position/orientation linearly with the RMRC control to
the current point.

(Reference)

For further information, refer to “shift to the current point” in the section 6.10.3

(6)Playback Control

The playback control is performed using teach data acquired in various control
situations.

(Reference)

For further information, refer to “Playback Control” in the section 6.10 ~ 6.11

(7)RMRGC Real-Time Control Mode

The control method providing target axis angles and T—matrix indicating the target
tip linear motion and rotation in the maximum 1000msec cycle.

(Reference |

For further information, refer to “Real-Time Control” in the section 6.8

Chapter 6 Programming

6. 4. 2 Motion at the singular posture (singularity)
Awareness on RMRC control operation.

In RMRC control, arm is usually actuated by providing commands to the tip position
and orientation of the manipulator, calculating joint angle velocity to actualize.

& CAUT | ON When the tip takes a position/orientation called a singularity,
to maintain a consistent tip trajectory and motion velocity, it is

needed to instantly increase some joint velocity.
THIS OPERATION, IF ACTUALIZED, CAUSES ENORMOUS
DANGER, CREATING UNCONTROLABLE POSITION/ORIENTATION.

Chapter 6 Programming

6. 4. 2. 1 Singularity types
On singularity, there are three inner singularities (wrist, elbow and shoulder
singularity) and the outer singularity located out of the arm movable range.

<Inner Singularity>

Inside the arm movable range, the position/orientation cannot be controlled when a
joint angle is exceeded, or lowers the control accuracy.
Wrist Singularity---Rotational axes of E2 and W2-axis are linear. = W1-axis is 0

(E2 and W2-axis are indeterminate.) X/
@/Wz
/N W1
E2

Shoulder Singularity---the intersecting point of E2,W1 and W2 rotational axis is on the
S1 rotational axis. (the tip cannot be moved to left or right.)

N o

E2 ﬂ
E1 W2 f (the tip cannot be moved to left or right.)
S2

S1

Elbow Singularity---the intersecting point of E2W1 and W2 rotational axis is on the
plane including the S2 and E1 rotational axis.

(When the wrist is at foreground position, the arm
configuration cannot be performed which side it
should be.)

w <

< Outer Singularity>
the target position/orientation are designated outside the movable range. It is
impossible to actuate the arm. It usually stops motion with an error indication or

cuts the target value.

Chapter 6 Programming

6. 4. 2. 2 Singularity Avoidance Motion

Singularity avoidance algorism in PA10 customized on the basis of the SC
(singularity — Consistency) method discoursed by Professor Tsumaki, Tohoku
university. Its outline is explained below.

If needed exceeding velocity to any axis during RMRV control, the SC method —
the algorism — lowers the tip velocity and maintains its position and posture. During
RMRC control, in PA10, the operation is always controlled by the SC method. If any
axis exceeds the rated velocity, the tip velocity is decelerated without any alert. It
is not good for the operations needed to maintain velocity.

Conditions Contents

If the Wil-axis passes through around O degree, the E2 and the

Wrist Singularity W2-axis are laid in a straight line. It creates an enormous reverse
W1 axis angle 0 velocity command.
singularity To previously find this singularity, the Wl1-axis angle is always

observed. If entering into the range designated by the parameter, a
limit velocity defined by the SC method is lowered. The lowering range
is designated in the separated section “Parameter.”

(As the result of lowering a limited velocity, the arm tip motion velocity
is affected. But, the position and the posture are maintained.)

If the W1-axis locates around the S1-axis position, it is needed to

Shoulder Singularity actuate the S1-axis to alter the posture. The low velocity S1-axis
W1 axis position becomes the standard for motion velocity.
singularity To previously find this singularity, W1—axis angle is always observed.

If entering into the range designated by the parameter, a limit velocity
defined by the SC method is lowered. The lowering range is designated
in the separated section “Parameter.”

(As a result of lowering a limit velocity, the arm tip motion velocity is
affected. But, the position and the posture are maintained.)

If the El-axis passes through O degree, it creates an enormous

Elbow Singularity velocity command for the E1-axis.
E1 axis angle 0 By restricting the arm movable range in the RMRC control, this
singularity singularity can be avoided. It stops in error with “exceeded arm length
(*1).”

The singularity avoidance processing acs avoiding an undesirable emergency
such as arm hazardous motion. If arm motion is in teach and playback mode, it
is most important NOT TO TAKE those positions and posture.

6-21

Chapter 6 Programming

Around a singularity it is not always possible to make all avoidance motions. At a
singularity below, arm stops in error.

<Wrist Singularity >
Around the wrist singularity, in unstable areas, the velocity command sends an error
signal to the brake to stop.

< Elbow Singularity> Exceeded arm length:

If E1—axis passes through O[deg] (the length from S2 rotation origin to W1 rotation
origin: 930 [mm],) the RMRC control is not allowed to enter.

For RMRC control, when creating the current value and the target one, it is checked
whether arm length is exceeded or not.

When acquiring teach data other than PTP axis interpolation data, if arm length is
exceeded, data cannot be obtained.

In the error message, LENGTH is indicated as “Arm Length.”

*ERR_.NOT_ENUGH : The arm length target value is exceeded more than 925 [mm].
In this case, in interpolation calculation, the target values are automatically
corrected. The arm does not stop.

ERR_OVER900 : During operation, when the arm length becomes 930 [mm],
the brake stops it.

*ERR_CANT_MOVE: If the arm length current value is exceeded more than 925
[mm], the RMRC control is not allowed to enter.

(Example) at the basic orientation, E1 = 0. The RMRC control is not allowed to
enter.

LENGTH (arm length)

6-22

Chapter 6 Programming

6. 4. 2. 3 Control around Angle Limit
Entry protection to the angle limit:

The SC method is the algorism built—in originally for singularity avoidance. In PA10,
using this algorism, processing to decelerate the whole motion of a manipulator just
before the angle limit.

Conditional analyses are performed to all moving axes. If any of them approaches to
the angle limit, it is forcefully decelerated following SC method.

The deceleration range is from 3 degrees before axis angle limit, where starts
decelerating linearly, to the angle limit where the velocity is reduced up to 10% (the
rated velocity.)

Teach mode motion

In teach mode the velocity limit is lowered by force. As the velocity limit in the SC
method is basically lowered.

6-23

Chapter 6 Programming

6. 5 Tip Position/Orientation (RMRC) Control- 7-axis arm

The tip position/orientation control for the 7-axis arm is as follows:

6. 5. 1 Tip Position/Orientation (RMRC) Control

PA10 tip position/orientation (RMRC) control method to control arm providing its
tip position/orientation as the target value from the operation control section. The
motion control section calculates interpolation of each tip position/orientation and
controls the position feedback.

Current position/orientation

At the base coordinate system
T =[hoap] Position coordinate < (7]
Target position orientation conversion Current value
At the Ibase coordllnate Kp
After interpolation Posit ———
T =[noap] — | Postion orentation osition control gain
iati Kx 0 Joint angl 0
+ deviatio oint angle > Joint axis
O pO ‘ Ky —» Coordinate conversion Velocity command
0 "\ Kea ‘

6 =J#-Vp‘>+(l—d#-d)$(9)-Kp

(_Memo

In PA10, the tip position/orientation control is called RMRC control.

As target value, there are input values below:

*Tip position deviation(AX, AY, AZ)
*Tip orientation deviation(A Yaw, APitch, ARoll)
*Tip position/orientation NX OX ax px

ny oy ay py

nz oz az pz

Axis value for restriction data during a redundant axis control(6 S1, 6S2, --- 8
w2)

In the 7—axis arm, when the RMRC control, chooses a redundant axis control mode,
a redundant axis (elbow) can be controlled.

6-24

Chapter 6 Programming

In 7-axis arm, the tip position/orientation (RMRGC) control can be classified in two on

a large scale.

(D Elbow control changing the tip position/orientation.
*Tip position deviation control
*Tip orientation deviation control
*Designated absolute position/orientation control
*Designated position/orientation/velocity control
* Current point motion control (tip linear motion)
*Playback control (except data for PTP axis interpolation)
*RMRC real—time control mode

@ Elbow control not changing the tip position/orientation.
*Redundant axis velocity control
*Redundant axis restriction parameter control
*Redundant axis motion control

Tip Position/Orientation Interpolation Method:

This method calculates the tip position/orientation interpolation and controls the tip
to the input target position/orientation.

This method interpolates the velocity command to form a letter “S” shape.

The motion velocity, adjusting to the position/orientation default velocity, is
interpolated to form a letter “S” shape.

. N
! Start-up(acceleration) Shutdown (deceleration);

. Uniform Velocity
I < L— > < |

—

Target osition/Orientation I

I :
Linear/rotational N |

Linear/rotationalDefault

Velocity : v

Acceleration: W

6-25

Chapter 6 Programming

6. 5. 2 FElbow Control changing the tip position/posture

(1) Tip Position Deviation Control

Position deviations (AX, AY, AZ) from the current tip position are provided to

each axis in the selected coordinate system.

Base coordinate tip position control: pa_mov_XYZ(ARMO, dX, dY, dZ, WM_WAIT)

Mechanical interface coordinate tip position control:pa_mov_xyz(ARMO, dx, dy, dz,

WM_WAIT)

(Visual BASIC: pa_mov_XYZ0(ARMO,dx,dy, dz, WM_WAIT))
In Visual BASIG, there is no distinction between capital and small letters.

Control Method:

The target position is defined by adding the current tip position to the input
position deviation.

The tip position is interpolated linearly.

The arm parameter default tip linear velocity is interpolated to form the letter “S”
shape

The tip orientation does not change.

Program Description:

(1D Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of
the ways to enter the RMRC control is to shift to the escape orientation.

@ Chooses the coordinate system and provides deviation. : pa_mov_XYZ

It moves 100 (mm) toward X (axis) in the base coordinate.
A coordinate system selection depends on the intended direction to shift. The
one to be applied should be chosen.

Example: for Visual C++

pa_exe_esc(ARMO, WM_WAIT); ---to RMRC controllable orientation
pa_mov_XYZ(ARMO, 100.0, 0.0, 0.0, WM_WAIT);
: -+ -Proceed X=100.0 in the base coordinate.

Dim ret As Long

ret = pa_exe_esc(ARMO, WM_WAIT)
ret = pa_mov_XYZ(ARMO, 100.0, 0.0, 0.0, WM_WAIT)

6-26

Chapter 6 Programming

(2)Tip Orientation Deviation Control

Orientation deviations (A Yaw, A Pitch, A Roll) from the current tip orientation are
provided to each axis in the selected coordinate system.

*Base coordinate tip position control: pa_mov_YPR(ARMO, dYaw,dPitch,dRoll, WM_WAIT)

*Mechanical interface coordinate tip orientation control:
pa_mov_ypr(ARMO,dyaw,dpitch,droll, WM_WAIT)
(In the case of Visual BASIC: pa_mov_YPRO(ARMO,dyaw,dpitch, droll, WM_WAIT))

Control Method:

*The tip position does not change.

*The target orientation is defined by adding the current tip orientation to the input
orientation deviation.

*The rotation angle deviation of the tip orientation is interpolated.

*The arm parameter default tip rotational velocity — the rotation velocity — is
interpolated to form the letter “S” shape

Program Description:

(1D Adjusts the axis value to the RMRC controllable one.: pa_exe_esc

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One of
the ways to enter the RMRC control is to shift to the escape orientation.

® Chooses the coordinate system and provides deviation.: pa_mov_ypr

It moves around an axis in a mechanical interface coordinate. The tip position
does not change. If tool information/offset values are set, it rotates around the
tip.

A coordinate system selection depends on the intended direction to shift. The
one to be applied should be chosen.

6-27

Chapter 6 Programming

Example: for Visual C++

pa_exe_esc(ARMO,WM_WAIT);
pa_mov_ypr(ARMO0,0.0,20.0%P1/180.0,0.0 WM_WAIT); --- (a)
: A 20[deg] rotation on Y—axis in the mechanical interface coordinate system

pa_set_tol(ARMO0,0.0,0.0,0.00.0); --- Set tool offset (float type)
pa_mov_ypr(ARMO,0.0,20.0%P1/180.0,0.0 WM_WAIT); --- (b)

: A 20[deg] rotation on y—axis in the mechanical interface (tool) coordinate system

(b
(a}

Arm tip before shifting
6 = Rotation on y—axis (pitch)

y y—axis in the mechanical interface coordinate system

Yy y-axis in the mechanical interface (tool) coordinate system

Setting tool information/offset values, the position will be changed even with
the tip orientation conversion function. To shift the tip to the work face
intended, use
“pa_set_tol.”

_Example: for Visual C++
Dim ret As Long

ret = pa_exe_esc(ARMO,WM_WAIT)
ret = pa_mov_YPRO(ARMO0,0.0,20.0%PAI/180.0,0.0 WM_WAIT)

ret = pa_set_tol(ARMO0,0.0,0.0,0.0,0.0)
ret = pa_mov_YPRO(ARMO0,0.0,20.0¢PAI/180.0,0.0 WM_WAIT)

6-28

... -

Chapter 6 Programming

(3) Designated Absolute Position/Orientation Control

The tip matrix (T-matrix) on the base coordinate system and axis value for

restriction data is provided for the target tip orientation.

T—-matrix :

axis value for restriction data

NnXx oOx ax px
ny oy ay Py
nz oz az pz
:(6S1, 882, --- OW2)

Target matrixes are as follows:

= Absolute position target matrix: controls only positions.

change.

*Absolute orientation target matrix: controls only orientation.

change.

Orientations do not

Positions do not

* Absolute position/orientation matrix: controls positions and orientations.

Axis value for restriction data
Due to the redundant axis control mode selected before performing the designated

absolute position/orientation control, axis value for restriction data will be effective

as follows:

Redundant axis
control mode

Relation between each mode and axis value for restriction data

(JOUMODE)
No restriction Not depending on provided axis values for restriction data at all
i Vi xis valu icti :
(JM_OFF) pending on p
All tricted
a><(jTVIreosN;|c © All axes are restricted by provided axis values for restriction data

S3-axis restricted
(JM_S30N)

At first, interpolates the S3—axis restriction value, then, the S3-axis is
restricted by the interpolated target S3—axis value as the restriction
axis value.

S3-axis interpolation
(JM_S3DIV)

S3-axis is interpolated to come to the input S3—axis restriction value.

S3-axis fixed
(JM_S3HOLD)

Not depending on provided axis values for restriction data at all.
the S3-axis the
position/orientation control is issued. It is controlled by other

Keep angle when designated absolute

6—axes, only.

(Reference)

For further information, refer to “Redundant axis control.”

6-29

Chapter 6 Programming

Control method:* - -
<NOT S3-axis Interpolation Mode >

*The input tip position/orientation becomes the target position/orientation

*The tip position trajectory is interpolated linearly.

*The tip orientation/rotation angle is interpolated.

*Calculates the shifting and rotation velocity from the arm parameter default tip
linear/ rotational velocity.

Vxyz :Default tip linear velocity
Vypr : Default tip rotational velocity
Axyz :Tip position shifting value
Avypr :Tip orientation/rotation angle

Txyz = Axyz.”Vxyz : Time taken for tip shifting.
Typr = Avypr.”Vypr: Time taken for tip rotation.

If “Txyz 2 Typr”, “Vxyz” becomes the standard.
If “Txyz < Typr”, “Vypr” becomes the standard.

< 83-axis interpolation mode >
Interpolates, taking into account of S3-—axis rotation angle as the interpolation
standard.
*The input tip position/orientation becomes the target position/orientation
*The tip position trajectory is interpolated linearly..
*The tip orientation/rotation angle is interpolated.
*The S3-axis rotation angle is interpolated linearly..
*Calculates the shifting and rotation velocity from the arm parameter default tip
linear/ rotational velocity.
*Calculates S3—axis shifting angle from the default S3—axis angle velocity.

Vxyz :Default tip linear velocity

Vypr : Default tip rotational velocity
VS3 : Default S3—axis angle velocity
Axyz :Tip position shifting value

Avypr :Tip orientation/rotation angle

As3 :S3—axis rotation angle

Txyz = Axyz.”Vxyz : Time taken for tip shifting.

Typr = Avypr.”Vypr : Time taken for tip rotation.

Ts3 = As3 Vs3 : Time taken for S3—axis rotation.

If “Txyz"“ is the maximum, “Vxyz” becomes the standard.
If “Typr” is the maximum, “Vypr” becomes the standard.
If “Ts3is” is the maximum, “Vs3” becomes the standard.

6-30

Chapter 6 Programming

Program Description:

(D Adjusts the axis value to the RMRC controllable one.: pa_exe_saf

The possible start range for RMRC control is limited.

The entry to the RMRC control is not allowed when E1=0[deg].

The entry to the RMRC control from the basic orientation is not allowed. One

of the ways to enter the RMRC control is to shift to the safety orientation.
@ sets the redundant axis control mode: pa_mod_jou

A default is not restricted.
@ The tip position/orientation matrix described in the base coordinate system is
provided. :pa_mov_mat

It moves toward the tip matrix (T—matrix) indicated in the base coordinate.

A coordinate system selection depends on the intended direction to shift.
The one to be applied should be chosen.

MOVEMODE types are:
MM_XYZ . Absolute position target matrix
MM_NOA :Absolute orientation target matrix
MM_XYZNOA :Absolute position/orientation matrix

_Example: for Visual C++

;T T T 1

|
' MATRIX mat; I
: ANGLE an; :
f i
| pa_exe_saf(ARMO); i
| i
i '
| Tip T-matrix : mat set :
i Axis value for restriction data :an set i
L i
i '
| pa_mod_jou(ARMO,JM_ON); :
| = the redundant axis control mode setting (all axes are restricted) |
' pa_mov_mat(ARMO,MM_XYZNOA mat,&an,WM_WAIT); i
' i
I '
i Shifts from the current position to the tip position/orientation indicated in :
| “mat” with RMRC interpolation in the selected redundant axis control |
: mode (all axes are restricted). i
... 1
_Example: for Visual BASIC _ _ _ _ _ _ _ _ _ _ . _.__._. =

Dim mat As MATRIX
Dim an As ANGLE
Dim ret As Long

ret = pa_mod_jou(ARMO,JM_ON)

|

|

|

|

;

: ret = pa_exe_saf(ARMO)
I

|

| ret = pa_mov_mat(ARMO,MM_XYZNOA mat,an, WM_WAIT)
|

Chapter 6 Programming

(4)Tip linear/rotational velocity Control

Method to control linear motion velocity (Vx, Vy and Vz) and rotational velocity
(Vyaw, Vpitch and Vroll.) on each coordinate axis in the selected coordinate system

(Reference)

For further information, refer to “Velocity Control” in the section 6.6

(5) Current Point Motion Control (Tip Linear Motion)

Shifts, interpolating the tip position/orientation linearly with the RMRC control to
the current point.

(Reference)

For further information, refer to “shift to the current point” in the section 6.10.3

(6) Playback Control

The playback control is performed using teach data acquired in various control
situations.

(Reference)

For further information, refer to “Playback Control” in the section 6.10 ~ 6.11

(7)RMRGC Real-Time Control Mode

The control method providing target axis angles and T—matrix indicating the target
tip linear motion and rotation in the maximum 1000msec cycle.

(Reference)

For further information, refer to “Real-Time Control” in the section 6.8

6-32

Chapter 6 Programming

6. 5. 3 FElbow Control NOT changing the tip position/orientation
(1) Redundant Axis Velocity Control

One of the methods to control elbow position without changing the tip position/
orientation. In this PA10 link composition, the S3-axis is the KEY axis for elbow
control. In this control, the rotation shift velocity (V 8 s3) is provided to the S3—axis
to actuate the elbow.

(Reference)

For further information, refer to “Redundant axis Control” in the section 6.6

(2)Redundant Axis Restriction Parameter Control

The control method is as similar as (1).

(Reference)

For further information, refer to “Redundant axis Control” in the section 6.5.5

(3)Redundant Axis Shifting Control

The control method is as similar as (1).

(Reference)

For further information, refer to “Redundant axis Control” in the section 6.5.5

6-33

Chapter 6 Programming

6. 5. 4 Notes on RMRC Control

Precautions on the RMRC control are described below.

Exceeded Arm Length:

Regarding the RMRC control in PA, there are uncontrollable areas. When the
current and target value exist out of the motion area, if the E1—axis passes through
the O[deg] point (the length from S2 rotation origin to W1 rotation origin: 930 [mm]),
called a singularity, the RMRC control is not allowed to enter.

In the case of RMRC control, when creating the current value and the target one, the
RMRC checks whether arm length is exceeded or not.

When acquiring teach data other than PTP axis interpolation data, if arm length
exceeds, data cannot be obtained.

In the error message, LENGTH is indicated as “Arm Length.”

ERR_.NOT_ENUGH: The arm length target value exceeds more than 925 [mm]. In
this case, in interpolation calculation, the target values are automatically corrected.
The arm does not stop.

*ERR_OVER900: During operation, when the arm length becomes 930 [mm], the brake
stops.

ERR_CANT_MOVE :If the arm length current value exceeds more than 925 [mm],
the RMRC control is not allowed to enter.

(Example) at the basic orientation, E1 = 0. The RMRC control is not allowed to

enter.
©
© <D

6-34

Chapter 6 Programming

6. 5. 5 Redundant Axis Control

The redundant axis control is the restriction mode to control each 7—axis value to a
certain direction in the RMRC and playback control.
There are two meanings in these redundant controls below.

® Redundant axis ——1———— No restriction (Tip position/orientation restricting control)
control mode
All axes restricted (All axes control)

S3-axis restricted (S3-axis restricting control)

S3-axis interpolation (S3-axis interpolation control)

S3-axis fixed (S3-axis fixing control)

The mode to choose how much restriction should be made or not make it at all for
a redundant axis (elbow) while in operation.

@ Redundant axis ——— Redundant axis velocity control
operation control (The redundant axis control mode changes into

S3-axis interpolation.)

Redundant axis parameter alteration
(The redundant axis control mode changes into

S3-axis restriction.)

Redundant axis parameter reset
(The redundant axis control mode is changed

without restriction.)

S3-axis angle control
(The redundant axis control mode changes into

S3-axis interpolation.)

Control to actuate the redundant axis (elbow) without changing the tip position and
posture.

6-35

Chapter 6 Programming

6. 5. 5. 1 redundant Axis Control Mode
The redundant axis control mode is available for the controls below:
*When in the RMRC position/orientation control

*When in the designated absolute position/orientation control
*when in the playback control (except data for PTP axis interpolation)

Redundant axis control mode restriction is as follows:

Restriction None |Low < » High | Fixation
Redundant axis No All axes S3-axis S3-axis | S3—axis
control mode |restriction Restriction Restriction Interpolation | Fixed

The following are advantages and disadvantages of each mode.
(a) Redundant Axis Control — No Restriction
This control creates the most stable angles for all 7 axes (reliable orientation for

the arm)

Advantages: On account of no axis restriction, it has a more tip
position/orientation motion ability than other redundant axis control mode.
Disadvantages: If this mode is chosen even though the target axis angle or axis

value for restriction data is input, the target axis angle and axis value for

restriction data are ignored.

(b) Redundant Axis Control — All Axes Restriction Mode
This controls for all 7 axes to approach the target axis angle as much as

possible.

Advantages: Restriction is not strict. It has a tip position/orientation motion
ability.

Disadvantages: As this control restricts the 7 axes, all axes usually do not move
to the target axis angle. (especially when the target orientation shows arm

malfunction.)

(c¢) Redundant Axis Control — S3—axis Restriction Mode
This control has some strong restrictions for the S3—axis to move to the target

angle.

Advantages: As this control has some strong restrictions, the axis has much
possibility to approach the target orientation. This is most balanced control
method among these five modes.

Disadvantages: The arm might be shifted faster toward the target angle. If the
S3-axis angle deviation is large, the tip position/orientation and the S3-axis
are interpolated with the interpolation value calculated by “S3-axis deviation
divided by S3-axis default velocity.” The tip position/orientation/velocity
becomes invalid.

6-36

Chapter 6 Programming

(d) Redundant Axis Control — S3—axis Interpolation Mode
Interpolating the S3-axis deviation (difference between the current and the

target angle), when the tip position/orientation is reached the target value, the
S3-axis is controlled to reach the target angle at the same time. This
restriction is stricter than (¢).

Advantages: The S3—axis surely arrives to the target angle. This gives much
possibility for all seven axes to get to the target angle. To
summarize, arm can obtain the target posture and can be controlled
holding its posture following exactly the teach data.

Disadvantages: As this mode has rather strict restriction, the tip
position/orientation motion capability is low. If the S3-axis angle
deviation is significant, the tip position/orientation and the S3-axis
are interpolated with the interpolation quantity calculated by
“S3-axis deviation divided by S3-axis default velocity.” The tip
position/orientation/velocity becomes invalid.

(e) Redundant Axis Control — fixed S3—axis Restriction Mode
Fixing the S3—axis angle is controlled by the axes, except the S3-axis, as a 6

axes manipulator. Choosing the fixed mode, keeps the S3—axis at the angle of
the RMRC control starting.

Advantages: It is available when chosen to control the elbow without changing
its position

Disadvantages: One (S3-axis) of the 7 axes is fixed to use as the 6 axes
manipulator. It loses the advantages of the 7 axes manipulator.

6-37

Chapter 6 Programming

(1) Redundant axis control mode as of RMRC position/orientation/deviation control

Selects to restrict the input axis value for restriction data or not when in the
RMRC position control. In the S3—axis fixed mode, regardless of input axis value for
restriction data, fix the S3-axis at the angle of the RMRC position/orientation
deviation control start. The arm is controlled as the 6 axes manipulator.

In other redundant axis control mode, axis value at the RMRC position/orientation
deviation control starting is defined as a value for restriction data. Therefore, the
S3-axis interpolation mode used only the restricted S3—axis value and the S3-axis
fixed mode make the same motion.

(2)Redundant axis control mode as of designated absolute position/orientation/ deviation
control

Selects to restrict the input axis value for restriction data or not, when in the
designated absolute position/orientation control. In the S3-axis fixing mode,
however, regardless of input axis value for restriction data, fixes the S3—axis at the
angle of the designated absolute position/orientation control starting, the arm is
controlled as the 6 axes manipulator.

The S3-axis restriction mode and the S3-axis interpolation mode are controlled
using only axis value for restriction data. Other axis value for restriction data
becomes invalid.

6-38

Chapter 6 Programming

(3) Redundant axis control mode as of playback control

Selects whether or not to restrict teach data axis value when in playback control.
In S3-axis fixing mode, however, regardless of input axis value for teach data, fix the
S3-axis at the angle of the playback control start or when axis angle control changed
to the RMRC control during playback. The arm is controlled as the 6 axes manipulator,
not using the S3—axis.

The S3-axis interpolation mode controls, using only each S3-axis value for
restriction data. Other axis values for restriction data become invalid.

Program Description:

(@ Choose the redundant axis control mode : pa_mod jou

JOUMODE of pa_mod_jou uses the macro—definitions below:

JM_OFF No restriction
JM_ON All axes restriction
JM_S30N S3-axis restriction
JM_S3DIV S3-axis interpolation
JM_S3HOLD S3-axis fixation

The default is JM_OFF (no restriction)
In any mode, each tip trajectory is the same. However, each elbow makes a
different motion.

@ Shifts to the current point with axis angle control.: pa_axs_pnt

@ Performs the playback control.: pa_ply pnt

_ Example: for Visual C++

pa_mod_jou(ARMO, JM_S30ON); redundant axis control mode setting (S3-axis restriction

pa_ply_pnt(ARMO, PB_FORE, WM_WAIT); Starting forward playback

|
|
|
i pa_axs_pnt(ARMO, WM_WAIT); Shifts to the current point with axis angle control.
i
|
|

Dim ret As Long
ret = pa_mod_jou(ARMO, JM_S30ON)
ret = pa_axs_pnt(ARMO, WM_WAIT)

ret = pa_ply_pnt(ARMO, PB_FORE, WM_WAIT)

6-39

Chapter 6 Programming

When to alter the redundant axis control mode during the playback control:

During the playback control, makes the temporary stop (pa_sus_arm), then, sets the
redundant axis control mode with pa_mod_jou. It can be altered.

Except the case explained below, after mode alteration, if a temporary stop is put
in motion (pa_rsm_arm), the control is restarted.

The reason why a temporary—stop—release does not work after a mode alteration is
on account of altering the redundant axis control mode to the “S3-axis restriction
mode” or the “S3-axis interpolation mode” during performing playback in RMRC
feedback control, After the mode alternation, the playback control is terminated.

Why the playback control stops when changes to “S3-axis restriction/interpolation
mode” during playback performance in RMRC feedback control? There are two:

First of all, the redundant axis control mode can be employed for RMRV feedback
control. During a playback performance of axis feedback control, any redundant axis
control mode is invalid. Next, for example, as explained in the section 6.5.5, if the
“S3-axis interpolation mode” is chosen, not only the tip position/orientation target
value, but also the S3—axis target value at every controlling cycle are provided. So
that this mode is more strict than others. If changes suddenly to the “S3-axis
interpolation mode,” the playback cannot be performed as the current and target
S3-axis value are not equivalent.

To perform the playback control again, alter the current point (if needed), shift
(pa_mov_pnt) to the current point, then, start (pa_ply_pnt) the playback.

6-40

Chapter 6 Programming

6. 5. 5. 2 Redundant Axis Operation Control

The redundant axis control has the advantage of a 7—axis manipulator. It controls
elbow position, only, without changing the tip position/orientation.

To shift the redundant axis control, choose JMMODE in “pa_mod_jouin,” use the
macro—definition as follows:

JM_VSET Redundant axis velocity control
JM SET Redundant axis parameter alteration
JM_RESET Redundant axis parameter resetting

(1)Redundant axis velocity control

The parameter of the redundant axis control is operated at a constant velocity
The parameter operation method uses “pa_odr vel.”

(Reference)

For further information, refer to “velocity Control” in the section 6.6

In this control, redundant axis control mode is automatically shifted to the S3—axis
interpolation mode.

float spd[7];

pa_mod_jou(ARMO, JM_VSET); Shifts to the redundant axis velocity control

In the case of the redundant axis velocity control, “spd[0]” can be
used. Control the redundant axis at 20 [deg/sec] velocity.

i |
i |
i |
i |
' !
| spd[0] = 20.0 * M_PI / (double)180.0; ---Unit [rad/sec] :
: i
i |
I pa_odr_vel(ARMO, spd); Velocity alteration :
|

" Dim spd(6) As Singe !
' Dim ret As Long

spd(0) = 20.0 * PAI / 180.0

|

l

| ret = pa.mod_jou(ARMO, JM_VSET)
|

|

: ret = pa_odr_vel(ARMO, spd(0))

In this control, after “pa_mod_jou” is issued, “pa_odr vel” has to be issued every
1000msec. at maximum.

(Reference)

For further information, refer to “velocity control” in the section 6.6 and “(4)

Redundant axis velocity control.)

6-41

Chapter 6 Programming

(2)redundant axis parameter alteration
Here, operates the redundant axis control parameter.
(Axis value needed to be restricted is operated. In the case here, the S3—axis value
for restriction data is operated.)
In this control, redundant axis control mode is automatically shifted to the S3—axis
interpolation mode.

pa_mod_ou(ARMO, JM_SET); Shifts to the redundant axis parameter alteration

pa_odr_jou(ARMO, JM_RIGHT); Swings the redundant axis to the right

pa_odr_jou(ARMO, JM_HOLD); maintains the redundant axis position

Dim ret As Long
ret = pa_mod_jou(ARMO, JM_SET)

ret = pa_odr_jou(ARMO, JM_RIGHT)

ret = pa_odr_jou(ARMO, JM_HOLD)

(8) Redundant axis parameter reset
If resets, parameter value in the redundant axis control returns to the default value.
When the elbow position is strongly restricted, if resets, the elbow position get

stable and might happen to slowly approach the arm moving range center.

If issues parameter reset, the redundant axis control mode is automatically shifted
to the non restriction mode.

6-42

Chapter 6 Programming

(4)S3-axis angle control

Method to shift the elbow without changing the tip position/orientation commanding
S3-axis absolute angle [rad] — the “KEY” of the redundant axis (elbow) control.) It
is interpolated with the provided angle command and S3-axis angle deviation using
the S3—axis default velocity, and controlled.

In this S3-axis angle control, the redundant axis control mode is automatically
shifted to the S3—axis interpolation mode.

Example: for Visual C++

" floatss i
i i
: S3 =80.0 * M_PI / (double)180.0; :
i i
i pa_mov_jou(ARMO, S3, WM_WAIT); Move the elbow until 80[deg] |
i : !
i . !
| ’ I
i pa_mov_xyz(ARMO, 0.0, 100.0, 0.0 WM_WAIT); i
i S3-axis moves maintaining 80 [deg] angles in the S3—axis interpolation mode without I
: changing modes. :
i i

Example: for Visual BASIC

T T T T T T T T s — e — -

Dim axsS3 As Single
Dim ret As Long

axsS3 = 80.0 x PAI / 180.0

ret = pa_mov_jou(ARMO, axsS3, WM_WAIT)

ret = pa_mov_XYZ0(ARMO, 0.0, 100.0, 0.0 WM_WAIT)

6-43

Chapter 6 Programming

6. 6 Velocity Control
Velocity controls are as follows:
= Axis velocity control(VS1, VS2, -+ VW2)
*Tip linear velocity (Vx, Vy, Vz)
*Tip rotational velocity(Vyaw, Vpitch, Vroll)

*Tip position/orientation velocity(Vx, Vy, Vz).(Vyaw, Vpitch, Vroll)

*Redundant axis velocity control(VS3)

& CAUT | ON Pay attention to initialize the velocity command value before

entering the velocity control mode.

During the velocity control, from the entry to the end of the mode, the velocity
command library (pa_odr vel) has to be issued every time—out (set with “pa_set tim”.)
The default value of the time—out is 1000 msec.

6-44

Chapter 6

Programming

6. 6. 1 Axis Velocity Control

Choosing the control axis from S1 to W2, the velocity command (v) is provided.

Program Description:

(@ Sets time—out :pa_set tim

The default time—out is 1000 msec. This time can be issued only when it needs

to be altered.

@ Initializes velocity command: pa_odr_vel

All has to be set “ 0 ” using “spd[0]~spd[6]” located in “float spd[7]” inside

“pa_odr_vel.”

@ Chooses “motion axis = S1, W2” in the axis velocity control mode. :pa_mod_vel

“VELMODE” in “pa_mod_vel” has to be set in “VM_ONE” (the axis velocity

control mode).

Plural axes can be controlled simultaneously.

If this PA library is issued, only the control mode is changed. The arm does not
move. ATTENTION! Within a set time—out, if the velocity command (“pa_odr_vel”
and “pa_chk_cnt” can be used) is not issued until the velocity control termination,

after issuing Pa library.
occurred during control.

It causes a brake—stop, responding as if an accident

@ Input velocity command: pa_odr_vel

“spd[0]~spd[6]” located in “float spd[7]” inside “pa_odr_vel” is used.

S1 axis — rotates at 5[deg/sec]velocity.
W2 axis —rotates at 10[deg/sec]velocity.

The velocity command value has to be designated with[rad/sec].

COVERST1
COVERS2
COVERET1
COVERE2
COVERW1
COVERW2

@ Input velocity command:

-1070
-1071
-1073
-1074
-1075
-1076

Slaxis Velocity Control Angle exceeded
S2 axis Velocity Control Angle exceeded
E1 axis Velocity Control Angle exceeded
E2 axis Velocity Control Angle exceeded
W1 axis Velocity Control Angle exceeded
W2 axis Velocity Control Angle exceeded

pa_odr_vel

S1 axis — rotates at 10[deg/sec]velocity.
W2 axis —rotates at 5[deg/sec]velocity.

® Terminates velocity control: pa_sus_arm

This command terminates velocity control with a brake—stop (pa_stp_arm) or
temporary—stop (pa_sus_arm).

6-45

Chapter 6 Programming

E

xample: for Visual C++
... -

float spd[7];
pa_set_tim(ARMO, 20); Time—out setting(200msec)

for(i=0;i<7;i++) spd[i] = 0.0;
pa_odr_vel(ARMO, spd); Velocity command initialization

pa_mod_vel(ARMO, VM_ONE, S1 | W2): M motion axis selection (S1 & W2-axis)

From here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200

msec cycle.

spd[0] = -5.0 * M_PI / (double)180.0;
spd[6] =—10.0 * M_PI / (double)180.0;
pa_odr_vel(ARMO, spd); Velocity command input

spd[0] = 10 * M_PI / (double)180.0;
spd[6] = 5 % M_PI / (double)180.0;

pa_odr vel(ARMO, spd (0)); Velocity command input

pa_sus_arm(ARMO, WM_WAIT); Velocity control termination

Dim spd(6) As Single
Dim ret As Long

ret = pa_set tim(ARMO, 20)

For i=0 To 6 Step 1
spd(i) = 0.0
Next i
ret = pa_odr_vel(ARMO, spd (0)) Velocity command initialization

ret = pa_mod_vel(ARMO, VM_ONE, S1+W2)

spd(0) = -5 * PAI / 180.0
spd(6) = -10 * PAI / 180.0
ret = pa_odr_vel(ARMO, spd (0))

spd(0) = 10 * PAI / 180.0

spd(6) = 5 * PAI / 180.0

ret = pa_odr_vel(ARMO, spd(0))

ret = pa_sus_arm(ARMO, WM_WAIT)

6-46

Chapter 6 Programming

6. 6. 2 Tip linear velocity Control-

In this control, tip linear motion velocity (Vx, Vy, Vz) on each coordinate axis, in
the selected coordinates, is provided. The tip posture does not change.

For Visual C++
*Base coordinates tip linear velocity control: pa_mod_vel(ARMO, VM _XYZ, 0)
*Mechanical Interface coordinate tip linear velocity control
:pa_mod_vel(ARMO, VM _xyz, 0)
For Visual BASIC
*Base coordinates tip linear velocity control: pa_mod_vel(ARMO, VM_XYZ1, 0)
*Mechanical Interface coordinate tip linear velocity control
:pa_mod_vel(ARMO, VM _XYZ2, 0)
Program description:
(@ Sets time—out :pa_set_tim
The default time—out is 1000 msec. This time can be issued only when it needs
to be altered.

@ Initializes velocity command: pa_odr._vel
All has to be set “ 0 ” using “spd[0]~spd[3]” located in “float spd[7]” inside
“pa_odr_vel.”

®) Chooses the base coordinate linear velocity control mode.: pa_mod_vel
“VELMODE” in “pa_mod._vel” has to be set in “VM.XYZ*” (the base

coordinate linear velocity).

If this PA library is issued, only the control mode is changed. The arm does
not move. ATTENTION! Within a set time—out, if the velocity command
(“pa_odr_vel” and “pa_chk cnt” can be used) is not issued until the velocity
control termination, after issuing Pa library. It causes a brake—stop, responding
as if an accident occurred during control.

3¢ For Visual Basic, “VM_XYZ1” it has to be set.

@ Input command orders: pa_odr_vel
“spd[0]~spd[2]” located in “float spd[7]” inside “pa_odr_vel” Is used.
This order controls the tip position moving linearly at the velocity of
X=10.0[mm/s], Y=—20.0[mm/s], Z=30.0[mm/s].
Velocity command values have to be set with [mm/sec].

®nput velocity command orders.: pa_odr_vel

This order controls the tip position moving linearly at the velocity of
Y=-20.0[lmm/s]. Velocity command values have to be set with [mm/sec].

® Terminates a velocity control.: pa_sys_arm

This command terminates the velocity control with a brake—stop (pa_stp_arm)
or temporary—stop (pa_sus_arm).

(Reference)

As this method is the RMRC control, regarding errors, refer to “RMRC control
(6—axis arm)” in the section 6.4 and “RMRC control (7—axis arm)” in the section 6.5.

6-47

Chapter 6

Programming

Example: for Visual C++

From here to “pa_sus_arm,” “pa_odr_vel”

float spd[7];
pa_set_tim(ARMO, 20);

for(i=0;i<7;i++) spd[i] = 0.0;
pa_odr_vel(ARMO, spd);

pa_mod_vel(ARMO,VM_XYZ,0);

spd[0] = 10.0;

spd[1] = -20.0;
spd[2] = 30.0;

pa_odr_vel(ARMO, spd);

spd[0] = 0.0

spd[1] = 20.0;
spd(2] = 0.0

pa_odr_vel(ARMO, spd);

pa_sus_arm(ARMO, WM_WAIT);

_ Example: for Visual BASIC

Dim spd(6) As Single
Dim ret As Long

ret = pa_set_tim(ARMO, 20)
For i=0 To 6 Step 1

spd(i) = 0.0
Next i

ret = pa_odr_vel(ARMO, spd (0))
ret = pa_mod_vel(ARMO,VM_XYZ1,0)

spd(0) = 10.0
spd(1) =-20.0
spd(2) = 30.0

ret = pa_odr_vel(ARMO, spd(0))

spd(0)= 0.0
spd(1) = 20.0
spd(2)= 0.0

ret = pa_odr_vel(ARMO, spd (0))

ret = pa_sus_arm(ARMO, WM_WAIT)

6-48

Time—out setting (200msec)

Velocity command initialization

Velocity mode Base position selection

or “pa_chk_cnt” has to be issued within 200 msec. cycle.

Velocity command input

Velocity command input

Velocity control termination

Velocity command initialization

... —_

Chapter 6 Programming

6. 6. 3 Tip rotational velocity control-

In this control, the tip linear motion velocity (Vyaw, Vpitch, Vroll) on each
coordinate axis in the selected coordinates, is provided. The tip position does not
change.

For Visual C++
*Base coordinates tip rotational velocity control:pa_mod_vel(ARMO, VM_YPR, 0)
*Mechanical Interface coordinate tip rotational velocity control
:pa_mod_vel(ARMO, VM ypr, 0)

For Visual BASIC
*Base coordinates tip rotational velocity control: pa_mod vel(ARMO, VM_YPR1, 0)

*Mechanical Interface coordinate tip rotational velocity control
:pa_mod_vel(ARMO, VM_YPR2, 0)

Program description:

(D Sets time—out :pa_set tim
The default time—out is 1000 msec. This time can be issued only when it needs

to be altered.

@ Initializes velocity command: pa_odr_vel
All has to be set “ 0 ” using “spd[0]~spd[3]” located in “float spd[7]” inside
“pa_odr_vel.”

@ Chooses the base coordinate rotational velocity control mode.: pa_mod_vel
“VELMODE” in “pa_mod_vel” has to be set in “VM_XPR*” (the base coordinate

rotational velocity control mode).

If this PA library is issued, only the control mode is changed. The arm does not
move. ATTENTION! Within a set time—out, if the velocity command (“pa_odr vel”
and “pa_chk_cnt” can be used) is not issued until the velocity control, termination,
after issuing Pa library. It causes a brake—stop, responding as if an accident
occurred during control.

3¢ For Visual Basic, “VM_YPR1” it has to be set.

@ Input command orders: pa_odr vel

“spd[0]~spd[2]” located in “float spd[7]” inside “pa_odr vel” is used.
The tip position is, for instance, controlled to rotate on the Y—axis at the velocity
of pitch=0.5[rad/s]. Velocity command values have to be set with [rad/sec].
®) Input velocity command orders.: pa_odr_vel
The tip position is, for instance, controlled to rotate on the Y-axis at the velocity

of pitch=1.0 [rad/s]. Velocity command values have to be set with [rad/sec].
® Terminates a velocity control.: pa_sus_arm

This command terminates the velocity control with a brake—stop (pa_stp_arm) or
temporary-stop (pa_sus_arm).

(Reference)

As this method is the RMRC control, regarding errors, refer to “RMRC control
(6—axis arm)” in the section 6.4 and “RMRC control (7—axis arm)” in the section 6.5.

6-49

Chapter 6 Programming

Example: for Visual C++

T T T T T T T T s — e — |

float spd[7];
pa_set_tim(ARMO, 20); Time—out setting(200msec)

I
i
i
I
i for(i=0:;i<7;i++) spd[i] = 0.0;

! pa_odr_vel(ARMO, spd); Velocity command initialization
I

i

i

i

i

pa_mod_vel(ARMO,VM_YPR,0); Velocity mode Base position/orientation selection

:From here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200 msec. cycle.

|

|

i spd[0] = 0.0;

i spd[1]= 0.5;

: spd(2] = 0.0;

I pa_odr_vel(ARMO, spd); Velocity command input
i spd[0] = 0.0;

: spd(1]1= 1.0;

i spd[2] = 0.0;

i pa_odr_vel(ARMO, spd); Velocity command input
| .

: pa_sus_arm(ARMO, WM_WAIT); Velocity control termination
|

|

Example: for Visual BASIC

Dim spd(6) As Single
Dim ret As Long

ret = pa_set_tim(ARMO, 20)
For i=0 To 6 Step 1

spd(i) = 0.0
Next i

ret = pa_mod_vel(ARMO,VM_YPR1,0)

spd(0) = 0.0
spd(1) = 0.5
spd(2) = 0.0
ret = pa_odr vel(ARMO, spd(0))
spd(0) = 0.0
spd(1) =10
spd(2) = 0.0

ret = pa_odr_vel(ARMO, spd(0))

ret = pa_sus_arm(ARMO, WM_WAIT)

6-50

ret = pa_odr_vel(ARMO, spd (0)) Velocity command initialization

Chapter 6 Programming

6. 6. 4 Tip linear/rotational velocity control

In this control, tip linear motion velocity (Vx, Vy and Vz) and rotational velocity
(Vyaw, Vpitch and Vroll) on each coordinate axis in the selected coordinates system
are simultaneously provided.

for Visual C++
*Base coordinate system tip linear velocity control:
pa_mod_vel(ARMO, VM_XYZYPR, 0)
*Mechanical Interface coordinate tip linear/rotational velocity control:
pa_mod_vel(ARMO, VM_xyzypr, 0)
for Visual BASIC
*Base coordinate system tip linear velocity control:
pa_mod_vel(ARMO, VM_XYZYPR1, 0)
*Mechanical Interface coordinate tip linear/rotational velocity control:
pa_mod_vel(ARMO, VM_XYZYPR2, 0)
Program description:

(D Sets time—out :pa_set tim
The default time—out is 1000 msec. This time can be issued only when it needs
to be altered.

@ Initializes velocity command: pa_odr_vel
All has to be set “ 0 ” using “spd[0]~spd[5]” located in “float spd[7]” inside
“pa_odr_vel.”
@ Chooses the base coordinate linear motion/rotational velocity control mode.:
pa_mod_vel
“VELMODE” in “pa_mod.vel” has to be set in “VM_XYZYPRI*” (the base
coordinate linear motion/rotational velocity control mode).

If this PA library is issued, only the control mode is changed. The arm does
not move. ATTENTION! Within a set time—out, if the velocity command
(“pa_odr_vel” and “pa_chk_cnt” can be used) is not issued until the velocity
control termination, after issuing Pa library. It causes a brake—stop,
responding as if an accident occurred during control.

For Visual Basic, “VM_XYZYPRI” it has to be set.

@ Input a velocity command orders.: pa_odr vel
“spd[0]~spd[5]” located in “float spd[7]” inside “pa_odr_vel” Is used.
The tip is controlled at the linear motion velocity: X=100.0[mm/s],
Z=50.0[lmm/s] and the rotation velocity: pitch=0.5[rad/s]. Velocity command
values have to be set with [rad/sec].

@ Terminates a velocity control.: pa_sus_arm

This command terminates the velocity control with a brake—stop (pa_stp_arm)
or temporary—stop (pa_sus_arm).

(Reference)

As this method is the RMRC control, regarding errors, refer to “RMRC control
(6—axis arm)” in the section 6.4 and “RMRC control (7-axis arm)” in the section 6.5.

6-51

Chapter 6 Programming

Example: for Visual C++

T =

float spd[7];
pa_set_tim(ARMO, 20); Time-out setting (200msec)

for(i=0;i<7;i++) spd[i] = 0.0;
pa_odr_vel(ARMO, spd); Velocity command initialization

pa_mod_vel(ARMO,VM_XYZYPR,0);Velocity mode Base position/orientation selection

fFrom here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200 msec. cycle.

spd[0] = 100.0; Base coordinate system toward X [mm/s]

spd[2] = 50.0:; " toward Z [mm/s]
spdl4]= 0.5; " toward Pitch [rad/s]
pa_odr_vel(ARMO, spd); Velocity command input
pa_sus_arm(ARMO, WM_WAIT); Velocity control termination

Dim spd(6) As Single

ret = pa_set_tim(ARMO, 20)
For i=0 To 6 Step 1
spd(i) = 0.0
Next i
ret = pa_odr vel(ARMO, spd (0)) Velocity command initialization
ret = pa_mod_vel(ARMO,VM_XYZYPR1,0)

spd(0) = 100.0

spd(2) = 50.0

spd(4)= 05

ret = pa_odr_vel(ARMO, spd(0))

ret = pa_sus_arm(ARMO, WM_WAIT)

o e e e e e e e 4

6-52

Chapter 6 Programming

6. 6. 5 Redundant axis velocity control / 7-axis arm function /

The S3-axis rotation velocity (Vs3) is provided for the S3-axis. At this moment,
the tip position/orientation does not change.

Program description:

(D Sets time—out :pa_set tim
The default time—out is 1000msec. This time can be issued only when it needs to

be altered.

@ Initializes velocity command: pa_odr vel

In the case of the redundant axis velocity control, only “spd[0]” in “float spd[7]”
can be used and has to be set “ 0. ¢

®) Chooses the control axis in the redundant axis velocity control mode.:

pa_mod_jou
“VELMODE” in “pa_mod_vel” has to be set in “VM_XPRx*”

If this PA library is issued, only the control mode is changed. The arm does not
move. ATTENTION! Within a set time—out, if the velocity command
(“pa_odr_vel” and “pa_chk_cnt” can be used) is not issued until the velocity

control termination, after issuing Pa library. It causes a brake—stop, responding
as if an accident occurred during control.

@ Input command orders : pa_odr vel

For the redundant axis velocity control, only “spd[0]” in “float spd[7]” can be
used. Without changing the tip position/orientation, the redundant axis is
controlled at =5 [deg/sec] (S3-axis motion velocity).

Velocity command values have to be set with [rad/sec].

®) Input velocity command orders. : pa_odr_vel
Without changing the tip position/orientation, the redundant axis is controlled at

30 [deg/sec] (S3—axis motion velocity).

® Terminates a velocity control. : pa_sus_arm
This command terminates the velocity control with a brake—stop (pa_stp_arm) or

temporary—stop (pa_sus_arm).

6-53

Chapter 6 Programming

Example: for Visual C++
float spd[7];

pa_set_tim(ARMO, 20); Time—out setting(200msec)

for(i=0;i<7;i++) spd[i] = 0.0;
pa_odr_vel(ARMO, spd); Velocity command initialization

pa_mod_jou(ARMO, JM_VSET); Redundant axis velocity control mode selection

From here to “pa_sus_arm,” “pa_odr_vel” or “pa_chk_cnt” has to be issued within 200

spd[0] = 5.0 * M_PI / (double)180.0;
pa_odr_vel(ARMO, spd); Velocity command input

spd[0] = 30.0 * M_PI / (double)180.0;

|

|

|

|

|

|

|

|

|

|

|

|

|

! msec. cycle.
I .
|

|

|

|

|

|

|

I pa_odr_vel(ARMO, spd); Velocity command input

I .

i :

I pa_sus_arm(ARMO, WM_WAIT); Velocity command termination
|

Dim ret As Long
Dim spd(6) As Single

ret = pa_set_tim(ARMO, 20)
For i=0 To 6 Step 1
spd(i) = 0.0
Next i
ret = pa_odr vel(ARMO, spd (0)) Velocity command initialization

ret = pa_mod_ou(ARMO, JM_VSET)

spd(0) = -5.0 * PAI / 180.0
ret = pa_odr_vel(ARMO, spd(0))

spd(0) = 30.0 * PAI / 180.0
ret = pa_odr_vel(ARMO, spd(0))

ret = pa_sus_arm(ARMO, WM_WAIT)

6-54

Chapter 6

Programming

6. 7 Direct Control

== Optional function

This mode is to control playback performance reviving memorized each axis data, as

teach data, when in a manual operation.

If “pa_chk_cnt” is not issued every 1000

msec. (time—out) during direct control, it is recognized as malfunction. The brake

stops the operation.

Program Description:

(@ Sets time—out. : pa_set tim

The default time—out is 1000 msec. This time can be issued only when itneeds

to be altered.

® Switchs to the direct control. : pa_mod dir

DM_START : It becomes

at servo—stop status

®) Chooses the axis to be controlled, starts the self weight compensated control

pa_wet_ded

For the control axis selection, choose the axis of pa_wet ded, then, use

macro—definitions below:

For the 6-axis, it is: “LOCKAXIS_S3

In the case of Visual BASIC:
LOCKAXIS S3 : S1+S24+E1+E24+W1+W2

The default is: LOCKAXIS_S3.

: S1|S2|E1]|E2|W1]|w2”

After issuing this library, if “pa_chk cnt” is not issued every 1000 msec.

(time—out), it is recognized as malfunction. The brake stops the operation.

If axis angle limit is exceeded during direct control, the following errors occur

and the brake stops the

terminated.
DOVERST -2
DOVERS2 -2
DOVERS3 -2
DOVERET1 -2
DOVERE2 -2
DOVERW1 -2
DOVERW2 -2

@ Terminate the direct control.

operation. The direct control is automatically

030 Direct control S1 axis
031 Direct control S2 axis
032 Direct control S3 axis
033 Direct control E1 axis
034 Direct control E2 axis
035 Direct control W1 axis
036 Direct control W2 axis

: pa_mod_dir

DM_STOP: It terminates the direct control.

6-55

angle
angle
angle
angle
angle
angle
angle

exceeded
exceeded
exceeded
exceeded
exceeded
exceeded
exceeded

Chapter 6 Programming

Example: for Visual C++

pa_set_tim(ARMO, 20); Time—out setting(200msec)

pa_mod_dir(ARMO, DM_START); Direct control mode selection
pa_wet_ded(ARMO, LOCKAXIS_S3); Control axis selection

(The arm, except S3-axis, is operated with a self weight compensated control.
The arm is manually operated. Acquires PTP data.

In the meantime, “pa_chk_cnt” has to be issued less than every 200msec.

pa_mod_dir(ARMO, DM_STOP); terminates the direct control.

Dim ret As Long

ret = pa_set_tim(ARMO, 20)
ret = pa_mod_dir(ARMO, DM_START)
ret = pa_wet_ded(ARMO, LOCKAXIS_S3)

ret = pa_mod_dir(ARMO, DM_STOP)

6-56

Chapter 6 __Programming

6. 8 Real-time Control

This control is for complex applications.
orientation and each axis angle in every control cycle are provided, the arm performs
exactly as it is mentioned. With this method, interpolation and coordinate conversion, not
used in the motion control section, can be freely employed in the operation control

section.

As it is explained below, if the tip position/

In a real-time control, if PA library (pa_odr axs or pa_odr dpd), providing command value
every 1000msec (time—out) maximum, is not issued, the brake stops the operation as if an
accident occurred during control. The default time—out is 1000 msec.

set with “pa_set tim” when it is needed.

There are two real control modes as follows:

* Axis real—time control mode - - - controls arm providing axis target angle more than 2msec

*RMRC real-time control mode- - -controls arm providing T—-matrix indicating the target

Taking into account the limit value to, to maintain motion, the providing value cannot

cycle without interpolation.

tip position/orientation in every cycle (more than 2msec.)

and axis value for restriction data without interpolation.

exceed the control cycle (2msec) of the motion control CPU.

Limit value

Maximum command value

Tip position

1000 mm/sec

2 mm/ 2 msec

Tip orientation

0.785 rad/sec

0.00157 rad/ 2 msec

Axis velocity (each axis has a different value)

S1 axis
S2 axis

1.0 rad/sec

0.002 rad/ 2msec

S3 axis
W1 axis

2.0 rad/sec

0.004 rad/ 2msec

E2 axis
W1 axis
W2 axis

6.28 rad/sec

0.01256 rad/ 2msec

6-57

This time can be

Chapter 6 __Programming

6. 8. 1 Axis Real-time Control Mode

If the target axis value is issued as the command, every 2msec or more cycles, the axis
angle (feedback) control is performed without interpolation.

Axis Real—time Control Mode

{Operation control> < Motion Control > <ServoDriver>
Target Axis * J— —
Vaglue or | Interpolation Target + e i Axis
Playback - Processing [7] Axis [i K, i77 Command
Axis Data l Ang|e) — : Orders
., - errrrarrnrrn st *

,—]_ {"Current
Tarii;':x's When in Axis Real-time Control . Axis Angle

) | e

<« Control Period = 2[ms]

Program description:

(@D Sets the time—out. :pa_set_tim
The default time—out is 1000 msec. This time can be issued only when it needs to be
altered.

@ Designates the current angle to the target angle. :pa_odr axs

Sets the target angle acquiring current target angle or current angle.
If the target angle is beyond the limit, errors below occur and the brake automatically
stops the arm.
@) Sets the axis real~time control mode. :pa_mod_axs

It shifts to the real axis control mode. After this PA library is issued, until terminating
axis real-time control mode, the command (pa_odr_axs or pa_chk_cnt) has to be issued
within time—out.

If it is longer than time—out, an error occurs and the brake stops the operation as if an
accident happened during control.

@ Designates the target axis angle. :pa_odr axs

As it becomes the 2msec cycle target value, the command should be taken into
account the axis limit angle. If the target axis angle is beyond the limit, the following
errors occur and the brake might, automatically, stop the arm.

ERR_.SYNC_S1 S1-axis sychronization error in axis control
ERR_SYNC_S2 S2

ERR_SYNC_W2 w2
@ terminates the axis real—-time control mode.

The axis real—time control mode is terminated by the brake—stop (pa_stp_arm) or the
temporary stop (pa_sus_arm).

6-58

Chapter 6 __Programming

Example: for Visual C++

ANGLE an; '
pa_set_tim(ARMO, 20); Time—out setting (200msec)

pa_get_agl(ARMO,&an); Current angle acquisition

pa_odr_axs(ARMO, &an); Target initial axis angle setting

pa_mod_axs(ARMO); Axis real—-time control mode selection

From here to “pa_sus_arm,” “pa_odr axs” or “pa_chk cnt” has to be issued within
200 msec. cycle.

ansl = ..

an.s2 = ..

an.s3 = ... Creates a target axis angle here.
anel = ...

an.e2 = ...

anwl = ...

an.w2 = ...

pa_odr_axs(ARMO, &an); Target axis angle setting

}

|

|

|

|

|

|

|

|

|

|

|

|

|

|

! :
: while (Conditional text){
I .

|

|

|

|

|

|

|

|

|

|

|

: pa_sus_arm(ARMO, WM_WAIT); Axis angle real-time control mode termination

Dim ret As Long
Dim an As ANGLE

ret = pa_set_tim(ARMO, 20)

ret = pa_get_agl(ARMO, an) Current angle acquisition

ret = pa_odr_axs(ARMO, an) Target initial axis angle setting
ret = pa_mod_axs(ARMO)

Do While Conditional text

ansl = ..
an.s2 = ..
an.s3 = ...
anel = ..
an.e2 = ...
anwl = ...
anw2 = ...
ret = pa_odr_axs(ARMO, an)
Loop

ret = pa_sus_arm(ARMO, WM_WAIT)
o e e e e e e 1

6-59

Chapter 6 __Programming

6. 8. 2 RMRC Real-time Control Mode

Providing each axis value for restriction data and T-matrix indicating the target position/
orientation every 2msec or more cycles, the axis angle (feedback) control is performed
without interpolation.

RMRC Axis Real-time Control Mode:

{Operation Control> < Motion Control> > {ServoDriver)
e .
RMRC [
Deviation Target value Interpolation Target + Joint Angle[| { Axis i
A calculation [>] Processing [>] Position/ [© ! Coordinate [7 Velocity i
or Playback ; i i
Teach Data Orientation [¢ conversion | | i Command
. Current Current
oﬁsetCoorfimate Position/ i Axis Angle
) conversion . orientation H
.
PTa:Cget/ When in RMRC Real-time Control
osition
Orientation
——

Control cycle = 2[ms]

The advantage of this real-time control mode is to receive a 2 msec command. To send

this command every 2 msec, it is needed to take into account the timing when the PA
library (pa_odr axs. pa_odr_dpd) is issued and when the motion control section should
obtain the PA library.

6-60

Chapter 6 __Programming

Real—-time control mode

Current timings are as follows:

(D When PA library is issued just before the calculation in motion control section is
completed.

k——— Period 1 (2msec) ———>}«——— Period 2 (2msec) —
Motion control
section —|_| F

Communication ... ,—| |_‘ y—| ,—

Calculation ...

Command value acquisition L1418t value® A ’—| Target value@ A —|
Operation control section . .
Real-time control mode —| y—|

PA library performance

A : PA lbrary issuing
@® : Release from issued PA library

With this processing, the motion control section acquires the target value. When
“count-up” is on time in the final processing (count-up data is reflected on the memory
in the final processing.) , with this “ @ ” timing PA library is released from

“count-up-wait.” The target value (1) acquired at this moment is reflected on the
control in the period 2.

@ When PA library is issued just after the calculation in motion control section is
completed.

lk—— Period 1 (2msec) ———>)<—— Period 2 (2msec) —
Motion control
section _l_ |_

Communication... —| |_ —| |—‘

Calculation...

Real-time control mode
e Target v
Command value acqx-ﬂﬁ*:leﬁ...—galm!eCD ’—|

Operation control section 5 ®
Real-time control mode i

PA library performance. |—

A : PA lbrary issuing
@® : Release from PA library issuing

As target value (1) acquisition is completed at this @ timing in the period 2 and
reflected on the control, count—up can be confirmed in the PA library, only after final
processing is completed.in the cycle 2.

6-61

Chapter 6 __Programming

Program Description: for 6—axis arm

(D Sets the time—out. :pa_set tim
The default time—out is 1000 msec. This time can be issued only when it needs to be

altered.

@ Controls to the RMRC controllable position/orientation (each axis angl).:pa_exe_saf

@ Initializes the target position/orientation.: pa_odr_dpd
If there is not a current target position/orientation, loads and sets the current ones.

@ Sets the RMRC real—time control mode.: pa_mod_dpd
Here comes the RMRC real—-time control mode.

After issuing this PA library, until the RMRC real-time control mode is completed, the
command (pa_odr_dpd or pa_chk_cnt) has to be issued.

® Designates the target tip position/orientation: pa_odr_dpd
For the target value is 2msec cycle, commands should be taken into account the

RMRGC limit velocity (both position and orientation).

ERR_RMRC_X X-axis synchronization error in RMRC control
ERR_.RMRC.Y Y-axis synchronization error in RMRC control
ERR_.RMRC_Z Z-axis synchronization error in RMRC control

® Terminates the RMRC real-time control mode.
The RMRC real-time control mode is terminated by the brake—stop (pa_stp_arm) or the

temporary stop (pa_sus_arm).

6-62

Chapter 6 __Programming

Example: for Visual C++

MATRIX mat;
ANGLE an;
pa_set_tim(ARMO, 20); Time—out setting (200msec)
pa_exe_saf(ARMO, WM_WAIT); Moves to safe orientation
an.s1=0.0; Restricted axis value intialization

: (Initialize “an” to “0” in the case of the 6—axis)
pa_get_noa(ARMO, mat); Current position/orientation loading
pa_odr_dpd(ARMO, mat, &an); Target position/orientation initialization

pa_mod_dpd(ARMO); RMRC real—time control mode selection

200 msec. cycle.
while (Conditional text){

Target position/orientation T-matrix creation :mat
“0” initialization or
creation of axis value for the redundant axis restriction data :an

pa_odr_dpd(ARMO, mat, &an);
Setting for Target position/orientation T-matrix and axis value for the
restriction data

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
| |
: From here to “pa_sus_arm,” “pa_odr.axs” or “pa_chk cnt” has to be issued W|th|m
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
| } :
! pa_sus_arm(ARMO, WM_WAIT); RMRC real—time control mode termination |
Example: for Visual BASIC
i Dim mat(3,2) As Single
Dim an As ANGLE
Dim ret As Long

ret = pa_set_tim(ARMO, 20)
ret = pa_exe_saf(ARMO, WM_WAIT)

' |
' |
' |
' |
' |
' |
' |
' |
|
! ret = pa_get_ noa(ARMO, mat(0,0)) :
! ret = pa_odr dpd(ARMO mat(0,0), an) Target position/orientation initialization |
: (Initialize “an” to “0” in the case of the 6—axis) '
| ret = pa_mod_dpd(ARMO) :
| N |
' |
' |
' |
' |
' |
' |
|

Do While (Conditional text){
ret = pa_odr_dpd(ARMO, mat(0,0), an)

Loop
ret = pa_sus_arm(ARMO, WM_WAIT)

6-63

Chapter 6 __Programming

/ 7- axis arm function /

The redundant axis control mode can be chosen on account of RMRC control. But,
depending on a redundant axis control mode to choose, each axis value for the restriction
data
- a parameter of “pa_odr_dpd” — has a different significance.

< Redundant axis control mode >
[No restriction] :For all axes restrictively controlled by 0.0[deg], a provided axis value
for the restriction data is ignored.

[All axes restriction] :All axes are restrictively controlled by a provided axis values for
the restriction data.

[S3-axis restriction]:In this mode, axis value means the one for the restriction data
when “pa_odr_dpd” is issued. The S3-axis is controlled by a S3 restriction axis value
inside the axis values for restriction data. For this reason, a movable angle issued within
a cycle has to be taken into account. Other axis values (except S3 axis value) for
restriction data are ignored and restricted to 0.0[deg].

[S3-axis interpolation] :In this mode, axis value means the target angle of S3—axis when
“pa_odr_dpd” is issued. The S3-axis is controlled by a S3 restriction axis value inside
the axis values for restriction data. For this reason, a movable angle issued within a
cycle has to be taken into account. Other axis values (except S3 axis value) for
restriction data are ignored.

[S3-axis fixation]:S3 axis angle is maintained as it is when RMRC real-time control was
started. For this reason, provided axis value for the restriction data is ignored.
Program Description: For 7-axis arm

@D Sets the time—out. :pa_set_tim
The default time—out is 1000 msec. This time can be issued only when it needs to be

altered.

@ Controls to the RMRC controllable position/orientation (each axis angl).:pa_exe_saf

@ Initializes the target position/orientation.: pa_odr_dpd
If there is not a current target position/orientation, loads and sets the current ones.

@ Chooses the redundant axis control mode.: pa_mod_jou
If not setting this mode, the prior set redundant axis control mode becomes available.

@ Sets the RMRC real—time control mode.: pa_mod dpd
Here comes the RMRC real—-time control mode.

After issuing this PA library, until the RMRC real-time control mode is completed, the
command (pa_odr_dpd or pa_chk_cnt) has to be issued within time—out.

6-64

Chapter 6 __Programming

® Designates the target tip position/orientation.: pa_odr_dpd

As the target value becomes 2msec cycle, commands should be taken into account
RMRC limit velocity (both Linear and rotational velocity). If the target axis angle comes
off— limits, following errors occur and the brake, might automatically stop arm.

ERR_RMRC_X X-axis synchronization error in RMRC control
ERR_.RMRC.Y Y-axis synchronization error in RMRC control
ERR_.RMRC_Z Z-axis synchronization error in RMRC control

@ Terminates the axis real-time control mode.
The axis real-time control mode is terminated by the brake—stop (pa_stp_arm) or a

temporary stop (pa_sus_arm).

Example: for Visual C++

MATRIX mat;

ANGLE an;

pa_set_tim(ARMO, 20); Time-out setting (200msec)
pa_exe_saf(ARMO, WM_WAIT); Move to safe orientation
pa_get_agl(ARMO,&an); Current angle loading
pa_get_noa(ARMO, mat); Current position/orientation loading

pa_odr_dpd(ARMO, mat, &an); Target position/orientation initialization

pa_mod_jou(ARMO, JM_ON);Redundant axis control mode setting (all axes restriction)

From here to “pa sus arm,” “pa odr axs” or “pa_chk cnt” one has to be issued
within 200 msec. cycle. o

while (Conditional text){
Target position/orientation T-matrix creation :mat
Creation of axis value for the redundant axis restriction data :an

pa_odr_dpd(ARMO, mat, &an);
Setting for Target position/orientation T-matrix and
axis value for the restriction data
}

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: pa_mod_dpd(ARMO); RMRC real-time control mode selection
I .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I pa_sus_arm(ARMO, WM_WAIT); RMRC real—time control mode termination

V. e s e s _

6-65

Chapter 6 __Programming

Example: for Visual BASIC
Dim mat(3,2) As Single
Dim an As ANGLE
Dim ret As Long

ret = pa_set_tim(ARMO, 20)
ret = pa_exe_saf(ARMO, WM_WAIT)
ret = pa_get_noa(ARMO, mat(0,0))
ret = pa_get_agl(ARMO, an)
ret = pa_odr_dpd(ARMO, mat(0,0), an) Target position/orientation initialization
ret = pa_m:od_jou(ARMO, JM_ON)
ret = pa_mod_dpd(ARMO)
Do While | Conditional sentence
ret = p;_odr_dpd(ARMO, mat(0,0), an)

Loop
ret = pa_sus_arm(ARMO, WM_WAIT)

6-66

i 3

Chapter 6 __Programming

6. 9 DIO control

The Digital Input/Output (DI/O) board is equipped as the standard system for PA. The
PA library is provided only for the DI/O control of this board. Channel numbers are as
follows:

The Digital Input/Output (DI/0) board is directly controlled by the motion control section.
Its input/output control can be performed by setting data in the designated area, from the
operation control section.

Port No. channel No.

DP_PORT1 DC_CH1
DC_CH2
DC_CH3
DC_CH4
DC_CH5
DC_CH6
DC_CH7
DC_CH8
DP_PORT2 DC_CH1
DC_CH2
DC_CH3
DC_CH4
DC_CH5
DC_CH6
DC_CH7
DC_CH8
DP_PORT3 DC_CH1
DC_CH2
DC_CH3
DC_CH4
DC_CH5
DC_CH6
DC_CH7
DC_CH8
DP_PORT4 DC_CH1
DC_CH2
DC_CH3
DC_CH4
DC_CH5
DC_CH6
DC_CH7
DC_CH8

System Reservation

Tool 1

Tool 2

Tool 3

Input/output libraries are as follows:

pa_inp_dio Digital input (Input with 32 ch.units)
pa_oup_dio Digital output (Output with 32 ch.units)
pa_get_dio Digital input (Input with 1 ch.unit)
pa_set_dio Digital output (Sets with 1 ch.unit)
pa_rst_dio Digital output (Resets with 1 ch.unit)

6-67

Chapter 6 __Programming

Program description:

Example: for Visual C++

The output channel 4 of tooll (port 1) has to be switched ON.
When the input channel 3 turns ON, channel 4 has to be OFF.

UBYTE io;

pa_set_dio(ARMO, DP_PORT1, DC_CH4);

while(1){
pa_get_dio(ARMO, DP_PORT1, DC_CH3, &io);
if(io<>0) break;

}

pa_rst_dio(ARMO, DP_PORT1, DC_CH4);

Dim io As Byte
Dim ret As Long

io=0
ret = pa_set_dio(ARMO, DP_PORT1, DC_CH4)
Do While io =0

ret = pa_get_dio(ARMO, DP_PORT1, DC_CH3, io)
Loop

ret = pa_rst_dio(ARMO, DP_PORT1, DC_CH4);

6-68

... -

Chapter 6 __Programming

{Playback control teach point “DO” status selection)

Setting “DO” data attribution at the teaching point, this can be performed by choosing
its DO information (valid/invalid) or (stop/non—stop) when the arm is stopped.

Setting & acquisition of teach point “DO” output — valid/invalid —
while in playback control.

pa_swt_dio(ARM armno, long sw)
pa_get_pdo(ARM armno, long* stat)

Choose to make valid (output) or invalid (no output) for DO data attribution set at teach
point, while in playback control.

Setting & acquisition of teach point “DO” output — valid/invalid — when the arm is stopped
while in playback control.

pa_set_dIc(ARM armno, long data)
pa_get_dlc(ARM armno, long* stat)

The pre—condition is: the teach point DO output in the playback control, has to be set to

be valid. When DO information is output while in playback control, if the arm is
temporarily stopped or brake—stop, choose to stop output DO information or continue.

Program description:

Example: for Visual C++

: While in playback control, make teach point DO information valid. When an arm is not
! in motion, stop DO output.

pa_swt_dio(ARMO, 1); Teach point DO information available

| |
| |
| |
| |
| |
i DIOSTATUS dis, dio; |
| |
| |
| |
i pa_set_dlc(ARMO, 1); When in arm—stop, DO—stop available. i
| |

Dim dis As DIOSTATUS
Dim dio As DIOSTATUS
Dim ret As Long

ret = pa_swt_dio(ARMO, 1)
ret = pa_set_dlc(ARMO, 1)

6-69

Chapter 6 __Programming

6. 10 Teach/Playback Motion

Playback motion is performed using teach data acquired in various control conditions.
To perform playback motion it usually needs the following four step procedures.

* Ist--~.Teach data creation

Acaquires teach points and creates a set.

* 2nd--".Current _teach point shifting

The moment when teach point is acquired, it instantly becomes the current point.
For this reason, the teach point where intended to start the motion, has to be
shifted to the current teach point.

* 3rd---.Shiftin g to the current point
Actuates arm to the position (angle) indicated at the current point.

* 4th---.Playback starts
Starts the playback motion.

6-70

Chapter 6

Programming

To acquire teach data and actualize playback motion (replay), all data and information
are managed by the motion control program.

Before starting the control method, see important terms below:

Technical Terms

Terms Explanation
Teach point Minimum data unit retaining arm angles and motion data, etc.
Teach data Work unit to set to work one operation linking plural teach data.

Teach data Key

Integer that never overlaps, provided to distinguish plural teach
data.

Active teach data

Teach data to operate playback and edition (addition, insertion,
deletion and data alteration).

Teach point attribute

Significant data in teach point.

JUMP

Method to actuate arm through plural data as if the motion
were created through one teach data.

JUMP data

Teach data attribution information to perform JUMP motion
between teach data.

JUMP data number

Integer that never overlaps, set to control plural JUMP data.
It is also set as attribute in the teach point to be referred
when in playback.

JUMP condition

Command group to be set to actualize JUMP.

Active teachdata

pointer == [Teach Data Key : 1]

bute

Teach Data Key : 2

Teach point:1 .

Teach point:1 .

Teach point:2

Teach point:2

Current "= Teach point:3

teach point

Teach point:3

pointer

Teach point:4

Teach point:5

Teach point:6

\WO
|| 1]

Teach point:7Z

JUMP Data No.

Teach point:4

Teach point:5

JUMP condition No,

JUMP condition No.:

condition:2

8
JUMP JUMP
condition: 1 condition: 1
JUMP JUMP

condition:2

<

JUMP
condition:8

JUMP
condition:8

6-71

+ JUMP condition
+ JUMP destination
(Teach data Key
(Teach point ID)
etc

Chapter 6 __Programming

6. 710. 1 Teach Point & Teach Data Control

How to manage teach data in the teach data structure and the motion control
program:

(1) Teach point attribute
The teach point is the minimum unit of arm data needed to perform playback processing.
Its attributes are shown below. Teach point data is initialized with appropriate value

when teach points. are created. Then, it is processed and corrected by users.

Teach point attribute : Structure PNTDAT

Structure Model Name Contents
float S1 angle S1 axis angle [rad]
float S2 angle S2 axis angle [rad]
float S3 angle S3 axis angle [rad]
float E1 angle E1 axis angle [rad]
float E2 angle E2 axis angle [rad]
PLAY float W1 angle W1 axis angle [rad]
float W2 angle W2 axis angle [rad]
float Linear motion velocity | Linear motion velocity [mm/sec]
float Orientation, angle | Angular motion velocity when in axis
Motion velocity control, orientation velocity when in
RMRC control [rad/sec]
long Data type PTP:1.PTP(with NOA) : 2
long Interpolation method Axis, linear, circle, arc
long Velocity type Rated velocity, acceleration,
deceleration, acceleration/deceleration
long Waiting hour Motion—start delay time [msec]
long Serial numbers Serial numbers setting the primary teach point as
1.
long ID humber User setting discrimination number
long JUMP data Number Numbers specified JUMP conditions
long DO output Digital output for outer operation
long Accuracy Arm-stop accuracy *?2
long Start—up time Acceleration time designation*?
long Shutdown time Deceleration time designation**
long Spare Not yet used
char*32 comment Comment with muximum 32 letters
NOAP float*3 Position*' Arm XYZcoordinate system [mm]
float*3*3 | Orientation™ Arm NOA

*1 Position and orientation data are created, only, when data type is PTP (with NOA).

*2 On arm-stop accuracy, lower 16bit for axis motion attribution teach point and for
upper_16bit motion attribution teach point, are used.

*3 If velocity type is acceleration & deceleration/acceleration/deceleration, each type
refers to a necessary start—up and shut—down time attributions. If this attribute is “0”,
start—up time and shut—down time in parameter are used.

6-72

Chapter 6 __Programming

Teach data types are as follows:
*Each axis (6 g;~ 6 y,) data
*Tip position/orientation (NOAP) data

(2) JUMP Data

JUMP data is the annexed information related to the teach point. It has attributes
such as JUMP condition and JUMP destination, etc.

JUMP information numbers in the teach point attribute are referred when in playback.
If its value is more than 1, JUMP condition search is performed. If the JUMP condition
can be found, then, condition check will be performed.

When the condition is established, JUMP destination (teach data “Key” and teach point
ID) indicated in JUMP condition is searched.

the current teach point to the discovered one is interpolated and motion starts. This

If its destination is found, the interval from
status is called motion between teach points (RMRC) or motion between teach points
(each axis).)

If motion between teach points is completed, the active teach data is replaced by the
arrived teach data “Key.” Hereafter, motion is controlled by its teach data.

JUMP condition data composition is as follows:

JUMP conditional data composition

Structure Type Designations Details
long JUMP condition Number Numbers designating JUMP conditions
long JUMP condition JUMPcondition (refer to the next
page (5))
long Spare Not used
JUDGE long DI data DI data for condition appraisal
long Time—out Time—out when in wait
No time—out with 0
long Teach data Key JUMP destination teach data Key
long Teach point ID JUMP destination teach point ID
long Reservation Employed by a system
Omitted. (There are 8 (eight) data from JUMP condition to the
reservation.)
long JUMP condition JUMPcondition (refer to the next
page (5))
long Spare Not yet used
long DI data DI data for condition appraisal
JUDGE long Time—out Time—out when in wait
No time—out with 0
long Teach data “Key” JUMP destination teach data “Key”
long Teach point ID JUMP destination teach point ID
long Reservation Employed by a system

6-73

Chapter 6 __Programming

(8) JUMP Condition

JUMP condition divides 32bit positive numbers into four and gives them significance.

MSB
LSB
31 24 23 16 15 8 7 0

Valid flag JUMP command Logic Reference destination DI

JUMP condition consists of four: valid flag, JUMP command, logic and reference
destination DI. See below: these instructions are not automatically set at the motion
control side. All are performed by setting orders from the upper point.

VALID FLAG : JUMPENABLEDISABLE

Designation Value Function
JMP_ON 0x01000000 | Condition check performance (valid)
JMP_OFF 0x00000000 | No condition check performance (invalid)

JUMP COMMAND :JUMPORDER
Designation Value Function
JUMP to the designated teach data and ID

NO_JUMP 0x00010000
- X number. (Unconditional JUMP)

DLJUMP 0x00020000 If DI condition is checked and .establlshed, JUMP.
If not, playback has to be continued.

DL WAITJUMP 0x00030000 If DI cond.|t|0n is checked and established, JUMP.
If not, waits and rechecks at the next cycle.
Waits wuntil DI condition is checked and

. | . .

DI WAIT 0x00040000 established. (ATTENTION. This function d.oes
not perform the motion between teach points
JUMP.)

LOGIC : JUMPDILOGIC
Designation Value Function
LEVEL_ON 0x00000100 | DI condition is established when designated bit input is 1.
LEVEL_OFF 0x00000200 | DI condition is established when designated bit input is 0.

EDGE ON 0x00000400 !DI colndltlon is established when designated bit
input is changed from 0 to 1.

EDGE_OFF 0x00000800 PI co.ndltlon is established when designated bit
input is changed from 1 to O.

REFFERENCE DI : DIOKIND

Designation Value Function
DIO_INTERNAL 0x00000000 | DI condition test is performed in the system DI
DIO_EXTERNAL 0x00000001 DI condition test is performed in the extension
DI

One teach data can obtain plural JUMP conditions. But, one JUMP condition cannot be
obtained by plural teach data. For this reason, the same JUMP condition number 1 of
two different teach data “Key” is recognized as a completely different one.

6-74

Chapter 6

Programming

(4) Teach Point Control

How to control teach data in the motion control program:

One teach data consists of plural teach points.

composes teach data.

*Teach data consists of six teach points.

*Three of these points have circle or arc attribute.

Top teach point |

> Teach point attribute

<_

Gircle & arc address

Prior point address

Next point address

Teach point attribute

Gircle & arc address

Prior point address

Next point address

Teach point attribute

Gircle & arc address

Prior point address

Next point address

Last teach point |

Teach point attribute

Circle & arc address

Prior point address

Next point address

PHeach point attribute

Here it is shown how each point

Gircle & arc address

—»

‘Teach point attribute

Prior point address

Circle & arc address

Next point address

Prior point address

Next point address

Teach data control provides address data of before/after teach point to create smooth
motion between points. On this address data, for top teach point, the prior point address
is 0. For the last teach point, the next point address is 0.

On circle and arc, to pass through the second and third teach point, these are linked
adjacent to the first point.
The current teach point can be set at the top and the last teach point, or at the place

indicated with ! H

(For this reason, the circle and arc second and third point cannot be the current point.)

6-75

Chapter 6 __Programming

(5) Teach Data Control

Plural teach data is controlled by “teach data control list” as follows:

List control data
List top address —‘

Teach data control data
Next list address —‘

Teach data control data

Next list address

If there is no next list, “0” is set.

Teach data control data
Next list address

Teach data numbers, able to be controlled by teach data control list, are not particularly
defined. As far as memory space allows, plural teach data can be created.

List control data:
DATA DETAILS
Numbers of teach data Indicates how many teach data (not teach point) is controlled
Active teach data (ARM 0) Teach data related to ARM 0 motion. *
Active teach data (ARM 1) Teach data related to ARM 1 motion.*
*In active teach data, the same teach data can be obtained by ARM 0 and ARM 1.

Teach data control data:
DATA DETAILS
Teach data “Key” The control number for teach data manages not to let

each teach data overlap.

Numbers of teach data Numbers of teach point retained by this teach data.

Top teach point Teach point indicating the top position in the teach data.
Last teach point Teach point indicating the last position in the teach data.
Current teach point Teach point indicated currently by the program in the

teach data.

Temporary teach point Supplemental area used for teach data research, etc.
JUMP data control address It is the top in JUMP data list and is incidental to teach
data.

To control each teach data, it is needed to have some information to not let each teach
data overlap. This non—overlap data is called “teach data Key.” Teach data “Key” is
32 bit integer. But, for practical use, only a positive value can be used.

6-76

Chapter 6 __Programming

6. 10. 2 Teach Data Operation

Some libraries for teach data operation are as follows:

Teach data operation library:

Pointer operation

Active teach data “Key” alteration pa_chg key
Current point alteration at the teach point pa_chg_pnt
Addition
Active teach data “Key” addition pa_act_pnt
Teach point addition pa_add_pnt
Deletion

Active teach data deletion

Current teach point deletion pa_del_pnt

Project deletion
JUMP data deletion pa_del_jmp

Replacement

Current teach data replacement pa_rpl_pnt

Active teach data “Key” point:

Among plural teach data, the one indicated by the active teach data “Key” point is the
active teach data one.

All teach data operation (acquisition, deletion and replacement) and playback control are
performed for active teach data.

Teach point:

A teach point indicated by teach point pointer is called a current point.
All teach data operation (acquisition, deletion and replacement) and playback control are
performed for teach point data indicated by this teach pointer.

Teach pointer is automatically renewed when:
= After acquiring teach data.
=when in playback control.
* After deleting teach data (deleting current point.)

6-77

Chapter 6 __Programming

6. 710. 2. 71 Current Point Alteration

(1)Active teach data alteration
Among plural teach data, to choose the teach data intended to work, the active teach
data has to be altered as follows:

Active teach data alteration pa_chg key

Designation Instructions
Active teach data | The teach data retaining the designated teach data “Key”
alteration is defined as the active teach data.

Important exception:

Teach data is usually created from 1. If teach data is
newly created, active teach data has to be set 0. Later
on, if teach data is acquired, the motion control creates
teach data “Key” which does not overlap with this

acquired one (one point teach data). Then, it is added to

the teach data control list.

(2) Current teach data alteration

If each teach point attribution is altered or intending to designate playback starting point,
its operation has to be performed after altering the current teach point. Methods to alter
the cuurent teach point are as follows:

(With the current teach point alteration, the real machine cannot be actualized. Also,
this teach point cannot be changed during playback performance.)

On the current point shifting, for parameter: “PNTMOVE” of “pa_chg pnt”, there are the

following types:

Current teach point alteration

pa_chg pnt(, PNTMOVE,)

Designations

Details

PM_TOP
(Top teach point)

Teach point placed at the top of teach data is defined as the
current teach point.

PM_BTM
(Last teach point)

Teach point placed at the bottom of teach data is defined as
the current teach point.

PM_NEXT
(Next teach point)

Teach point placed next to the current teach point is defined
as the current teach point.

PM_PRIV
(Prior teach point)

Teach point placed prior to the current teach point is defined
as the current teach point.

PM_JMP
(Designated ID)

Teach point retaining the designated teach point ID is defined
as the current teach point.

(Designated
comment)

Teach point retaining the designated comment is defined as the
current teach point.

6-78

Chapter 6 __Programming

< < Current Teach Point Alteration> >

Now, the teach point is at <2>. Here, if the command is issued in the next parameter,

the current pointis moved to —< >.

(a) PM_TOP

(b) PM_NEXT
(¢c) PM_PRIV
(d) PM_.BTM

(e) PM_JMP

(f) PM_CIR

(g) PM_ARC

: to Top Data —<L1>
: to the next data of the current point. —<3>
: to the prior data of the current point —<L1>
: to the last data —<n>
: to the designated number by jmp jmp=4 —<4>

: the circle teach data first placed from the current

point in forward direction —<9>

: the arc teach data first placed from the current

point in forward direction —<5>

Numbers which can
be a current point

Top
<PM_TOP> <1>

[PTP straight linel

Y :
<2> —FPTP each axis|
A

3>
<4>
<&6>
8>

<9>

12>

<PM_BTM> <n>

Last

V !
PTP each axis
: A
v :
PTP straight line
| |
v N 6 7

| PP arc 1] PP arc 2 3 PIP arc 3 |

: /N
\/ i

|PTP straight 1ine|
:) 10 11

| PTPcircle I {|—>| PTPcircle 2 > PTPeircle 3 |

Y

[P1P straight line]

Teach pointer
NS S —

~

|PTP straight 1ine|

To prior data (PM_PRIV)
-------- > To next data (PM_NEXT)

Arc/circle data is processed in each block.

6-79

Chapter 6 __Programming

6. 710. 2. 2 Teach Point Addition
For teach point acquisition one of following methods has to be employed:

Teach point addition : pa_add_pnt(,PNTTYPE)

Designation Details

PTP- axis attribute addition Adds teach data with each axis attribute in PTP.

PTP- axis attribute insertion Inserts teach data with each axis attribute in PTP.

PTP-RMRC attribute addition Adds teach data with RMRC straight—line attribute
in PTP.

PTP-RMRC attribute insertion Inserts teach data with RMRC straight-line
attribute in PTP

PTP- Circle 1t point addition Adds teach data with RMRC circle attribute in
PTP

PTP- Circle 2" point addition If the current teach point has circle attribute,

creates the second point in the circle /arc link
area of its teach point.

PTP- Circle 3™ point addition If the current teach point has circle attribute,
creates the third point in the circle /arc link area
of its teach point.

PTP- Arc 1% point addition Adds teach data with RMRC arc attribute in PTP.

PTP- Arc 2™ point addition If the current teach point has arc attribute,
creates the second point in the circle /arc link
area of its teach point.

PTP- Arc 3" point addition If the current teach point has arc attribute,
creates the third point in the circle /arc link area
of its teach point.

PTP-RMRC attribute addition (with NOA) Acquires also NOAP data, when adding PTP -
RMRC attribute.

PTP-RMRC attribute insertion (with NOA) | Acquires also NOAP data, when inserting PTP -
RMRC attribute.

PTP- Circle 1%t point addition (with NOA) Acquires also NOAP data, when adding PTP - circle 1 point.

PTP- Circle 2" point addition (with NOA) Acquires also NOAP data, when adding PTP - circle 2" point.

PTP- Circle 3™ point addition (with NOA) | Acquires also NOAP data, when adding PTP - circle 3" point.

PTP- Arc 1% point addition (with NOA) Acquires also NOAP data, when adding PTP - arc 1% point.

PTP- Arc 2" point addition (with NOA) | Acquires also NOAP data, when adding PTP - arc 2™ point.

PTP- Arc 3" point addition (with NOA) Acquires also NOAP data, when adding PTP - arc 3" point.

*”addition” and “insertion” meanings in the chart:
Addition — creates new teach point after the current teach point.
Insertion — creates new teach point before the current teach point.
If a current teach point does not exist, only, a new teach point is created.

6-80

Chapter 6 __Programming

6. 10. 2. 3 Teach point (Teach data) Deletion
(1) Teach point (teach data) Deletion
Teach point and teach data deletion are provided.

Teach point (teach data) Deletion : pa_del pnt(,PNTDEL)

Designations Instructions
PD_CUR Deletes the current teach point.
(Teach point deletion)
PD_ALL Deletes the active teach data. If the active teach data is deleted,

(Teach data deletion) | active teach data number becomes the top point in the first
discovered teach data. To activate other remaining teach data,
the active teach data has to be altered.

PD_ALLDATA Deletes all teach data (project.)

(Project deletion)

(2)JUMP data delition

JUMP data deletion has two ways: the teach data and JUMP data deletions. Each is
performed to the active teach data.

JUMP data delition : pa_del_jmp

Designations Instructions
Teach data deletion Delets the active teach data. Therefore, all JUMP data
incidental to the active teach data are deleted.
JUMP data deletion Designates JUMP condition number (JUMP data) incidental to
the active teach data, then, deletes it.

6-81

Chapter 6 __Programming

6. 10. 3 Moving to the current point (teach point)

Before starting playback, it is needed to adjust the current point and the arm position.

This is called the “current teach point shifting motion.”

Current teach point shifting motions are as follows:

Current teach point shifting motions

Designations

Instructions

Axis shifting motion
:pa_axs_pnt

Current teach point and arm position are adjusted through
interpolation processing using current ideal target angle and
angle attribute inside teach data. For PTP data (with NOA),
this method cannot be employed to operate. (Angle data is
not reliable as the data is automatically created at the upper
point.)

RMRCshifting motion
:pa_mov_pnt

Current teach point and arm position are adjusted through
interpolation processing using the position/orientation
calculated from current ideal target angle and angle attribute
inside teach data.

RMRC shifting motion is controlled by RMRC. If the current position out of moving

range or E1 axis angle is 0, RMRC control cannot be performed. First, move to RMRC

control area, then, issue.

6-82

Chapter 6 __Programming

6. 10. 4 Playback motion (step operation) start

Four methods for a playback control (check—up operation) start are as follows:

Playback starting methods

pa_ply_pnt(,PLAYBACK,,)

Designations

Instructions

PB_FORES
(Forward step operation)

Motion is created using teach point attributes (velocity,
velocity pattern etc.) of the current teach point, from the
current teach point to the next one.

When this motion is completed, the current teach point is
changed to the next one.

PB_BACKS
(Reverse step
operation)

Motion is created using teach point attributes (velocity,
velocity pattern etc.) of the prior teach point from the current
teach point to the prior one.

When this motion starts, the current teach point is changed to
the previous one.

PB_FORE
(Forward consecutive

Motion is created backwards from the current teach point.
This motion continues until returning again to the top teach

operation) point after passing through at certain designated times. The
current teach point is changed every time when the teach
point is passed through while in motion.
For example, if teach points are 1), @ and), the current
point is (1), the designated time is once:
D-20-3-0
if the designated times are twice:
D-20-Q@-1D-@--0
if the current teach point is @) and the designated times are
twice:
@-Q@-1D-@-0-0
(ATTENTION! The top (D point is passed through only once.)
Teach data playback is always completed at the top teach
point. For more, refer to “JUMP rule” in the section 8.8.
PB_BACK Playback is performed with forward consecutive operation

(Forward check-up
operation)

from the current teach point to the last teach point. If
JUMP condition is established, not only JUMP performs, but
also this operation is completed at the last teach point of
each teach data.

6-83

Chapter 6 __Programming

6. 117 Playback Control

Playback controls according to teach points are as follows:
*Playback straight line interpolation control employing PTP straight line interpolation data
*Playback arc interpolation control employing PTP arc interpolation data
*Playback circle interpolation control employing PTP circle interpolation data

*Playback axis interpolation control employing PTP axis interpolation data

6-84

Chapter 6 __Programming

6. 171. 1 PTP straight line interpolation data and playback contro/

When teach data is acquired, if PTP straight line interpolation data is chosen, teach
data is memorized as PTP straight line interpolation data.

Playback control of PTP straight line interpolation data is RMRC feedback control.
Between two PTP straight line interpolation data, the tip is interpolated linearly.

Example: for Visual C++

< Teach data acquisition>
: Arm motion with RMRC control

pa_add_pnt(ARMO,PT_PTP); PTP data acquisition
: Arm motion with RMRC control
pa_add_pnt(ARMO,PT_PTP); PTP data acquisition

<Playback control>

pa_ply_pnt(ARMO,PB_FORE ,WM_WAIT); Playback forward motion.

Trajectory:

--------------- When in acquiring teach data
— When in playback

® PTP straight line interpolation data |

o Interpolation data

|

|

|

|

|

|

|

|

|

|

! :

: pa_chg pnt(ARMO,PM_TOP,0); Moves the teach pointer to the top teach data.
|

|

|

|

|

|

|

|

|

' :
I <PTP st> <PTP st.> <PTP st><PTP st>

|
|
|
|
|
|
|
|
|
|
|
!
pa_mov_pnt(ARMO,WM_WAIT); Moves to the current point. :
|
|
|
|
|
|
|
|
|
|
|

IKPTP straight line>

Dim ret As Long

ret = pa_add_pnt(ARMO,PT_PTP)

ret = pa_chg_pnt(ARMO,PM_TOP,0)
ret = pa_mov_pnt(ARMO,WM_WAIT)

' |
' |
' |
' |
' |
! : |
: ret = pa_add pnt(ARMO,PT PTP) i
. |
' |
' |
' |
: ret = pa_ply_pnt(ARMO,PB_FORE ,WM_WAIT) :

6-85

Chapter 6 __Programming

6. 17. 2 PTP arc interpolation data & playback control/

When in acquisition, if teach data type arc is designated, it is memorized as PTP arc
data.

PTP arc data:
PTP arc 1% point data :<KP1>
PTP arc 2™ point data:<P2>
PTP arc 3" point data:<P3>
These three constitute one block.

In playback control, the tip is interpolated to create the arc trajectory passing through
three points. The motion direction is from <P1> to <P2>, then, <P3>. From <P1> to
<P3>, this interval is interpolated equally for orientation.

Example: for Visual C++

< Teach data acquisition >
: Arm motion with RMRC control

pa_add_pnt(ARMO,PT_ARC1); PTP arc 1% data acquisition

: Arm motion with RMRC control
pa_add_pnt(ARMO,PT_ARC2); PTP arc 2" data acquisition

: Arm motion with RMRC control
pa_add_pnt(ARMO,PT_ARC3); PTP arc 3™ data acquisition

<Playback control >

pa_chg pnt(ARMO,PM_TOP,0); Moves the teach pointer to the top teach data.
pa_mov_pnt(ARMO,WM_WAIT); Moves to the current point
pa_ply_pnt(ARMO,PB_FORE ,WM_WAIT); Playback forward motion

P3 Trajectory:
T When in acquiring teach data

—— When in playback

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PTRearc interpolation data I
|

Interpolation data

i J

6-86

Chapter 6 __Programming

Example: for Visual BASIC
Dim ret As Long

ret = pa_add_pnt(ARMO,PT_ARC1)
ret = pa_add_pnt(ARMO,PT_ARC2)
ret = pa_add_pnt(ARMO,PT_ARC3)

ret = pa_chg_pnt(ARMO,PM_TOP,0)

ret = pa_mov_pnt(ARMO,WM_WAIT)
ret = pa_ply_pnt(ARMO,PB_FORE,WM_WAIT)

6-87

Chapter 6 __Programming

6. 17. 38 PTP circle interpolation data & playback contro/

When in acquisition, if circle is designated for teach data type, it is memorized as PTP
circle data.

PTP arc data:
PTP circle 1% point data :<P1>
PTP circle 2" point data:<P2>
PTP circle 3™ point data:<XP3>
These three constitute one block.

In playback control, the tip is interpolated to create the circle trajectory passing through
three points. The motion direction is from <P1> to <P2>, then, <P3>. Posture is fixed
at <P1> orientation.

_Example: for Visual Ct++

< Teach data acquisition> o
Arm motion with RMRC control
pa_add_pnt(ARMO,PT_CIR1); PTP circle 1%t data acquisition
: Arm motion with RMRC control
pa_add_pnt(ARMO,PT_CIR2); PTP circle 2™ data acquisition
: Arm motion with RMRC control
pa_add_pnt(ARMO,PT_CIR3); PTP circle 3" data acquisition
< Playback control > ,
pa_chg pnt(ARMO,PM_TOP,0); Moves the teach pointer to the top teach data. :

' |
' |
' |
' |
| |
| |
| |
| |
| |
| |
| |
| |
| |
! pa_mov_pnt(ARMO,WM_WAIT); Moves to the current point |
: pa_ply_pnt(ARMO,PB_FORE ,WM_WAIT); Playback forward motion [

|
| . I
| |
| |
| |
| |
| |
| |
| |
| |
| |
' |
' |
' |

Trajectory:

When in playback
® PTP arc interpolation data |

o Interpolation data

Orientation rotation angle: 6 ,=0
Linear motion/rotational angle: 6 ;, = 2 7

Dim ret As Long

ret = pa_add_pnt(ARMO,PT_CIR1)
ret = pa_add_pnt(ARMO,PT_CIR2)
ret = pa_add_pnt(ARMO,PT_CIR3)

ret = pa_chg pnt(ARMO,PM_TOP,0)
ret = pa_mov_pnt(ARMO,WM_WAIT)
ret = pa_ply_pnt(ARMO,PB_FORE , WM_WAIT)

6-88

Chapter 6 __Programming

6. 17. 4 PTP axis interpolation data & playback control

When teach data is acquired, if PTP axis interpolation data is chosen, teach data is
memorized as PTP axis interpolation data. Playback control of PTP axis inerpolation
data is axis angle feedback control. Between adjacent PTP axis interpolation data, each
axis angle is interpolated.

Example: for Visual C++

Interpolation data

| <Teach data acquisition> _:
|

: |
|
| pa_add_pnt(ARMO,PT_AXS); PTP axis inerpolation data acquisition |

|
| :
|

: pa_add_pnt(ARMO,PT_AXS); PTP axis inerpolation data acquisition |

: |
i :
| <Playback control> :
| .

: |
: pa_chg pnt(ARMO,PM_TOP,0); Moves the teach pointer to the top teach data. |
I pa_axs_pnt(ARMO,WM_WAIT); Moves to the current point. !
I pa_ply_pnt(ARMO,PB_FORE,WM_WAIT); Playback forward motion. :
|
| . |
| Trajectory:: I
P iy When in acquiring teach data :
: ; When in playback |
P ® PTPaxis interpolatio
idat
I o
|
|
|
|

I
I
I
i
i <PTP axis> <PTP axis> <PTP axis> <PTP axis><PTP axis> |
i I

Dim ret As Long

ret = pa_add_pnt(ARMO,PT_AXS)
ret = pa_add_pnt(ARMO,PT_AXS)
ret = pa_chg_pnt(ARMO,PM_TOP,0)

ret = pa_axs_pnt(ARMO,WM_WAIT)
ret = pa_ply_pnt(ARMO,PB_FORE,WM_WAIT)

6-89

Chapter 6 __Programming

NOTE:

As an example, if teach data consisting of PTP axis interpolation data for two points is
acquired:
1t point target axis angle : T1[7]

2" point target axis angle : T2[7]

When moving to the 1% point, if RMRC control is employed, the tip position/orientation
matches the 1% point target tip position/orientation. But, The possibility for each axis
angle to match is low. (This is the difficulty of the 7—axis manipulator control.)

To summarize, when arm arrived at 1% point, each axis angle cannot match T1[7].
Taking into account of such case, interpolation in axis angle feedback control calculates
the target angle every sampling moment interpolating the current axis angle and the next
target axis angle (T2[7]).

Interpolation processing with axis angle feedback control in the playback control, has a
slight difference from the method explained in the section 3.3.

In the section 3.3, the maximum interpolation number is obtained as the result of
dividing each axis angle deviation by each axis default velocity (8i) of 7 axes. Then,
interpolation processing is performed.

Regarding the axis angle control in playback control, only one axis default velocity can
be memorized as teach data. For this reason, all 7 axes are interpolated using one axis
default velocity (default = 2 jt [rad/sec]).

6-90

Chapter 6 __Programming

6. 171. 5 Playback control with teach data and other types.
As described before, there are four teach data types.
The following explains t playback control type to be performed If these four data are put

together to employ:

@D IKFPTP straight line and PTP axis interpolation data are put together to employ:

When PTP straight line and PTP axis interpolation data are adjacent, here is how to
know which is RMRC feedback control or axis angle feedback control:

Teach data
O :PTP straight line interpolation data
@ :PTP axis interpolation data

Trajectory
:RMRC (feedback) control [includes position/orientation interpolation]
: Axis (feedback) control [includes axis interpolation] >
VAVAVE

g g Mg g

<1> <2> 3> <4>

P :Data to stop arm motion with step transmission (forward step, reverse step).
Feedback control system depends on an early number data type as follows:

o0—0
1 2
(o] L J
1 2
eSS
1 2
e M\ S\ e
1 2

In this system, forward and reverse obtain the same result.

@ If circle and arc are together to employ:

Here, how the arm stops if step transmission (pa_ply_ pnt(ARMO, PB_FORES or
PB_BACKS, WMWAIT) is performed when PTP circle and arc interpolation data are
together to employ:

<9> <10>

pI‘P: Data to stop arm motion with step transmission

6-91

Chapter 6 __Programming

6. 17. 6 Differences between current point operation and playback control

Here are the differences when the current point is operated with pa_chg pnt — without
moving arm — and when the current point is operated with pa_ply_pnt — moving arm-—.

If the current point is operated with *pa_chg pnt:

As described before, the only number (closed with < >) being able to be the current
point can be changed. To summarize, after changing the current point with pa_chg pnt,
motion control (pa_mov_pnt. pa_axs_pnt) is performed to the current point. Data to stop
arm are the only ones where flags are located below.

10
; 12

Pt
<15> <16>

If the current poimt is operated with forward and reverse step of *pa_ply _pnt.

Playback step control
pa_ply_pnt(ARMO, PB_FORES, WM_WAIT) :forward
pa_ply_pnt(ARMO, PB_.BACKS, WM_WAIT) :reverse

Arm motion can be stopped only by data where flags are located.

>

155 T6>

6-92

Chapter 6 __Programming

Difference whether the circle and arc can be stopped at the last data or not.
With this difference the following happens:

For example:

5
Arc
<4> 6 <>
<3>
The arc is stopped at teach data 3. Current point <3>
Issuing “pa_ply_pnt(ARMO, PB_FORES, WM_WAIT” three times. Arm is moved to
teach data 7. Current point <7>

« After issuing “pa_chg pnt(ARMO, PM_PRIV, 0)” (the current point is returned to the prior
teach data.) or “pa_chg pnt(ARMO, PM_UMP, 4)” (the current point is changed to the
teach data 4), if arm is moved to the current point with “pa_mov_pnt. pa_axs_pnt”:

Arm is stopped at the teach data 4. (arc 1° point)

- If “pa_ply_pnt(ARMO, PB_BACKS, WM_WAIT)” (reverse step) is issued:

Arm is stopped at the teach data 6. (arc 3™ point)

For circle, the same result is obtained.

6-93

Chapter 6 __Programming

6. 171. 7 JUMP rule

When playback is performed, the method to make the arm move between two data not
directly linked as teach data, is called “JUMP rule.” JUMP rule can be broadly divided in
two. “Tacit JUMP”: the one not needing JUMP condition. “Conditional JUMP”: the
one needing JUMP condition.

@ Tacit JUMP
"Tacit JUMP” interpolates an interval between the last and the top teach point only in
forward motion and actuates the arm. (The last and the top teach point described here
are located inside the same teach data “Key”.) Teach data is never automatically
changed by teach data “Key.” This means: the end of playback performance always
comes to the top teach point when in playback forward motion (Designated times are
performed.)
For this case, the control method, motion velocity and velocity pattern employ the
last teach data.

@ Conditional JUMP
With JUMP condition inside teach data, teach data route is altered by force. This
method interpolates teach data commanded from the current teach point, or interval
between two teach points with ID designating Key. A playback route can be controlled
by inputting DI on account of employing this conditional JUMP.

If "tacit JUMP” and conditional JUMP are employed together, the following set—-back
occurs:

Creating JUMP condition for the teach data “Key 2” (designated ID), inside the teach
data “Key 1,” if no JUMP condition is set inside the teach data “Kwy 2,” motion is as
follows:

Playback forward consecutive motion starts from teach data “Key1”.
l
JUMP to teach data “Key 2” (designated ID) with JUMP condition
| (Conditional JUMP processing)
Playback teach data “Key 2”.

l

Arrival to the last teach point of teach data “Key 2”.
I (Tacit JUMP)

Playback from the top of teach data “Key 2”.

As long as JUMP condition is not clearly designated, JUMP processing is not reversed
from teach data “Key 2” to teach data “Key 1”.

6-94

Chapter 6

Programming

6. 12 Tip offset control

Method control to input offset value to the original playback trajectory when in RMRC

control during playback control.

Tip offset control can be divided broadly in two as follows:

*Coordinate conversion matrix control

=Tip position offset control

(Memo)

Parallel motiom conversion matrix control

Rotational motiom conversion matrix control

Work coordinate system conversion matrix control

Mechanical interface coordinate system

Absolute deviation offset control

Mechanical interface coordinate system
Relative deviation offset control

Base coordinate system
Absolute deviation offset control

Base coordinate system
Relative deviation offset control

Trajectory coordinate system
Absolute deviation offset control

Trajectory coordinate system
Relative deviation offset control

Trajectory coordinate system means the one on the playback tip trajectory.

6-95

Chapter 6 __Programming

6. 12. 1 Coordinate conversion matrix control

There are three coordinate conversions as follows:
(a) parallel motion: Add offset (AX, AY and AZ) to teach data.
:Parallel motion conversion matrix

(b) Rotational motion: Add offset (AYaw, APitch and ARoll) to teach data.
: Rotational motion conversion matrix

(c)Coordinate conversion: Replace data of teach data coordinate system on the work

coordinate system.
:Work coordination conversion matrix

(Memo)

(a) and (b) are respectively explained here. If T-matrix including offset of both parallel
and rotational motion is changed to conversion matrix, parallel and rotational motion can
be performed simultaneously.

6-96

Chapter 6 __Programming

(a) Parallel motion conversion control
Parallel motion is performed through multiplying tip position/orientation (T—-matrix) of

playblack trajectory created from teach data by the conversion matrix including offset
value (toward V, Y and Z) of the base coordinate system.

Program description:

(D Acquires playback teach data. :pa_add_pnt

1
3 4
Y
5
Base coordinate X
Z
@ Sets parallel motion conversion matrix. : pa_set_mtx

Creates T—matrix adding offset (AX, AY, AZ) toward X, Y and Z in the base
coordinate system. Unit is [mm].

1 0 0 AX

T 010 AY

0 01 AZ

AX = 250. 0[mm]
Y
AY = -100. 0[mm]

Base coordinate 2°
X 3 &
7 5 6

Trajectory after conversion

@ Moves the current point to the top teach data. : pa_chg pnt
pa_mov_pnt

(or pa_axs_pnt)

@ Starts playback control. : pa_ply_pnt

6-97

Chapter 6 __Programming

Example: for Visual C++

MATRIX mat;

int iJ;

pa_add_pnt(ARMO, PT_PTP); PTP linear interpolation data acquisition
pa_add_pnt(ARMO, PT_PTP); PTP linear interpolation data acquisition

for(i=0;i<3;i++){
for(j=0j<3;j++)
ifi==)) matli]j]=1.0;

else mat[ilj] = 0.0;
}
mat[0][3] = 250.0; AX= 2500
mat[1][3] = -100.0; AY=-100.0
mat[2][3] = 0.0; AZ= 00
pa_set_ mtx(ARMO, mat); Conversion matrix setting
pa_chg pnt(ARMO, PM_TOP, 0); Current point alternation
pa_mov_pnt(ARMO, WM_WAIT): Moves to the current point.

pa_ply_pnt(ARMO, PB_FORE, WM_WAIT);
Playback control starts
(Parallel motion conversion matrix control is performed.)

6-98

Chapter 6 __Programming

Example: for Visual BASIC

Dim ret As Long
Dim i As Integer
Dim j As Integer
Dim mat(3,2) As Single

ret = pa_add_pnt(ARMO, PT_PTP)
ret = pa_add_pnt(ARMO, PT_PTP)

For i=0 To 2 Step 1
For j=0 To 2 Step 1

Ifi=j Then
mat(ij) = 1.0
Else
mat(ij) = 0.0
End If
Next j

Next i

mat(3,0) = 250.0
mat(3,1) = -100.0
mat(3,2) = 0.0

ret = pa_set_ mtx(ARMO, mat(0,0))

ret = pa_chg pnt(ARMO, PM_TOP, 0)

ret = pa_mov_pnt(ARMO, WM_WAIT)

ret = pa_ply_pnt(ARMO, PB_FORE, WM_WAIT)

6-99

Chapter 6 __Programming

(b)Rotational motion conversion matrix control
Rotational motion is performed through multiplying tip position/orientation (T—-matrix) of

playblack trajectory created from teach data by conversion matrix including rotation offset
value (on V, Y and Z axis) of the base coordinate system.

Program description:

(D Acquires playback teach data. :pa_add_pnt
1

3 4
Y
5
Base coordinate X
Z
@ Sets rotational motion conversion matrix. : pa_set_mtx

Creates conversion matrix (T-matrix) adding rotation offset (AYaw, APitch and A
Roll) on X, Y and Z axis in the base coordinate system.

nx ox ax O
T ny oy ay O
nz oz az O

AYaw, APitch, ARoll

10 02
O 63
o T 06

@ Moves the current point to the top teach data. : pa_chg pnt

pa_mov_pnt
(or pa_axs_pnt)

@ Starts playback control. : pa_ply_pnt

6-100

Chapter 6 __Programming

Example: for Visual C++

MATRIX mat;

int i;

pa_add_pnt(ARMO, PT_PTP); PTP linear interpolation data acquisition
pa_add_pnt(ARMO, PT_PTP); PTP linear interpolation data acquisition

for(i=0;i<3;i++) mat[i][3] = 0.0;
T-matrix (noa section) creation
pa_set_ mtx(ARMO, mat); Conversion matrix setting

pa_chg_pnt(ARMO, PM_TOP, 0); Current point alternation
pa_mov_pnt(ARMO, WM_WAIT); Moves to the current point.
pa_ply_pnt(ARMO, PB_FORE, WM_WAIT);
Playback control satrts
(Rotational motion conversion matrix control is performed.)

Dim mat(3,2) As Single
Dim i As Integer
Dim ret As Long

ret = pa_add_pnt(ARMO, PT_PTP)
ret = pa_add_pnt(ARMO, PT_PTP)

Fori=0 to 2 Step 1
mat(3,1) = 0.0
Next i

ret = pa_set_mtx(ARMO, mat(0,0))

ret = pa_chg pnt(ARMO, PM_TOP, 0)

ret = pa_mov_pnt(ARMO, WM_WAIT)

ret = pa_ply_pnt(ARMO, PB_FORE, WM_WAIT)

6-101

Chapter 6 __Programming

(c)Coordinate conversion matrix control

Providing two matrixes: work coordinate and teach data coordinate matrix, the trajectory
in the teach data coordinate system is converted to the one in the work coordinate
system.

Teach data coordinate system[N,O A P,] : Teach data acquisition coordinate system
Work coordinate system [N_O.A,P.]:Actual work coordinate system

Teach data coordinate system

—Za L postion [P
;IS ? b .. [tip orientation NO A,]
Od 1o .A,d JPPeRLY]
| ; JRSPRVALL L -.'.
R N
N, -
e W tip position [P ']
f " [tip orientation [NO A ']

Base coordinate system

To convert the tip position/orientation [NOAP] of playback trajectory created from
teach data, into the work coordinate position/orientation [NOAP’], the deviation in teach
data coordinate is replaced to the one in the work coordinate.

A set value is indicated with absolute position matrix [P] and orientation matrix [NOA].
Only P is designated with a unit [nm]. As [NOA] is vector, it does not have a unit.

For a set value, the current set conversion matrix is indicated as a default value.

For resetting, a unit matrix has to be set for both absolute position matrix [P] and

1 0 0 0
1= 0 1 0 0
0 0 1 0

orientation matrix [NOA]..

For a set [NOA] matrix, the following checks are performed:
*Each N, O and A vector have to be a unit vector.
*A vector has to be a cross product of N and O vector.
(N, O and A have to be a vector crossing each other at the right angle.)

6-102

Chapter 6 __Programming

Program description’

(D Acaquires playback teach data. :pa_add pnt

@ Sets T-matrix (=mat1) of teach data coordination system and T—-matrix (=mat0) of

work coordination system.

pa_set_mat
Creates T—matrix (=mat1) of teach data coordination system and T—matrix (=mat0) of
work coordination system.
@ Moves the current point to the top teach data. : pa_chg pnt
pa_mov_pnt
(or pa_axs_pnt)

@ Starts playback control. : pa_ply_pnt

._Examplei for Visual C++

~ MATRIX matO, matl; T -
pa_add_pnt(ARMO, F:’T_PTP); PTP linear interpolation data acquisition
pa_add_pnt(ARMOj PT_PTP); PTP linear interpolation data acquisition
(Work. coordinate matrix creation :mat0)

(teach data coordinate matrix creation:mat1)
pa_set_mat(ARMO, mat0, mat1); Conversion matrix setting

|

|

|

|

|

|

|

|

|

|

i

|

|

|

pa_chg pnt(ARMO, PM_TOP, 0); Current point alternation |
pa_mov_pnt(ARMO, WM_WAIT); Moves to the current point. |
pa_ply_pnt(ARMO, PB_FORE, WM_WAIT); :
Playback control starts |

|

(Coordinate conversion matrix control is performed.)

Dim mat0(3,2) As Single
Dim mat1(3,2) As Single
Dim ret As Long

ret = pa_add_pnt(ARMO, PT_PTP)

ret = pa_set_mat(ARMO, mat0(0,0), mat1(0,0))

ret = pa_chg_ pnt(ARMO, PM_TOP, 0)
ret = pa_mov_pnt(ARMO, WM_WAIT)

|

|

|

|

|

|

|

! .

! ret = pa_add_pnt(ARMO, PT_PTP)
| .

|

|

|

|

|

|

| ret = pa_ply_pnt(ARMO, PB_FORE, WM_WAIT)

6-103

Chapter 6 __Programming

712. 2 Tip position offset control/

Method to control arm providing offset value in actual time in RMRC feedback control.
If brake—stop or feedback control is performed, offset cannot be added.

What is in RMRC feedback control:

*RMRC feedback control servo lock status

*When in playback control.(except PTP axis interpolation data)
*When in RMRC control motion to the current point.

*Waiting status for playback start

There are three coordinate systems able to input offset value. For each of them, absolute
addition and relative addition are provided.

Mechanical interface coordinate system Absolute deviation offset control
Mechanical interface coordinate system Relative deviation offset control
Base coordinate system Absolute deviation offset control
Base coordinate system Relative deviation offset control
Trajectory coordinate system Absolute deviation offset control
Trajectory coordinate system Relative deviation offset control

(Memo)

Trajectory coordinate system means the one on the playback tip trajectory.

Further, more is explained later.

6-104

Chapter 6 __Programming

Absolute deviation

If offset is issued, offset value is added on the basis of playback trajectory.

+100mm
.............. Playback
— Playback trajectory
— | +offset
—100mm
A A A A
+50mm —50mm —70mm +20mm

Offset 1ssued

Relative deviation

If offset is issued, offset value is added to the trajectory having previously added some

offset value.

+100mm
................. Playback
—— Playback
I e trajectory
‘ +offset
—100mm
A A A A
+50mm =50mm =70mm +20mm
Offset issued
Offset Pool method:

Either absolute or relative deviation offset, offset value has a limit to be added, if needed,
in every cycle. Therefore, the method adopted is: to set the offset limit value added in
every cycle, creating offset pool, add the provided offset value little by little in several
cycle.

For example, setting a limit value (5.0 mm) when in offset addition with absolute
deviation offset control (the base coordinate system), offset value (toward X +100.0mm) is
provided.

Adding offset (5.0mm toward X in every cycle), at the twentieth cycle, it reachs 100.0
mm toward X.

6-105

Chapter 6 __Programming

{On absolute and relative deviation offset control in the trajectory coordinate system)

Method to control adding offset value for playback trajectory coordinate system.
The playback trajectory coordinate system is changeable depending on data. Therefore,
the method adopted here is the provided offset value, using trajectory coordinate, when in
adding offset, converts to non changeable base coordinate, then, makes an addition to the
base coordinate system.

How to create playback trajectory coordinate system:
Three teach points of PTP linear interpolation data are defined as P1, P2 and P3

< Trajectory coordinate system 1 (X« Yui« Z,1) from the 15t point P1 to the 2™ point P2>
The direction created by linking linearly from the 1% point P1 to the 2™ point P2 is the
direction of trajectory coordinate system 1 (X,. Y.« Zui)- Solve the direction of
trajectory coordinatey ,; through calculating the direction of mechanical interface
coordinate 1 and vector product of x,,; direction. Finally, Solve trajectory coordinatez,,
from calculatedx,; and vy, direction.

< Trajectory coordinate system 2 (X, Y2~ Z42) from the 2™ point P2 to the 3™ point P3>
Likewise, the direction created by linking linearly from the 2" point P2 to the 3™ point P3
is the direction of trajectory coordinate system 2 (X,,. Vi2+ Zu2). Solve the direction of
trajectory coordinatey ,, through calculating the direction of mechanical interface
coordinate 1 and vector product of x,, direction. Finally, Solve trajectory coordinatez,,
from calculatedx,, and y,, direction.

Mechanical interface Traigctorv
Coordinate 1 Zyy Coordinate 2

Mechanical interface
Coordinate 1

Base coordinate

Traiectorv Y Y
Coordinate 1

6-106

Chapter 6 __Programming

Program description:

(D Starts playback control. :pa_ply pnt
The tip position offset control is available only for the teach data able to control
RMRC feedback.

@ Sets a limit value when in offset value addition. :pa_lmt xyz

Sets offset limit value being added in every cycle, with a [mm] unit. The upper limit
value is 1/100 (one hundredth) of linear limit velocity [mm/sec]. Its unit is
[mm/10msec]. If this value is exceeded, the following warnings occur. The limit
value is replaced with the upper one.

ERR_MIS_ PARAM -1051 the designated parameter value exceeds the setting
range.

@ Sets offset value and coordinate adding tip position offset. : pa_odr xyz
With “trans.Enable” of TRNSMAT structure (TRANSMAT trans) of “pa_odr xyz”, sets
the designated coordinate and mode (absolute and relative deviation).

MODE_xyz :Mechanical interface coordinate system Absolute deviation
(MODE_XYZ1 for Visual Basic)
Offset has to be set at “trans._xyz[3]".
MODEIxyz :Mechanical interface coordinate system Relative deviation
(MODE_XYZ2 for Visual Basic)
Offset has to be set at “trans.Ixyz[3]".
MODE_XYZ:Base coordinate system Absolute deviation
(MODE_XYZ3 for Visual Basic)
Offset has to be set at “trans._XYZ[3]”
MODEIXYZ :Base coordinate system Relative deviation
(MODE_XYZ4 for Visual Basic)
Offset has to be set at trans.IXYZ[3].
MODE_wave : Trajectory coordinate system Absolute deviation
(MODE_WAVET1 for Visual Basic)
Offset has to be set at trans._wave[3].
MODEIwave :Trajectory coordinate system Relative deviation
(MODE_WAVE2 for Visual Basic)
Offset has to be set at trans.Iwave[3].

For this example, with the base coordinate system absolute deviation offset control,
offset 10 mm toward X and 25 mm toward Z are added.

—.. for Visual BASIC . -

i trans.Enable = MODE_XYZ3

| | i
| |
! I trans.xyz21(0) = 100.0 :
: : trans.xyz21(1)= 0.0 |
i i :

for Visual C++ — — — -
trans.Enable = MODE_XYZ;

trans. XYZ[0] = 100.0;
trans. XYZ[1]= 0.0;

trans. XYZ[2] = 25.0; . trans.xyz21(2) = 25.0

6-107

Chapter 6 __Programming

trans.Enable = MODE_XYZ;

Example: for Visual C++

TRANSMAT trans;
long data;

pa_ply_pnt(ARMO, PB_FORE, WM_NOWAIT);Playback control starts

data = 5.0; Limit value when in offset addition = 5.0[mm]

pa_lmt_xyz(ARMO, data); Limit value setting when in offset addition

trans. XYZ[0] = 100.0;
trans. XYZ[1]= 0.0;
trans. XYZ[2] = 25.0;

pa_odr xyz(ARMO, &trans); Offset value setting

Dim trans As TRANSMAT
Dim dat As Long
Dim ret As Long

ret = pa_ply_pnt(ARMO, PB_FORE, WM_NOWAIT)

dat = 5.0
ret = pa_lmt_xyz(ARMO, dat)

trans.Enable = MODE_XYZ3
trans.xyz21(0) = 100.0
trans.xyz21(1)= 0.0
trans.xyz21(2) = 25.0

ret = pa_odr_xyz(ARMO, trans)

6-108

Base coordinate system absolute deviation selection
Offset value toward X = 10.0[mm]
Offset value toward Y
Offset value toward Z

0.0[mm]
5.0[mm]

Chapter 6 __Programming

{ Offset trajectory if PTP axis interpolation data is included in teach data)

As described before, offset control is available when in playback during RMRC feedback
control. At brake—stop status, when in playback during axis feedback control, offset
control is not available. Therefore, if PTP axis interpolation data is together with teach
data, be aware: the trajectory after offset addition will be as follows:

If PTP axis interpolation data is included in teach data, between forward playback and
reverse control, playback trajectory may be different after offset addition. With teach
data including only PTP axis interpolation data, offset cannot be added.

Forward playback Reverse playback
Example 1 i i
o) o) o o)
1 2 3 1 2 3
Example 2
Example 3
Example 4 1 2 3 1 2 3
Teach data after offset value addition
Teach data (PTP linear interpolation data)
Teach data (PTP axis interpolation data)
e -+ Playback trajectory + offset value (RMRC feedback control)
~~~~~~ -+ Playback trajectory
—~ -+ Playback trajectory + offset value (axis feedback control)

Playback trajectory

6-109



Chapter 6

Programming

6. 13 Cube Interference

(1) Cube interference area

Cube interference area is the function to prevent interference from surrounding

machines and tools.

24 (twenty four) cube interference area can be set at maximum.

Cube interference area is set parallel to the base coordinate system.

If the arm interferes with the cube, this arm happens to be automatically in a brake—stop

status. An error is indicated.

(2) Setting methods:

There are three ways to set cube interference area as follows:

@D Input numerically the maximum/minimum value of cube coordinate.

A
7 axis

axis

Minimum value

Vaimumvale |
Cube interference
Y axisg

@ Move the manipulator to the cube maximum/minimum value position with the axis

operation.

Maximum value ”

Y axiseg

/ axis

axis

6-110

Minimum value




Chapter 6 __Programming

® After numerically inputting the cube three side length (axis length), move
the manipulator to the center poimt.

7 axis

axis
l Center point

Y axisg

6-111



Chapter 6 Programming

6. 14 Parameter setting

In the motion control section, arm parameter information is as follows:

The details can be seen from the operation control section with “pa_get prm”. But, It

cannot be altered directly by a program. For alteration, use the operation support

program (parameter setting).

( Reference )

This method can be referred to the operation support program (parameter setting)

instructions.

& WARN I NG If the parameter is altered except the @ marked ones, control cannot

be guaranteed.

.*1
.*1

Arm parameter outline

Designations | Types | Config. Details
PUL float [0-6] | S1~W2 axis upper angle limit [rad]
PDL float [0-6] | S1~W2 axis lower angle limit [rad]
VEL float [0-6] | S1~W2 axis velocity limit [rad/sec]
[7] Linear motion velocity limit [mm/sec]
[8] Rotational motion velocity limit [rad/sec]
DEV float [0-6] | S1~W2 axis standard motion velocity [rad/sec]
[7] Standard Linear motion velocity [mm/sec]
[8] Standard rotational motion velocity [rad/sec]
LIM float [0-6] | Teach modeS1~W2 axis velocity limit [rad/sec]
[7] Teach mode Linear motion velocity limit [mm/sec]
[8] Teach mode Rotational motion velocity limit [rad/sec]
CEH float [0-6] | Teach mode S1~W2 axis fast motion velocity [rad/sec]
[7] Teach mode fast linear motion velocity [mm/sec]
[8] Teach mode fast rotational motion velocity [rad/sec]
CEM float [0-6] | Teach mode S1~W2 axis mid motion velocity [rad/sec]
[7] Teach mode linear mid motion velocity [mm/sec]
[8] Teach mode rotational mid motion velocity [rad/sec]
CEL float [o] Teach mode S1~W2 axis slow motion velocity [rad/sec]
[7] Teach mode linear slow motion velocity [mm/sec]
[8] Teach mode rotational slow motion velocity [rad/sec]
PG float [0-2] | Robot coordinate RMRC control X, Y and Z direction gain
[3-5] | Robot coordinate RMRC control X, Y and Z rotational
direction gain
[6] Position control integral calculus gain
PG2 float [6] S1~W2 axis control gain
VG1 float [0-2] | Tip coordinate RMRGC control X, Y and Z direction gain (not
used)
[3-5] | Tip coordinate RMRC control X, Y and Z rotational
direction gain (not used)
[6] Orientation control integral calculus gain
TG1 float [0-6] | Not used
PCM float [o] Angle control large size (S1, S2) motor angle deviation
anomalous threshold value [rad]

6-112



Chapter 6 Programming

[1] Angle control mid size (S3, E1) motor angle deviation
anomalous threshold value [rad]

[2] Angle control small size (E2, W1, W2) motor angle deviation
anomalous threshold value [rad]

[3] RMR control position deviation anomalous threshold value
[mm]

[4] RMR control orientation deviation anomalous threshold
value [mm]

[5] SC method linear/rotational velocity limit coefficient
(threshold value creation)

[6] SC method axis velocity limit coefficient (threshold value

creation)

6-113




Chapter 6 Programming

Arm parameter outline

Designations | Types | Config. Details
[ ) FCM float [o] RMRC control start—up time [sec]
[ ) [1] RMRC control shut—down time [sec]
[ ) [2] Axis control start—up time [sec]
o [3] Axis control shut-down time [sec]
(4] Direct control parameter (deceleration ratio)
[5] Singularity caution W1 axis position
[6] Singularity caution W1 axis position
ARL float [0-6] | Arm length (S1-S2) ~ (W2-Tool installment position)
[mm]
ARG float [0-6] | Arm gravity center (S1-S2) ~ (W2-Tool installment
position) [mm]
ARW float | [0-6] | Arm weight (S1-S2)~ (W2-TOOL)[[ke]
o HOM float [0-6] | Home position S1~W2 angle [rad]
o SAF float [0-6] | Safety position S1~W2 angle [rad]
[ ) ESC float [0-6] | Escape position ST~W2 angle [rad]
o TOL float [0-2] | Tool length X, Y and Z direction [mm]
[3-5] | Not used
o (6] Tool offset [mm]
FVL float [0] Position integral calculus element limit
[1] Orientation integral calculus element limit
[2] Taper rate when in singularity escape
[3-6] | Not used
DMY long [0-6] | Not used
SPA long [o] Servo driver type *?2
[1] Arm controller numbers *3
[2] Arm axis numbers *#
[3.4] | Not used
[5] RETRAC parameter valid flag *°
[6] RETRAC parameter adjustment mode flag*®
*1 Within ranges shown in axis charts below, upper and lower angle limit can be set.
6—axis arm S1 S2 S3 E1 E2 W1 W2
o 177 124 Not 158 255 165 255
Upper limit [deg]
used
o —177 —64 Not —107 —255 —165 —255
Lower limit [deg]
used
T—axis arm S1 S2 S3 E1 E2 W1 W2
Upper limit [deg] 177 94 174 137 255 165 255
Lower limit [deg] —177 —94 —174 —137 —255 —165 —255

*2 Servo driver type :New type servo =0, Old type 7—axis servo = 7, 8—axis servo = 8

*3 Possible arm controller numbers : usually 2 controllers

*4 Arm axis numbers

:6—axis arm = 6, 7—axis arm = 7 (except 6)

*% RETRAC parameter valid/invalid:not used =0

(Only one arm can be used. When in valid, RETRAC initialization is processed.)
*6 RETRACadjustment mode :not used =0

(It is needed for motion to create ROB and TOL file.)

6-114




Chapter 6 Programming

6. 15 Error Information

Error information is broadly divided in two, as follows:
* Errors recognized by a PA library and a driver of the operation control section.
=Errors recognized by the motion control section
If motion control recognizes an error, control status might be converted.
More explanation, next page.

*PA library recognition errors;

Error No. Details
-1 The specified file does not exist
-2 File read failure
-3 File write failure
-4 Failed to Interrupt into 486
-5 pa_opn_arm() not executed
-6 Memory allocation failure
=7 Parameters are not allowed to be modified while control
-8 A specified degree of Teaching data is out of range
-20 Designated arm not exist
-21 Designated axis not exist
=22 Designated driver not exist
-23 Incorrect mode of playback motion
-24 Wrong Teaching point deletion type
=25 Wrong modification type for Teaching point attribution
-26 Wrong attribution of registered point velocity profile
=27 Wrong data type for Teaching point
-28 Wrong Teaching point operation type
-29 Incorrect mode of default velocity change
-30 Wrong control mode type for velocity
-31 Wrong control mode type for redundant axis
-32 Wrong operation type for redundant axis
-33 Wrong control mode type for target tip matrix
-34 Wrong direct control type
-35 Wrong digital input/output port designation
-36 Wrong digital input/output channel designation
=37 The error code is not defined
-38 Wrong digital input/output board designation
-39 Wrong digital input/output DI or DO designation
-40 Project is not loaded

*WinRT (driver) recognition errors;

Error No. Details
-100 Error occurred in WinRTUnMapMemory
-101 Error occurred in WinRTUnMapMemory2
-200 Error occurred in WinRTOpenNamedDevice
=201 Error occurred in WinRTGetFullConfiguration
-300 Error occurred in WinRTMapMemory
-301 Error occurred in WinRTMapMemory2

6-115



Chapter 6 Programmin

6. 15. 1 Status conversion outline when error occurs

For control section recognition error or control status conversion by warning,
depending on a controller (motion control/servo driver) occurring (recognizing) error, the
difference is as follows:

motion control
control continues

servo continues
communication start

axis control status
RMRC control status
((servo: speed status) )

Brake stop

control ON torque control ON

Brake
stop

X communication | error
communication stop 'llevel-2)

direct control status
(servo:torque status) )

error
'(level-1)

servo stop
communication stop

=warning information —Control status continuing

Among errors recognized by the motion control section, one identified as “warning,” can
be controlled. The motion control might automatically change command value depending
on the error, but, control continues.

=Error information (level 1) —Brake—stop (Communication status continuing)

Among errors recognized by the motion control section, one identified as “error (level
1),” cannot be controlled. The motion control sets the command (brake—on) to the servo
driver, its control status shifts to a brake—stop. As the servo driver status is in control
continuing communication, control commands can be issued at the remaining status.

=Error information (level 2) —Brake—stop (Communication—stop)
With an error recognized by a servo driver, the servo driver status shifts to “waiting.”
The motion control status shifts to brake—stop (communication—stop.) Before issuing
control command, communication—start with a servo driver is needed.

( Memo )

Receiving communication—start command, the servo driver clears errors, then shifts to be

in control.

6-116



Chapter 6 Programming

(1)Warning information —Control Status continuing
Warnings occurring in arm motion controller, are as follows:

Control status is not converted.

Error No. Details

-1000 You are not allowed to access the controller

-1001 Format do not match with command

-1002 Unavailable command under the current mode

-1003 Command invalid

-1004 The specified arm No. does not exist

-1005 Download New ROB File

-1006 Download New TOL File

-1010 S1 axis exceeding speed limit

-1011 S2 axis exceeding speed limit

-1012 S3 axis exceeding speed limit

-1013 E1 axis exceeding speed limit

-1014 E2 axis exceeding speed limit

-1015 | W1 axis exceeding speed limit

-1016 W2 axis exceeding speed limit

-1018 Exceeding tip position velocity limit

-1019 Exceeding tip orientation velocity limit

-1020 S1 axis exceeding safety angle

-1021 S2 axis exceeding safety angle

-1022 S3 axis exceeding safety angle

-1023 E1 axis exceeding safety angle

-1024 E2 axis exceeding safety angle

-1025 | W1 axis exceeding safety angle

-1026 W2 axis exceeding safety angle

-1030 S1 axis exceeding the motion limit of the target angle

-1031 S2 axis exceeding the motion limit of the target angle

-1032 S3 axis exceeding the motion limit of the target angle

-1033 E1 axis exceeding the motion limit of the target angle

-1034 E2 axis exceeding the motion limit of the target angle

-1035 | W1 axis exceeding the motion limit of the target angle

-1036 W2 axis exceeding the motion limit of the target angle

-1038 NOA calculation cannot be executed

-1039 Generation not allowed for keeping Teaching data sequence

-1040 Memory allocation failure

-1041 Prior procedure needed to issue this command

-1042 | Wrong designation for circle or arc

-1043 Next pointer not exist

-1044 Previous pointer not exists

-1045 End of Playback Data

-1046 Playback data not existed

-1047 Failed to find playback data

-1048 | Accepted as replace command

-1049 Accident of pointer management

-1050 | Target value is out of control area. (Arm length is not enough.)

6-117



Chapter 6 Programming

Error No.

details

-1051

Designated parameter exceeded available setting range

-1060 Designated NOA is not appropriate

-1061 End of CP Data is Retrieved as Each Axis Attribution

-1062 Exceeding RMRC controllable range

-1063 Not Available while retrieving CP Data

-1064 Exceeded max No. of interpolation

-1065 Can not generate circle or arc

-1070 S1 axis exceeding angle limit in velocity control

-1071 S2 axis exceeding angle limit in velocity control

-1072 S3 axis exceeding angle limit in velocity control

-1073 E1 axis exceeding angle limit in velocity control

-1074 E2 axis exceeding angle limit in velocity control

-1075 W1 axis exceeding angle limit in velocity control

-1076 W2 axis exceeding angle limit in velocity control

-1080 Too large or too small designated value

-1081 Can not approached by each axis control

-1098 Continuous operation not allowed in teaching mode

-1099 Changed into teaching mode by external operation

-1100 Teach lock can not be turned on except in teaching mode

-1101 Teaching data for specified key not exist

-1103 Cannot change the key of Teaching data

-1200 Interfere range specified No. error

-1201 Having another cube attribution, side length can not be set to this cube

-1202 Having another cube attribution, upper limit teach can not be given to this cube

-1203 Having another cube attribution, lower limit teach can not be given to this cube

-1205 Having another cube attribution, center value teach can not be given to this
cube

-1206 Unknown cube parameter settings

-1207 Having another cube attribution, can not set the information to this cube

-1249 Wrong designating number of key acquisition

-1250 The Teaching data specified by Key doesn’t have the specified ID attribute

-1251 Designated teaching point doesn’t have JUMP data

-1252 The Teaching data specified by Key doesn’t have the number's JUMP data

-1253 The Teaching point specified by ID attribute doesn’t have JUMP data

-1254 JUMP data set in teaching point attribute not found

-1255 | Wrong parameter for retrieving and setting JUMP data

-1256 Wrong parameter for retrieving and setting JUMP data

-1300 Socket generation failure

-1311 Failed to bind socket and address

-1312 Listen failure

-1313 | Accept failure

-1314 Socket sending failure

-1315 Not used

-1316 Too many connected clients

-1350 The motion velocity of the parameter is exceeding the velocity limit. Invalid

parameter

6-118




Chapter 6 Programming

(2) Error Information (Level 1) —Brake is active (Communication status continuing)

Errors occurring when in arm motion controller operation.
With an uncontrollable error, control status changes into a brake—stop status.

Error No. Details

-2017 Exceeding RMRC controllable arm length during the motion

-2020 S1 axis exceeding axis limit angle

-2021 S2 axis exceeding axis limit angle

-2022 S3 axis exceeding axis limit angle

-2023 E1 axis exceeding axis limit angle

-2024 E2 axis exceeding axis limit angle

—2025 | W1 axis exceeding axis limit angle

-2026 W2 axis exceeding axis limit angle

-2030 S1 axis exceeding angle limit in direct control

-2031 S2 axis exceeding angle limit in direct control

-2032 S3 axis exceeding angle limit in direct control

-2033 E1 axis exceeding angle limit in direct control

-2034 E2 axis exceeding angle limit in direct control

—2035 | W1 axis exceeding angle limit in direct control

-2036 W2 axis exceeding angle limit in direct control

-2051 Can not turn into RMRC control from the current position

-2060 S1 resolver deviation error

—-2061 S2 resolver deviation error

-2062 S3 resolver deviation error

-2063 E1 resolver deviation error

-2064 E2 resolver deviation error

—2065 | W1 resolver deviation error

—-2066 W2 resolver deviation error

-2070 Stopped automatically by exceeding checking time

-2071 Did not reach target value

-2080 | S1 Axis Sync. Error (Exceeding deviation limit)

-2081 S2 Axis Sync. Error (Exceeding deviation limit)

-2082 | S3 Axis Sync. Error (Exceeding deviation limit)

-2083 | E1 Axis Sync. Error (Exceeding deviation limit)

-2084 | E2 Axis Sync. Error (Exceeding deviation limit)

-2085 | W1 Axis Sync. Error (Exceeding deviation limit)

-2086 | W2 Axis Sync. Error (Exceeding deviation limit)

-2087 X axis synchronization error in RMRC control

-2088 Y axis synchronization error in RMRC control

-2089 Z axis synchronization error in RMRC control

-2090 Velocity deviation error

-2091 Tip orientation deviation error in RMRC control

-2100 Interfering to cube

-2200 Motion can not be continued or started at the arm singular point

-2201 Motion can not be continued or started at the arm singular point

-2202 Motion can not be continued or started at the arm singular point

6-119



Chapter 6 Programming

(8)Error Information (Level 2) —Brake is active (Communication terminated)

Errors occurring in arm servo driver. Control status changes into a brake—stop status.

Error No. Details
-3000 Control not started
-3001 Emergency stop has been pressed
-3002 Arc net communication error
-3003 S1 limit switch error
-3005 Servo driver type doesn’t match designated parameter
-3070 Communication integral servo (master) status error

-3071 Servo driver (S1) status error

-3072 Servo driver (S2) status error

-3073 Servo driver (S3) status error

-3074 Servo driver (E1) status error

-3075 Servo driver (E2) status error

-3076 Servo driver (W1) status error

-3077 Servo driver (W2) status error

-3091 Error at issuing communication/control start command
-3092 Error at issuing communication/ control terminate command
-3093 Error at issuing initializing command

-4000 Mode management error

Anomalous servo status is shown when occurring alarm is not 00H.

( Reference )

Refer to each servo status.

6-120



Chapter 6

Programming

Communication control (master) CPU status:

bit Error details Movement when
in anomalous
status
15
Control 1 :Non control mode
14
Mode 0: Control mode
13 Limit switch 1 :limit switch off
status O :limit switch on
12 Switch status 1 : Switch on during teaching
during teaching O: Switch off during teaching
0x00 Normal
0x01
0x02 Anomalous EEPROM Do not convert to
0x03 Anomalous ARCNET initialization control mode (1)
11 0x04 Anomalous CPU
| Occurring alarm | 0x05 Anomalous upper controller Converts to
communication cycle adjustment/ stop
4 0x06 Anomalous power supply temperature mode. (¥1)
0x07 Anomalous 100V output
0x10 Anomalous other CPU
- Converts to
0x11 Emergency stop switch on .
0x12 Dead man switch off adjustment/ stop
mode.
0x13 Limit switch on
3 Emergency stop 1 :Emergency stop switch off
switch status 0:Emergency stop switch on
) 100V 1 :Generating 100V power
generating status | Q. Stop generating 100V power
power supply 1 : Anomalous power supply temperature
1 temperature O:Normal
status
0 Dead man switch | 1:Dead man switch on
status 0:Dead man switch off
(%1) If alarm at 0x02~0x07 occurs in communication control CPU, it is different

from any other CPU anomaly.

“brake on/servo off.”

6-121

Servo CPU instantly stops arm motion with




Chapter 6 Programming

Servo driver (S1 ~ W2) status:

bit bit Error details
15 Servo 1:Servo OFF (Brake ON)
ON/OFF | O:Servo ON(Brake OFF)
14 Control 1 :Non control mode
Mode 0: Control mode
13
12
0x00 Normal
0x01  Anomalous shared memory Do not convert to
control mode
0x02 Anomalous EEPROM Do not convert to
control mode
0x03
0x04 Anomalous CPU
0x05 Anomalous communication CPU
transmission cycle
11 0 . 0x06 Anomalous velocity deviation
ceurring
| alarm 0x07 Anomalous resolver deviation Brake on/servo off
4 0x08 Anomalous position limit exceeded Brake on/servo off
0x09 Anomalous motor torque
O0x0A Anomalous IPM
0xOB Anomalous brake
severance/short—circuit
0x0C Anomalous resolver (motor side)
severance/short—circuit
0xOD Anomalous resolver (gear side)
severance/short—circuit
OxOE Anomalous overcurrent
OxOF Anomalous overvelocity
0x10  Anomalous different CPU
Ox11  Emergency stop switch on Servo lock when in
anomaly occurrence,
0x12 Dead man switch off After a certain time,
brake—on.
0x13  Limit switch on After a certain time,
servo—off.
OxFF Anomalous communication cycle
(*1)
3
2
Forbidden 1:Angle — side limit operation forbidden
1 status — side drive
- side drive | O:Normal
Forbidden 1 :Angle + side limit operation forbidden
0 status + side drive
+ side drive | O:Normal

6-122




Chapter 6 Programming

(*1) Anomalous communication cycle: servo CPU always provides CPU information
in constant cycle to communication control CPU. If this information transmission
stops for a certain time, communication control CPU recognizes its servo CPU as

anomalous communication cycle.

(Example) For OxC060
Ox G 06 O
C: (Control mode) —Servo OFF + Non control mode
06: (Current alarm) — Anomalous velocity deviation
O: (Drive forbidden) —Normal

6-123



Chapter 6 Programming

6-124



Chapter 7 Library Reference

Chapter 7 L /brary Referernce

Chapter 7 & 8 are for PA library reference.

Regarding a header file, two types below are explained to be included following an
application development language.

*Visual C++ (Windows)

*Visual BASIC (Windows)

For function reference, it is explained as C programming language.

7-1



Chapter 7 Library Reference

<Header file for Visual C++ (Windows)>

-Data types with specific significance:

typedef float MATRIX[3][4]; 3 X 4 matrix indicating the tip position/orientation, etc.
NnXx oOx ax px
ny oy ay py
nz oz az pz

typedef float NOAMAT[3][3]; 3 X 3 matrix indicating the tip orientation,
nx ox ax
ny oy ay

nz oz az

typedef float VECTOR[3]; Tip position vector, etc.
( px, py, pz )

*Data types when in processing end:

#define WM_WAITO Returns from function after processing ends.
#define WM_NOWAIT 1 Returns from function before processing ends.

7-2



Chapter 7 Library Reference

PA library Data Structure (for Windows Visual C++)

*Axis data structure: 6-axis/7-axis angle storing structure:

typedef struct {

float sT; S1 axis value [rad]
float s2; S2 axis value [rad]
float s3; S3 axis value [rad]
float ef; E2 axis value [rad]
float e2; E3 axis value [rad]
float wi; W1 axis value [rad]
float w2; W2 axis value [rad]

JANGLE, *ANGLEP;

*Arm Status Structure .. Structure set by the motion controller:

typedef struct {

long max; Board controllable arm numbers  1or2
long arm; Arm identification number Oor1

long axis; Arm axis numbers

long typ; Arm type

long drv; Servo driver classification

long dio; Extension DIO board exist / not exist
long remote; operation mode (valid / invalid)

long count; Control counter value

long error; Error code

ANGLE angle; Current axis value

MATRIX noap; Current tip orientation matrix

float ypr[3]; Current orientation

JARMSTATUS, *ARMSTATUSP;

7-3



Chapter 7 Library Reference

PA library Data Structure (for Windows Visual C++)

*Parameter Structure:

typedef struct{

float rezl;
long pul[7];
long pdI[7];

long vel[7+2];
long dev[7+2];
float lim[7 + 2]:
float ceh[7 + 2];
float cem[7 + 2];
float cell7 + 2];
float pgl[7];
float pg2[7];
float vgl[7];
float tg1[7];
float pcm[7];
float fem[7];
float arl[7];
float arg[7];
float arw[7];
float hom[7];
float saf[7];
float esc[7];
float tol[7];
float fviI[7];
long dmyl[7];
long spal7];
JPARAM, *PARAMP;

-Digital I/O Sstructure:

typedef struct{

unsigned char iol;
unsigned char i02;
unsigned char io3;
unsigned char io4;

IDIOSTATUS, *DIOSTATUSP;

7-4

Resolver resolution
Position limiter (+)
Position limiter (—)
Velocity limiter
Default velocity

Position control gaini

Position control gain2

Velocity control gain

Force control gain

position control selection matrix
Force control selection matrix

Arm length

Axis gravity center position

Axis weight

Home position recovery target value
Safety position recovery target value
Escape position recovery target value
Tool parameter

Spare



Chapter 7

Library Reference

PA library Data Structure (for Windows Visual C++)

= Teach data structure:

typedef struct {
float agl[7];

float vel[2];

long atr[12];

JPNTPNT, *PNTPNTP;

typedef struct {
PLYPNT pnt;

char cmt[32];

} PLAY, *PLAYP;

typedef struct {
float xyz[3];

float noa[3][3];

} NOAP, *NOAPP:

S1 axis value

S2 axis value

S3 axis value

E1 axis value

E2 axis value

W1 axis value

W2 axis value

Tip linear motion velocity[mm/sec]

Axis /Tip rotational motion velocity [rad/sec]

Teach data type:PTP./PTP(NOAP)

Interpolation method: Axis/Straight line/Circle/Arc

Axis control arm stop accuracyl]

RMRC control arm stop accuracy []

Velocity interpolation pattern: Constant
velocity/start up/shutdown/start up +
shutdown

Start up time : Acceleration time designation[msec]

Shutdown time : Deceleration time designation [msec]

JUMP data number : Number specifying JUNP

condition

DO output

Waiting time : Motion start delay time[msec]

Comment

Position : Arm XYZ coordinate [mm]
Position :Arm NOA

7-5



Chapter 7 Library Reference

PA library Data Structure (for Windows Visual C++)

JUMP Data Structure:

typedef struct {
long cnd[2]; JUMP conditional number

Spare
long xdi; DI condition for Conditional appraisal
long tim; Time out
long key; JUMP destination teach data Key
long pid; JUMP destination teach point ID
long cnt;
JMUDGE, *JUDGEP;
typedef struct {
long cid;
JUDGE jdg[8];
JJUMP, *JUMPP;
typedef struct { . . . . Teach data structure
PLAY ply;
NOAP noa;
JUMP  jmp;

IPNTDAT, *PNTDATP;

7-6



Chapter 7 Library Reference

PA library Data Structure (for Windows Visual C++)

=Sensor correction data structure:

typedef struct {

long Enable; Designation bit

float xyz[3]; Mechanical interface coordinate absolute
deviation correction value

float Ixyz[3]; Mechanical interface coordinate relative
deviation correction value

float _XYZ[3]; Base coordinate absolute deviation
correction value

float IXYZ[3]; Base coordinate relative deviation correction
value

float _wave[3]; Trajectory coordinate absolute deviation

correction value
float Iwave[3]; Trajectory coordinate relative deviation
correction value
} TRANSMAT, *TRANSMATP;

*Arm target value structure:

typedef struct {

ANGLE angle; Target value
MATRIX noap; Tip position/orientation matrix
float ypr[3];  Tip position

} ARMTARGET, *ARMTARGETP;

=Structure to send commands from the motion control to the servo driver:

typedef struct {

long sig;

long trq;

long vel;
} O8DRIVE;

*Structure to send commands from the servo driver to the motion control:

typedef struct {

long sts;

long agl;

long vel;

long trq;
} ISDRIVE;

7-7



Chapter 7

Library Reference

PA library Data Structure  (for Windows Visual C++)

«CUBE information structure

typedef struct]
long ena;
long mod;

float max[3];

float min[3];

char cmt[32];
} CUBE, *CUBEP

-Debug structure:

typedef struct {
long Idbg[16];

float fdbg[321:

} DEBG, *DEBGP;

7-8

Cube information Valid/Invalid
Mode when in cube creation
Maximum value.” Side length
Minimum value./ Center
Comment



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual C++)

*Data transmission format numbers.

#define COM_FMTOO
#define COM_FMTO1
ttdefine COM _FMTO02
#define COM_FMTO3
#define COM_FMTO04
#define COM_FMTO05
#define COM_FMTO06
ttdefine COM _FMTO7
#define COM_FMTO8
ttdefine COM_FMTO09
#define COM_FMT10
#define COM_FMTI11

—_ = © 0N O 1A~ W N = O

— O

*Arm classification: Control arm number selection:

typedef unsigned long ARM;

#define ARMO  (ARM)O Arm No. 0 selection
#define ARM1  (ARM)1 Arm No. 1 selection
#define ARM2  (ARM)2 Arm No. 2 selection
#define ARM3  (ARM)3 Arm No. 3 selection
#define ARM4 (ARM)4 Arm No. 4 selection
#define ARM5 (ARM)5 Arm No. 5 selection
#define ARM6  (ARM)6 Arm No. 6 selection
#define ARM7  (ARM)7 Arm No. 7 selection
#define ARM8 (ARM)8 Arm No. 8 selection
#define ARM9  (ARM)9 Arm No. 9 selection
#define ARM10 (ARM)10 Arm No. 10 selection
#define ARM11 (ARM)11 Arm No. 11 election
#define ARM12 (ARM)12 Arm No. 12 selection
#define ARM13 (ARM)13 Arm No. 13 selection
#define ARM14 (ARM)14 Arm No. 14 selection
#define ARM15 (ARM)15 Arm No. 15 selection

7-9



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual C++)

*Axis classification: Control axis number selection:

typedef unsigned long AXIS;

#define S1 (AXIS)0x01 S1 axis designation
#define S2 (AXIS)0x02 S2 axis designation
#define S3 (AXIS)0x04 S3 axis designation
#define E1 (AXIS)0x08 E2 axis designation
#define E2 (AXIS)0x10 E3 axis designation
#define W1 (AXIS)0x20 W1 axis designation
#define W2 (AXIS)0x40 W2 axis designation
#define AXISALL (S1|S2|S3|E1|E2|W1|W2)

#define ALLAXIS (S1|S2|S3|E1|E2|W1|W2)

#define LOCKAXIS S1 (S2|S3|E1|E2|W1|W2)
#define LOCKAXIS S3 (S1|S2|E1|E2|W1|W2)

=Servo driver classification: Control servo driver number selection:

typedef unsigned long DRIVER;

#define DRV1  (DRIVER)O Servo driver 1 (S1, S2)
#define DRV2  (DRIVER)1 Servo driver 2 (S3, E1)
#define DRV3  (DRIVER)2 Servo driver 3 (E2, W1)
#define DRV4  (DRIVER)3 Servo driver 4 (W2)

7-10



Chapter 7

Library Reference

PA library characteristic type definition (for Windows Visual C++)

typedef
#define
#define
#define

#define

unsigned long
PB_FORES
PB_FOREB
PB_FORE

PB_BACK

PLAYBACK;

(PLAYBACK)O
(PLAYBACK)1
(PLAYBACK)2

(PLAYBACK)3

= Teach data deletion operation classification:

typedef
#define
#define

#define
#define

unsigned long
PD_CUR
PD_FORE

PD_ALL
PD_ALLDATA

PNTDEL,;

Forward playback step motion
Not available

Forward playback consecutive
motion

Reverse playback consecutive
motion

(PNTDEL)0Ox7500 Current point teach data deletion
(PNTDEL)0x7501 Previous current point teach data

deletion

(PNTDEL)0Ox7502 All active teach data deletion

(PNTDEL)O

= Teach data attribution alteration classification:

typedef
#define
#define
#define
#define
#define
#define
#define

unsigned long
PA_CHGVEL
PA_CHGWAIT
PA_VELPTN
PA_ROTVEL
PA_AXSACC
PA_RMRCACC
PA_JUMPID

= Teach data type classification:

typedef
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

unsigned long

PNTATTR;

(PNTATTR)0x7300
(PNTATTR)0x7301
(PNTATTR)0x7302
(PNTATTR)0x7303
(PNTATTR)0x7304
(PNTATTR)0x7305
(PNTATTR)0x7306

PNTTYPE;

All teach data deletion

Linear velocity alteration
Wait time alteration

Velocity interpolation
Rotational velocity alteration
Each axis precision

Straight line precision

JUMP conditional number

PT.CP  (PNTTYPE)0Ox710

PT_PTP (PNTTYPE)Ox7101
PTBCP (PNTTYPE)Ox7102
PT_BPTP (PNTTYPE)0x7103
PT_ARC1 (PNTTYPE)Ox7104
PT_ARC2 (PNTTYPE)0x7105
PT_ARC3 (PNTTYPE)0x7106
PT_CIR1 (PNTTYPE)Ox7107
PT_CIR2 (PNTTYPE)Ox7108
PT_CIR3 (PNTTYPE)Ox7109
PT_AXS (PNTTYPE)Ox710a

Not available

Loading axis value for linear interpolation
Not available

Linear interpolation axis value insertion
Arc 15t point axis value loading

Arc 2™ point axis value loading

Arc 3¢
Circle
Circle 2™
3rd
Loading axis value for axis interpolation

point axis value loading

1%t point axis value loading

point axis value loading

Circle point axis value loading

PT_BAXS (PNTTYPE)Ox710b Inserts axis value for axis interpolation

PT POS (PNTTYPE)Ox710c

Loading NOAP for linear interpolation

PT_BPOP (PNTTYPE)0x710d Inserts NOAP for linear interpolation
PT_ARC4 (PNTTYPE)Ox710e Arc 1% point NOAP loading

PT_ARC5 (PNTTYPE)Ox710f
PT_ARC6 (PNTTYPE)Ox7110
PT CIR4 (PNTTYPE)Ox7111

PT_CIR5 (PNTTYPE)0x7112 Circle 2™

Arc 2" point NOAP loading

Arc 3¢ point axis value loading
Circle 1% point NOAP loading
point NOAP loading

PT_CIR6 (PNTTYPE)Ox7113 Circle 3rd point NOAP loading

7-11



PA library characteristic type definition (for Windows Visual C++)

Chapter 7

= Teach data pointer operation classification:

typedef
#define
#define
#define
#define
#define

#define

#define

unsigned long PNTMOVE;
PM_TOP (PNTMOVE)0x7100
PM_NEXT (PNTMOVE)0x7101
PM_PRIV (PNTMOVE)0x7102
PM_BTM (PNTMOVE)Ox7103
PM_JMP (PNTMOVE)0x7104

PM_CIR (PNTMOVE)0x7105

PM_ARC (PNTMOVE)0x7106

*Default velocity alteration classification:

typedef
#define

#define

#define

unsigned long VELTYPE;

VT_ONEVEL (VELTYPE)O
VT_XYZVEL (VELTYPE)1
VT_YPRVEL (VELTYPE)2

=Velocity control mode classification:

typedef
#define
#define
#define

#define

#define
#define

#define

unsigned long VELMODE;

Library Reference

Moves pointer to top.

Pointer forward, once.

Pointer backward, once.

Moves pointer to bottom.

Moves pointer to designated
number.

Circle teach point searched,
moving pointer to teach point
found first.

Arc teach point searched, moving
pointer to teach point found first.

Each axis default velocity
alteration

Tip position default velocity
alteration

Tip orientation default velocity
alteration

VM_XYZ (VELMODE)Ox200 Base coordinate linear velocity control
VM_YPR (VELMODE)0x201 Base coordinate rotational velocity control

VM_xyz

(VELMODE)0x202 Mechanical interface coordinate linear

velocity control

VM_ypr

(VELMODE)0x203 Mechanical interface coordinate rotational

velocity control
VM ONE (VELMODE)0x204 Each axis velocity control

VM_XYZYPR (VELMODE)0x205

VM xyzypr (VELMODE)0x206

7-12

Base coordinate linear/rotational
velocity control

Mechanical interface coordinate

linear/rotational velocity control



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual C++)

*Redundant axis control mode classification: / 7-axis arm function /

typedef unsigned long JOUMODE;

#define JM_SET (JOUMODE)0x345 Redundant axis control parameter
operation start

#define JM_RESET (JOUMODE)0x346 Redundant axis control parameter
reset

#tdefine JM_VSET (JOUMODE)0x347 Redundant axis velocity control
mode

#define JM_ON (JOUMODE)0x348 Redundant axis control all axes
restriction mode

#define JM_OFF (JOUMODE)0x349 Redundant axis control restriction
release

#define JM_S3ON (JOUMODE)0x34a Redundant axis control only S3
axis restriction mode

#define JM_S3DIV (JOUMODE)0x34b Redundant axis control S3 axis
interpolation restriction mode

#tdefine JM_S3HOLD (JOUMODE)0x34c Redundant axis control S3 axis

fixation restriction mode

typedef unsigned long JOUTYPE;

#define JT_RIGHT (JOUTYPE)1 Moves redundant axis restriction
parameter to the right.

#define JT_HOLD (JOUTYPE)O Holds redundant axis restriction
parameter.

#define JT LEFT (JOUTYPE)-1 Moves redundant axis restriction

parameter to the left.

- Target tip matrix control mode classification:

typedef unsigned long MOVEMODE;

#define MM_XYZ (MOVEMODE)0x5680 Tip position control

#define MM_NOA (MOVEMODE)0x5681 Tip orientation control

#define MM_XYZNOA (MOVEMODE)0x5682 Tip position/orientation
control

7-13



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual C++)

Direct control classification: (Optional function)

typedef unsigned long DIRECTMODE;

#define DM _STOP (DIRECTMODE)0 Direct control stop
#define DM_START (DIRECTMODE)1 Direct control start
#define ARM_STANDING 1 Floor mounted

#define ARM_HANGING -1 Suspending from ceiling

*DIO port numbers:

typedef unsigned long DIOPORT;

#define DP_PORT1 (DIOPORT)0 DIO 1 port selection
#define DP_PORT2 (DIOPORT)1 DIO 2 port selection
#define DP_PORT3 (DIOPORT)2 DIO 3 port selection
#define DP_PORT4 (DIOPORT)3 DIO 4 port selection
#define DPO_PORT1 (DIOPORT)4 DO 1 port selection
#define DPO _PORT2 (DIOPORT)5 DO 2 port selection
#define DPO_PORTS3 (DIOPORT)6 DO 3 port selection
#define DPO_PORT4 (DIOPORT)?7 DO 4 port selection
#define DPX_PORTI1 (DIOPORT)S8 DO 1 port selection
#define DPX_PORT2 (DIOPORT)9 DO 2 port selection
#define DPX PORT3 (DIOPORT)10 DO 3 port selection
#define DPX_PORT4 (DIOPORT)11 DO 4 port selection

( Memo |

DPO_XXXXX is used when acquiring contents set to be outputted by PA library.
DPX_XXXXX is used when acquiring current output value (related to information in PA
library or playback data).

*DIO channel numbers:

typedef unsigned long DIOCH;

#define DC_CH1 (DIOCH)O Channel 1 selection
#define DC_CH2 (DIOCH)1 Channel 2 selection
#define DC_CH3 (DIOCH)2 Channel 3 selection
#define DC_CH4 (DIOCH)3 Channel 4 selection
#define DC_CH5 (DIOCH)4 Channel 5 selection
#define DC_CH6 (DIOCH)5 Channel 6 selection
#define DC_CH7 (DIOCH)6 Channel 7 selection
#define DC_CH8 (DIOCH)7 Channel 8 selection

714



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual C++)
=Sensor correction coordinate classification:
TRANSMODE:;
(TRANSMODE)0x01

typedef unsigned long
#define MODE_xyz Adds absolute correction
value in the mechanical
interface coordinate
system

#define MODEIxyz

(TRANSMODE)0x02 Adds relative correction

value in the mechanical

interface coordinate

system
#define MODE_XYZ (TRANSMODE)0x04 Adds absolute correction
value in the base
coordinate system
#define MODEIXYZ (TRANSMODE)0x08 Adds relative correction
value in the base
coordinate system
#define MODE_wave (TRANSMODE)0x10 Adds absolute correction
value in the trajectory
coordinate system
#define MODElwave (TRANSMODE)0x20 Adds relative correction
value in the trajectory

coordinate system

= Teach point attribute designation:

typedef unsigned long

#define

PA_SETID

PNTID;
(PNTID)0x7304

*Circle & arc teach point number designation:

typedef unsigned long PNTNO;

#define PN._1 (PNTNO)1
#define PN_2 (PNTNO)2
#define PN_3 (PNTNO)3

~JUMP data valid/invalid (in teach data)

typedef unsigned long JUMPONOFF;

#define JMP_ON (JUMPONOFF)1

#define JMP_OFF (JUMPONOFF)0 Invalid
~JUMP data valid/invalid (in JUMP data)

typedef unsigned long JUMPENABLEDISABLE;

#define
#define

JMPENABLE
JMPDISABLE

(JUMPENABLEDISABLE)0x01000000 Valid

(JUMPENABLEDISABLE)0x00000000

7-15

Invalid



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual C++)

~JUMP Command
typedef unsigned long JUMPORDER;
#define NO_JUMP (JUMPORDER)0x00010000 Unconditional JUMP
#define DI_JUMP (JUMPORDER)0x00020000 DI conditional JUMP
#define DIWAITJUMP (JUMPORDER)0x00030000 DI conditional WAITJUMP
#define DIWAIT (JUMPORDER)0x00040000 DI conditional WAIT
*JUMP Condiitional Logic
typedef unsigned long JUMPDILOGIC;
#define LEVEL_ON (JUMPDILOGIC)0x00000100
#define LEVEL_OFF (JUMPDILOGIC)0x00000200
#define EDGE_ON (JUMPDILOGIC)0x00000400
#define EDGE_OFF (JUMPDILOGIC)0x00000800

~JUMP ticket—oriented DI

typedef unsigned long DIOKIND;
#define DIO_INTERNAL (DIOKIND)0x00000000 System
#define DIO_EXTERNAL (DIOKIND)0x00000001 User

= Teaching place when in CUBE creation:

typedef unsigned long CUBEPNT;

#define MAXPNT (CUBEPNT)1

#define MINPNT (CUBEPNT)2

#define CENTERPNT (CUBEPNT)3
*Mask setting:

typedef unsigned long DIOMASK;

#define DIMSK (DIOMASK)O0

#define DOMSK (DIOMASK)1
RETRAC ON/OFF:

typedef unsigned long RETRACG;

#define RETRACOFF (RETRAC)0
#define RETRACON (RETRAC)1

7-16



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual C++)

=CUBE information:
typedef unsigned long CUBEINFO;
#define NOCUBE (CUBEINF0O)0x00000000
#define CUBEON (CUBEINF0)0x00000001
#define CUBEMAX (CUBEINFO)0x00000002
#define CUBEMIN (CUBEINFO)0x00000004
#define CUBECENTER (CUBEINFO)0x00000008
#define CUBESIDE (CUBEINFO)0x00000010
=TEACH MODE
typedef unsigned long TEACHMODE;
#define TEACH_OFF (TEACHMODE)O
#define TEACH_LOW (TEACHMODE)1
#define TEACH_MID (TEACHMODE)2

#define TEACH_HIGH (TEACHMODE)3

=TEACH LOCK
typedef unsigned long TEACHLOCK;
#define LOCK_OFF (TEACHLOCK)O0
#define LOCK_ON (TEACHLOGCK)1

=Communication status with servo driver:

typedef unsigned long COMSTATUS;

#define STP_STATUS (COMSTATUS)0

#define MOV_STATUS (COMSTATUS)1

#define SIM_STATUS (COMSTATUS)2
“for RETRAC:

#define MOD_ROBFILE
#define MOD_TOLFILE 2

=for Dead man switch:
#define SET_.DDM 3

717



Chapter 7 Library Reference

< Header file for Visual BASIC (Windows)>

-Data type when in processing end:_

Public Const WM_WAIT As Long =0 Returns from function after
processing ends.
Public Const WM_NOWAIT As Long = 1 Returns from function before

processing ends.

7-18



Chapter 7 Library Reference

PA library data structure (for Windows Visual BASIC)

*Axis data structure: 6-axis/7-axis angle storing structure
Type ANGLE
S1 As Single S1 axis value [rad]
S2 As Single S2 axis value [rad]
S3 As Single S3 axis value [rad]
E1 As Single E1 axis value [rad]
E2 As Single E2 axis value [rad]
W1 As Single W1 axis value [rad]
W2 As Single W2 axis value [rad]
End Type

*Arm status structure: Structure set by the motion controller

Type ARMSTATUS

max As Long Board controllable arm numbers 1or2
ARM As Long Arm identification number Oor1
Axnum As Long Arm axis numbers
typ As Long Arm type
drv As Long Servo driver classification
dio As Long Extension DIO board  exist / not exist
remote As Long operation mode (valid / invalid)
count As Long Control counter value
error As Long Error code
agl As ANGLE Current axis value
NOAP(3, 2) As Single Current tip orientation matrix
ypr(2) As Single Current orientation
End Type

7-19



Chapter 7 Library Reference

PA library data structure (for Windows Visual BASIC)

*Parameter Structure:

Type PARAM
rezl As Single Resolver resolution
pul(6)  As Long Position limiter (+)
pdi(6) As Long Position limiter (=)
vel(8) As Long Velocity limiter
dev(8) As Long Default velocity
lim(8) As Single Teach mode velocity limit
ceh(8) As Single Teach mode fast motion velocity
cem(8) As Single Teach mode medium motion velocity
cel(8) As Single Teach mode slow motion velocity
pgl(6) As Long Position control gaini
pg2(6) As Long Position control gain2
vgl(6) As Long Velocity control gain
tg1(6)  As Long Force control gain
pcm(6) As Long position control selection matrix
fcm(6)  As Long Force control selection matrix
arl(6) As Long Arm length
arg(6)  As Long Axis gravity center position
arw(6) As Long Axis weight
rfp(6) As Long Home position recovery target value
rsp(6)  As Long Escape position recovery target value
rop(6) As Long Recovery target value for other points
tol(6) As Long Tool parameter
fvi(6) As Single Control parameter
dmy(6) As Long Not available
spa(6) As Long Spare

End Type

720



Chapter 7 Library Reference

PA library data structure (for Windows Visual BASIC)

= Teach data structure:

Type PNTPNT
agl(6) As Single S1 axis value
S2 axis value
S3 axis value
E1 axis value
E2 axis value
W1 axis value
W2 axis value

vel(1) As Single Tip linear motion velocity
Tip rotational motion velocity
atr(11) As Long Teach data type: PTP/PTP(NOAP)
Interpolation method: Axis/Straight
line/Circle/Arc

Axis control arm stop accuracy []
RMRC control arm stop accuracy []
Velocity interpolation pattern:
Constant velocity/start
up/shutdown/start up + shutdown
Start up time: Acceleration time designation
[msec]
Shutdown time: Deceleration time
designation [msec]
JUMP data number:
Number specifying JUNP condition
DO output
Waiting time : Motion start delay time [msec]

End Type
Type PLAY
pnt As PLYPNT
cmt As String * 32 Comment
End Type
Type NOAP
xyz(2) As Single Position: Arm XYZ coordinate [mm]
noa(2, 2) As Single Position :Arm NOA
End Type

721



Chapter 7 Library Reference

PA library data structure (for Windows Visual BASIC)

JUMP Data Structure:

Type JUDGE
cnd(1) As Long  JUMP conditional number Spare
xdi As Long DI condition for Conditional appraisal
tim As Long Time out
key As Long JUMP destination teach data Key
pid As Long JUMP destination teach point ID
cnt As Long

End Type

Type JUMP
cid As Long
ideg(7) As JUDGE

End Type

Type PNTDATA

ply As PLAY
noa As NOAP
jmp As JUMP
End Type
-Digital I/ 0O structure:

Type DIOSTATUS

Io1 As Byte DIO (tool) 1 value
lo2 As Byte DIO (tool) 2 value
Io3 As Byte DIO (tool) 3 value
lo4 As Byte DIO (tool) 4 value

End Type

722



Chapter 7 Library Reference

PA library data structure (for Windows Visual BASIC)

=Sensor correction data structure:

Type TRANSMAT

Enable As Long Designation bit
xyz11(2) As Single Mechanical interface coordinate absolute deviation
correction value
xyz12(2) As Single Mechanical interface coordinate relative deviation
correction value
xyz21(2) As Single Base coordinate absolute deviation correction value
xyz22(2) As Single Base coordinate relative deviation correction value
wave1(2) As Single Trajectory coordinate absolute deviation correction
value
wave2(2) As Single Trajectory coordinate relative deviation correction
value
End Type

*Arm target value structure:

Type ARMTARGET

agl As ANGLE Target angle
noap(3, 2) As Single Target tip position/orientation
ypr(2) As Single Target tip orientation

End Type

=Structure to send commands from the motion control to the servo driver:

Type O8DRIVE
sig As Long
trq As Long
vel As Long
End Type

=Structure to send commands from the servo driver to the motion control-

Type I8DRIVE
sts As Long
agl As Long
vel As Long
trq As Long
End Type

723



Chapter 7 Library Reference

PA library data structure (for Windows Visual BASIC)

«CUBE information structure:

Type CUBE
ena As Long Cube information valid/invalid
mod As Long Mode when in cube creation
max(2) As Single Maximum value.”Side length
min(2) As Single Minimum value / Center
cmt As String * 32 Comment

End Type

-Debug structure:
Type DEBG

Idbg(15) As Long
fdbg(31) As Single
End Type

724



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual BASIC)

*Arm classification: Control arm number selection:

Public Const ARMO As Long =0 Arm No. 0 selection
Public Const ARM1 As Long =1 Arm No. 1 selection
Public Const ARM2 As Long =2 Arm No. 2 selection
Public Const ARM3 As Long = 3 Arm No. 3 selection
Public Const ARM4 As Long =4 Arm No. 4 selection
Public Const ARM5 As Long =5 Arm No. 5 selection
Public Const ARM6 As Long =6 Arm No. 6 selection
Public Const ARM7 As Long =7 Arm No. 7 selection
Public Const ARM8 As Long = 8 Arm No. 8 selection
Public Const ARM9 As Long =9 Arm No. 9 selection

Public Const ARM10 As Long = 10
Public Const ARM11 As Long = 11
Public Const ARM12 As Long = 12
Public Const ARM13 As Long = 13
Public Const ARM14 As Long = 14
Public Const ARM15 As Long = 15

Arm No. 10 selection
Arm No. 11 selection
Arm No. 12 selection
Arm No. 13 selection
Arm No. 14 selection
Arm No. 15 selection

*Axis classification: Control axis number selection:

Public Const S1 As Long = &H1
Public Const S2 As Long = &H2
Public Const S3 As Long = &H4
Public Const E1 As Long = &H8
Public Const E2 As Long = &H10
Public Const W1 As Long = &H20
Public Const W2 As Long = &H40

S1 axis designation
S2 axis designation
S3 axis designation
E2 axis designation
E3 axis designation
W1 axis designation
W2 axis designation

Public Const AXISALL
Public Const LOCKAXIS_S1
Public Const LOCKAXIS_S3

As Long=S81+S82+S3+E1+E2+W1+W2
As Long =S2 +S3 + E1 +E2 + W1 + W2
As Long=S1+S2 +E1+E2+ W1+ W2

=Servo driver classification. Control servo driver number selection:

Public Const DRV1 As Long =0
Public Const DRV2 As Long = 1
Public Const DRV3 As Long = 2
Public Const DRV4 As Long = 3

Servo driver 1 (S1, S2)
Servo driver 1 (S3, E1)
Servo driver 1 (E2, W1)
Servo driver 1 (W2)

7-25



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual BASIC)

*Playback motion classification:

Public Const PB_FORES As Long =0 Forward playback step motion

Public Const PB_BACKS As Long = 1 Not available

Public Const PB_FORE As Long = 2 Forward playback consecutive
motion

Public Const PB_.BACK As Long = 3 Reverse playback consecutive
motion

= Teach data deletion operation classification:

Public Const PD_CUR As Long = &H7500 Current point teach data deletion

Public Const PD_FORE As Long = &H7501 Previous current point teach data
deletion

Public Const PD_ALL As Long = &H7502 All active teach data deletion

Public Const PD_ALLDATA As Long = &H7502 All teach data deletion

=Teach data attribution alteration classification:

Public Const PA.CHGVEL As Long = &H7300 Linear velocity alteration when in
playback

Public Const PA_.CHGWAIT As Long = &H7301 Wait time alteration when in
playback

Public Const PA_VELPTN  As Long = &H7302 Velocity interpolation pattern
alteration when in playback

Public Const PA.ROTVEL As Long = &H7303 Rotational velocity alteration when
in playback

Public Const PA_.AXSACC As Long = &H7304 Each axis precision

Public Const PA.RMRCACC As Long = &H7305 Straight line precision

Public Const PA_JUMPID  As Long = &H7306 JUMP conditional nhumber

7-26



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual BASIC)

= Teach data type classification:

Public Const PT_CP
Public Const PT_PTP

Public Const PT_BCP
Public Const PT_BPTP

Public Const PT_ARC1
Public Const PT_ARC2
Public Const PT_ARC3
Public Const PT_CIR1
Public Const PT_CIR2
Public Const PT_CIR3
Public Const PT_AXS

Public Const PT_BAXS

Public Const PT_POS
Public Const PT_BPOS

Public Const PT_ARC4
Public Const PT_ARC5
Public Const PT_ARC6
Public Const PT_CIR4
Public Const PT_CIRS
Public Const PT_CIR6

As Long = &H7100 Not available

As Long = &H7101 PTP linear interpolation data
loading

As Long = &H7102 Not available

As Long = &H7103 PTP linear interpolation data
insertion

As Long = &H7104 Arc 1%t point data loading

As Long = &H7105 Arc 2™ point data loading

As Long = &H7106 Arc 3" point data loading

As Long = &H7107 Circle 1% point data loading

As Long = &H7108 Circle 2™ point data loading

As Long = &H7109 Circle 3" point data loading

As Long = &H710A PTP axis interpolation data
loading

As Long = &H710B PTP axis interpolation data
insertion

As Long = &H710C Linear interpolation NOAP loading

As Long = &H710D Linear interpolation NOAP
insertion

As Long = &H710E Arc 1 point NOAP loading
As Long = &H710F Arc 2™ point NOAP loading
As Long = &H7110 Arc 3™ point NOAP loading
As Long = &H7111 Circle 1% point NOAP loading
As Long = &H7112 Circle 2™ point NOAP loading
As Long = &H7113 Circle 3™ point NOAP loading

= Teach data pointer operation classification:

Public Const PM_TOP
Public Const PM_NEXT
Public Const PM_PRIV
Public Const PM_BTM
Public Const PM_JMP

Public Const PM_CIR

As Long = &H7100 Moves pointer to top.

As Long = &H7101 Pointer forward, once.

As Long = &H7102 Pointer backward, once.

As Long = &H7103 Moves pointer to bottom.

As Long = &H7104 Moves pointer to designated
number.

As Long = &H7105 Circle teach point searched,
moving pointer to teach point
found first.

Public Const PM_ARC As Long = &H7106 Arc teach point searched, moving

pointer to teach point found first.

727



Chapter 7

Library Reference

PA library characteristic type definition (for Windows Visual BASIC)

*Default velocity alteration classification:

Public Const VT_ONEVEL As Long = &HO
Public Const VT_XYZVEL As Long = &H1

Public Const VT_YPRVEL As Long = &H2

=Velocity control mode classification:

Public Const VM_XYZ1

Public Const VM_YPR1

Public Const VM_XYZ2

Public Const VM_YPR2

Public Const VM_ONE

Public Const VM_XYZYPR1

Public Const VM_XYZYPR2

As Long = &H200

As Long = &H201

As Long = &H202

As Long = &H203

As Long = &H204
As Long = &H205

As Long = &H206

*Redundant axis control mode classification:

Public Const JM_SET

Public Const JM_RESET

Public Const JM_VSET

Public Const JM_ON

Public Const JM_OFF

Public Const JM_S3ON

Public Const JM_S3DIV

Public Const JM_S3HOLD

Public Const JT_RIGHT

Public Const JT HOLD

Public Const JT_LEFT

As Long = &H345

As Long = &H346

As Long = &H347

As Long = &H348

As Long = &H349

As Long = &H34A

As Long = &H34B

As Long = &H34C

As Long = 1
As Long=0
As Long=1

Each default velocity alteration
Tip position default velocity
alteration

Tip orientation default velocity
alteration

Base coordinate linear velocity
control

Base coordinate rotational velocity
control

Mechanical interface coordinate
linear velocity control
Mechanical interface coordinate
rotational velocity control

Each axis velocity control

Base coordinate linear/rotational
velocity control

Mechanical interface coordinate
linear/rotational velocity control

/ 7-axis arm function /

Redundant axis control parameter
operation start

Redundant axis control parameter
reset

Redundant axis velocity control
mode

Redundant axis control all axes
restriction mode

Redundant axis control restriction
release

Redundant axis control only S3
axis restriction mode

Redundant axis control S3 axis
interpolation restriction mode
Redundant axis control S3 axis
fixation restriction mode

Moves redundant axis restriction
parameter to the right.

Holds redundant axis restriction
parameter.

Moves redundant axis restriction
parameter to the left.

7-28



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual BASIC)

- Target tip matrix control mode classification:

Public Const MM_XYZ As Long = &H5680 Tip position control
Public Const MM_NOA As Long = &H5681 Tip orientation control
Public Const MM_XYZNOA As Long = &H5682 Tip position/orientation control

Direct control classification: (Optional function)

Public Const DM_STOP
Public Const DM_START

As Long =0
As Long = 1

Public Const ARM_STANDING As Long =1

Direct control stop
Direct control start
Floor mounted

Public Const ARM_HANGING As Long = -1 suspending from ceiling
*DIO port numbers:
Public Const DP_PORT1 As Long =0 DIO 0 port selection
Public Const DP_PORT2 As Long = 1 DIO 1 port selection
Public Const DP_PORT3 As Long = 2 DIO 2 port selection
Public Const DP_PORT4 As Long = 3 DIO 3 port selection
Public Const DPO_PORT1 As Long=4 DO 0 port selection
Public Const DPO_PORT2 As Long=5 DO 1 port selection
Public Const DPO_PORT3 As Long =6 DO 2 port selection
Public Const DPO_PORT4 Aslong=17 DO 3 port selection
Public Const DPX_PORT1 As Long =8 DO 0 port selection
Public Const DPX_PORT2 Aslong=9 DO 1 port selection
Public Const DPX_PORT3 As Long =10 DO 2 port selection
Public Const DPX_PORT4 As Long =11 DO 3 port selection

( Memo )

DPO_XXXXX is used when acquiring contents set to be outputted by PA library.
DPX_XXXXX is used when acquiring current output value (related to information

in PA library or playback data).

*DIO channel numbers:

Public Const DC_CH1 As Long=0 Channel 1 selection
Public Const DC_CH2 As Long = 1 Channel 2 selection
Public Const DC_CH3 As Long = 2 Channel 3 selection
Public Const DC_CH4 As Long =3 Channel 4 selection
Public Const DC_CH5 As Long = 4 Channel 5 selection
Public Const DC_CH6 As Long =5 Channel 6 selection
Public Const DC_CH7 As Long = 6 Channel 7 selection
Public Const DC_CHS8 As Long =7 Channel 8 selection

729




Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual BASIC)

=Sensor correction coordinate classification:

Public Const MODE_XYZ1 As Long = &H1
Adds absolute correction value in the mechanical interface coordinate
system
Public Const MODE_XYZ2 As Long = &H2
Adds relative correction value in the mechanical interface coordinate
system
Public Const MODE_XYZ3 As Long = &H4
Adds absolute correction value in the base coordinate system
Public Const MODE_XYZ4 As Long = &H8
Adds relative correction value in the base coordinate system
Public Const MODE_WAVE1 As Long = &H10
Adds absolute correction value in the trajectory coordinate system
Public Const MODE_WAVE2 As Long = &H20
Adds relative correction value in the trajectory coordinate system

* Teach point attribute designation:
Public Const PA_SETID As Long = &H7304

*Circle & arc teach point number designation:

Public Const PN_1 As Long = 1
Public Const PN_2 As Long =2
Public Const PN_3 As Long =3

JUMP data valid/invalid (in teach data):

Public Const JMP_ON As Long = 1 Valid
Public Const JMP_OFF As Long =0 Invalid

JUMP data valid/invalid (in JUMP data):

Public Const JMPENABLE As Long = &H1000000
Public Const JMPDISABLE As Long = &H0

~JUMP command"-
Public Const NO_JUMP As Long = &H10000
Public Const DI_JUMP As Long = &H20000
Public Const DI. WAITJUMP As Long = &H30000
Public Const DI. WAIT As Long = &H40000

7-30



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual BASIC)

*JUMP conditional logic:
Public Const LEVEL_ON As Long = &H100
Public Const LEVEL_OFF As Long = &H200
Public Const EDGE_ON As Long = &H400
Public Const EDGE_OFF As Long = &H800
=Objective DI
Public Const DIO_INTERNAL As Long = &HO
Public Const DIO_EXTERNAL As Long = &H1

= Teaching place when in CUBE creation:

Public Const MAXPNT As Long = 1
Public Const MINPNT As Long = 2
Public Const CENTERPNT As Long = 3
*DlorDO mask setting:
Public Const DIMSK As Long =0
Public Const DOMSK As Long = 1
*RETRAC ON/OFF:
Public Const RETRACOFF As Long =0
Public Const RETRACON As Long = 1
=CUBE data:
Public Const NOCUBE As Long = &HO
Public Const CUBEON As Long = &H1
Public Const CUBEMAX As Long = &H2
Public Const CUBEMIN As Long = &H4
Public Const CUBECENTER As Long = &H8
Public Const CUBESIDE As Long = &H10

7-31



Chapter 7 Library Reference

PA library characteristic type definition (for Windows Visual BASIC)

~TEACHMODE:
Public Const TEACH_OFF As Long =0
Public Const TEACH_LOW As Long = 1
Public Const TEACH_MID As Long = 2
Public Const TEACH_HIGH As Long =3
«TEACHLOCK:
Public Const LOCK_OFF As Long =0
Public Const LOCK_ON As Long = 1

=Communication status with servo driver:

Public Const STP_STATUS As Long =0

Public Const MOV_STATUS As Long = 1

Public Const SIM_STATUS As Long = 2
“for RETRAC:

Public Const MOD_ROBFILE As Long = 1

Public Const MOD_TOLFILE As Long =2

=for Dead man switch:

Public Const SET_DDM As Long = 3

732



Chapter 7 Library Reference

ERROR LIST (in common)

Normal
ERR_OK

0

No error

(1)  Operation control section (PA library) detection error:

ERR_FILE -1 Designated file not existing
ERR_READ -2 File loading failure
ERR WRITE -3 File saving failure
ERRINT -4 Unsuccessful interruption into 486
ERR_OPEN -5 pa_opn_arm() not executed
ERR_.MALLOC -6 Failed to allocate memory space
ERR_PRM =7 Parameter alteration not allowed when in control
ERR_PNT -8 A specified degree of Teaching data is out of range
*Parameter error:
ERR_ARM -20 Designated arm not existing
ERR_AXIS -21 Designated axis not existing
ERR_DRV -22 Designated driver not existing
ERR_PB -23 Incorrect playback motion mode
ERR_PD -24 Incorrect teach point deletion mode
ERR_PA =25 Incorrect teach point attribution mode
ERR_PTN -26 Incorrect teach point velocity pattern attribution value
ERR_PT =217 Incorrect teach point data type
ERR_PM -28 Incorrect teach point operation type
ERR.VT -29 Incorrect default velocity alteration type
ERR_VM -30 Incorrect velocity control mode
ERR_JM =31 Incorrect redundant axis control mode
ERR.JT -32 Incorrect redundant axis operation mode
ERR_.MM -33 Incorrect target tip matrix control mode
ERR DM -34 Incorrect direct control mode
ERR_DP -35 Incorrect digital input/output port designation
ERR.DC -36 Incorrect digital input/output channel designation
ERR_MES =37 Error code not defined
ERR_BOARD -38 Error code not defined
ERR_DIO -39 Incorrect digital input/output DIorDO designation
ERR_PRJ -40 Project not loaded
*WinRT error:

ERR_UNMAPMEMORY
ERR_UNMAPMEMORY?2
ERR_OPENDEVICE
ERR_CONFIG
ERR_.MAPMEMORY
ERR_MAPMEMORY2

-100 Error occurred in WinRTUnMapMemory

-101 Error occurred in WinRTUnMapMemory2
-200 Error occurred in WinRTOpenNamedDevice
-201 Error occurred in WinRTGetFullConfiguration
=300 Error occurred in WinRTMapMemory

-301 Error occurred in WinRTMapMemory2

733



ERROR LIST (in common)

(2)Motion control section detection error:

~Warning error:

Chapter 7

ERR_CANT_CPU -1000
ERR_NON_EVNT -1001
ERR_CANT_EVNT -1002
ERR.INVALD_EVNT -1003
ERR_NON_ARM -1004
ERR_NON_ROB -1005
ERR_.NON_TOL -1006
ERR_S1_VEL -1010
ERR_S2_VEL -1011
ERR_S3_VEL -1012
ERR_E1_VEL -1013
ERR_E2_VEL -1014
ERR_W1_VEL -1015
ERR_W2_VEL -1016
ERR_XYZ_VEL -1018
ERR_YPR_VEL -1019
ERR_S1_SAGL -1020
ERR_S2_SAGL -1021
ERR_S3_SAGL -1022
ERR_E1_SAGL -1023
ERR_E2_SAGL -1024
ERR_W1_SAGL -1025
ERR_W2_SAGL -1026
ERR_S1_TAGL -1030
ERR_S2_TAGL -1031
ERR_S3_TAGL -1032
ERR_E1_TAGL -1033
ERR_E2_TAGL -1034
ERR.W1_TAGL -1035
ERR_W2_TAGL -1036
ERR_NOA_CLC -1038
ERR_LNK_CTL -1039
ERR_.MEM_FULL -1040
ERR_MIS_COMD -1041
ERR_PB_CIR -1042
ERR_PB_NEXT -1043
ERR_PB_PRIV -1044
ERR_PB_END —-1045
ERR_PB_NULL -1046
ERR_PB_REFER —-1047
ERR_PB_REPLACGE -1048

734

Library Reference

Access to motion controller not allowed.
Format does not match with command.
Command not compatible with current mode
Invalid command

Designated arm number not existing.
Download new ROB file

Download new TOL file

S1 axis velocity exceeded

S2 axis velocity exceeded

S3 axis velocity exceeded

E1 axis velocity exceeded

E2 axis velocity exceeded

W1 axis velocity exceeded

W2 axis velocity exceeded

Tip linear velocity exceeded

Tip rotational velocity exceeded
S1 axis safety angle exceeded

S2 axis safety angle exceeded

S3 axis safety angle exceeded

E1 axis safety angle exceeded

E2 axis safety angle exceeded

W1 axis safety angle exceeded

W2 axis safety angle exceeded

S1 axis target angle exceeded

S2 axis target angle exceeded

S3 axis target angle exceeded

E1 axis target angle exceeded

E2 axis target angle exceeded

W1 axis target angle exceeded

W2 axis target angle exceeded
Unable to calculate NOA Ver.PCI
Unable to create teach point due to
continuity restriction

Failed to allocate memory space
Prior procedure required before issuing this
command

Incorrect circle or arc designation
Next pointer not existing

Previous pointer not existing
Playback data ended

Playback data not existing

Failed to find playback data
Accepted as replace command



Chapter 7 Library Reference

735

ERROR LIST (in common)

ERR_PB_PANIC -1049 Pointer management accident

ERR_ NOT_ENUGH -1050 Target value is out of control area. (Arm
length is not enough.)

ERR_MIS_PARAM -1051 Designated parameter value exceeded the
setting range

ERR_NOA_DAT -1060 Designated NOA not appropriate

ERR_PNT_ATR -1061 Not available

ERR_PTP_DAT -1062 Exceeding RMRC motion range

ERR_CP_LOGGING -1063  Not allowed to use while in CP data
acquisition

ERR_FIFO_MAX -1064  Exceeded the maximum interpolation number

ERR FIFO_ARC -1065 Unable to generate circle or arc

COVERS1 -1070  S1 axis velocity angle exceeded

COVERS2 -1071 S2 axis velocity angle exceeded

COVERS3 -1072 S3 axis velocity angle exceeded

COVERET1 -1073 E1 axis velocity angle exceeded

COVERE2 -1074  E2 axis velocity angle exceeded

COVERW1 -1075 W1 axis velocity angle exceeded

COVERW2 -1076 W2 axis velocity angle exceeded

ERR_MIS_VAL —-1080  Setting value is too large or too small

ERR_PNT_APP -1081 Approach cannot be performed with axis
control,

ERR_PLY_FOR -1098  Consecutive motion not allowed while in
teach mode.

ERR_PLY_MOD -1099 Switched to teach mode by outer operation.

ERR_.USE_TCH -1100 Teach lock can be ON only in teach mode.

ERR_ACT_DAT -1101 Designated Key teach data not existing

ERR_CHG_KEY -1103 Unable to perform Key research for teach
data

ERR_CUB_NUM —-1200 Interference area designation humber error

ERR_CUB_LEN -1201 Side length designation cannot be performed
with this cube information. This cube has
another attribution.

ERR_CUB_MAX -1202 Upper value teaching cannot be performed
with this cube information. This cube has
another attribution.

ERR_CUB_MIN -1203 Lower value teaching cannot be performed
with this cube information. This cube has
another attribution.

ERR_.CUB_CTR -1205 Center value teaching cannot be performed
with this cube information. This cube has
another attribution.

ERR_CUB_PRM -1206 Unknown cube parameter setting

ERR_CUB_SET -1207 Setting cannot be performed with this cube

information. This cube has another

attribution.




Chapter 7 Library Reference

7-36

ERROR LIST (in common)

ERR_PLY_KEY -1249  Wrong designated number when in Key
acquisition

ERR_NON_KEY -1250 There is no designated ID attribution in
teach data designated by Key

ERR_NON_CID -1251 Designated teach point has no JUMP data.

ERR_.UMP_SET -1252  Teach data designated by Key does not have
its number JUMP information.

ERR_NON_IDN -1253  Teach point designated by ID attribution has
no JUMP information.

ERR_.UMP_NUM -1254  Unable to find JUMP information designated
by teach point attribution.

ERR_.UMP_ATR -1255  Wrong designated parameter when in JUMP
data acquisition/setting

ERR_KEY_ATR -1256  Wrong designated parameter when in JUMP
data acquisition/setting

ERR_SOC_TST -1300 Socket generation failure

ERR BND_TST -1311 Failed to bind socket and address

ERR LSN_TST -1312 Listening failure

ERR_APT_TST -1313  Accepting failure

ERR_SOC_SND -1314  Socket generation failure

ERR_SOC_BLK -1315  Not available

ERR_SOC_CLT -1316 Too many clients connected

ERR PRM DEV -1350 Parameter motion velocity is exceeding

velocity limit value. Parameter alteration is
invalid.



Chapter 7 Library Reference

ERROR LIST (in common)
*Operation continuity malfunction error: ——_> (Brake—stop status)
ERR_OVER900 -2017  Arm length exceeded RMRC motion limit
length while in motion
ERR_S1_AGL -2020 S1 axis angle exceeded
ERR_S2 AGL -2021 S2 axis angle exceeded
ERR_S3_AGL -2022 S3 axis angle exceeded
ERR E1_AGL -2023 E1 axis angle exceeded
ERR_E2_AGL -2024  E2 axis angle exceeded
ERR W1_AGL -2025 W1 axis angle exceeded
ERR W2_AGL -2026 W2 axis angle exceeded
DOVERS1 —2030 S1 axis direct control angle exceeded
DOVERS2 -2031 S2 axis direct control angle exceeded
DOVERS3 -2032 S3 axis direct control angle exceeded
DOVERET1 -2033 E1 axis direct control angle exceeded
DOVERE2 -2034  E2 axis direct control angle exceeded
DOVERWI1 —-2035 W1 axis direct control angle exceeded
DOVERW2 -2036 W2 axis direct control angle exceeded
ERR_CANT_MOVE -2051 RMRC control is not allowed at the current
position.
ERR_S1_REZ —2060 Anomalous S1 resolver deviation
ERR S2 REZ -2061 Anomalous S2 resolver deviation
ERR_S3_REZ -2062  Anomalous S3 resolver deviation
ERR E1 REZ -2063 Anomalous E1 resolver deviation
ERR E2 REZ -2064  Anomalous E2 resolver deviation
ERR_W1_REZ —2065 Anomalous W1 resolver deviation
ERR W2 REZ -2066 Anomalous W2 resolver deviation

([ Memo )

Anomalous resolver deviation means when the resolver value inputted

at the previous time and the present time one exceed the allowable
range. (Incorrect loading, provokes missing data.)

ERR_TIMEOUT —-2070  Automatically stopped on account of
exceeding surveillance time.
ERR_SYNCOUT -2071 Not reaching the target value

737



Chapter 7 Library Reference

ERROR LIST (in common)
ERR_SYNC _S1 -2080 Anomalous S1 axis synchronization in axis control
ERR_SYNC_S2 -2081 Anomalous S2 axis synchronization in axis control
ERR_SYNC_S3 -2082 Anomalous S3 axis synchronization in axis control
ERR_SYNC E1 -2083 Anomalous E1 axis synchronization in axis control
ERR_SYNC_E2 —2084  Anomalous E2 axis synchronization in axis control
ERR_SYNC W1 -2085 Anomalous W1 axis synchronization in axis control
ERR_SYNC_W2 —-2086  Anomalous W2 axis synchronization in axis control
ERR_RMRC_X -2087 Anomalous X axis synchronization in RMRC control
ERR_ RMRC.Y -2088 Anomalous Y axis synchronization in RMRC control
ERR_RMRC_Z -2089 Anomalous Z axis synchronization in RMRC control

( Memo )

Anomalous synchronization occurs when target and current value

deviation exceed the allowable range. (Arm is not moving or rather
delays motion.)

ERR_VELOCITY —-2090 Anomalous velocity deviation

ERR RMRC_YPR -2091 Anomalous tip orientation deviation in RMRC control

ERR_CUB_INN -2100  Interfered with cube

ERR_ARM_ERRO —2200 Motion start or continuation is not allowed at arm
singularity

ERR_ARM_ERR1 —-2201 Motion start or continuation is not allowed at arm
singularity

ERR_ARM_ERR2 —-2202  Motion start or continuation is not allowed at arm
singularity

7-38



Chapter 7 Library Reference

ERROR LIST (in common)

«Fatal error ——> (Control stop status)

ERR_.POWER_.ON -3000 control not started.

[ Memo

After fatal error occurred without issuing control start command, if

other command is issued, this error occurs.

ERR EM_CTL -3001 Emergency stop is pushed.

ERR_ARC_SEND -3002 Anomalous arc net communication

ERR_S1X_LIM -3003 S1 axis limit switch is ON.

ERR.DRV_TYP -3005 Servo driver type is different from parameter
designation.

ERR_FORCE_ON -3010 Not in force control

ERR DDD_STA -3070  Anomalous communication control servo (master)
status.
ERR.D11_STA -3071  Anomalous servo driver (S1) status
ERR. D12 STA -3072  Anomalous servo driver (S2) status
ERR_D21_STA -3073  Anomalous servo driver (S3) status
ERR D22 STA -3074  Anomalous servo driver (E1) status
ERR_D31_STA -3075  Anomalous servo driver (E2) status
ERR._D32_STA -3076  Anomalous servo driver (W1) status
ERR_D41 STA -3077  Anomalous servo driver (W2) status

[ Memo

Anomalous servo driver is the case when servo driver detects any

anomaly and turns into waiting status after being released from control.
For servo status, refer to next page.

ERR_S SUSPD -3091 Anomaly when issuing control (communication) start
command

ERR_E_SUSPD -3092  Anomaly when issuing control (communication) end
command

ERR_.I_SUSPD -3093 Anomaly when issuing initialization command

[ Memo

Anomalous control command issuing means when issuing command to

the servo driver, there is no response for a certain time. (Servo driver
is anomalous.)

ERR_.MOD_CTL -4000 Anomalous mode management

739



Chapter 7

ERROR LIST (in common)

Library Reference

(3)Servo status driver detection error:

( Reference |

More information, refer to servo driver operation manual and (3) error information in the

section 6.14.1.

DRV_MEM_ERR
EEP_ROM_ERR
CPU_XXX_ERR
ARC_NET_ERR
VEL_SPN_ERR
REZ_SPN_ERR
VEL_LIM_ERR
MTR_TRQ_ERR
IPM_XXX_ERR
BRK_XXX_ERR
REZ 001 _ERR
REZ_002_ERR
OVR_TRQ_ERR
OVR_VEL ERR
DMS_XXX_ERR
CPU_NON_ERR

0 N o G b~ WN =

—_ A a a A
oD o W N = O

Anomalous shared memory
Anomalous EEPROM

Anomalous CPU

Anomalous communication cycle
Anomalous velocity deviation
Anomalous resolver deviation
Anomalous position limit
Anomalous motor torque
Anomalous IPM

Severed brake line

Severed resolver line (gear side)
Severed resolver line (motor side)
Over current

Over velocity

Anomalous dead man SW

Other anomalous CPU

740



Chapter 7 Library Reference

FUNCTION LIST <>  Page number

——— System Setting & Initialization Function

pa_ini_sys <8-2> PA library initialization
pa_ter_sys <8-3> PA library termination

——— Arm status control function

pa_opn_arm <8-4>  Open arm (control arm selection)

pa_cls_arm <8-5> Close arm (control arm separation)

pa_sta_arm <8-6> Controller operation start (Servo driver communication start)
pa_ext_arm <8-7> Controller operation end (Servo driver communication end)
pa_sta_sim <8-8> Simulation control start (simulation communication start)
pa_ext_sim <8-9> Simulation control end (simulation communication end)
pa_stp_arm <8-10> Arm brake—stop

pa_sus_arm <8-11> Arm temporarily stop

pa_rsm_arm <8-12> Arm temporarily—stop—release

——— Axis motion control function

pa_exe_axs <8-13> Axis angle control

pa_exe_hom <8-14> Axis angle control to home position
pa_exe_esc <8-15> Axis angle control to escape position
pa_exe_saf <8-16> Axis angle control to safety position

——— Tip position/orientation (RMRC) deviation control function

pa_mov_XYZ <8-17> Position deviation control in robot coordinate system
pa_mov_YPR <8-18> Orientation deviation control in robot coordinate system
pa_mov_xyz <8-19> Position deviation control in tip coordinate system

( available only for Visual C++)
pa_mov_XYZ0 <8-19> Position deviation control in tip coordinate system

( available only for Visual BASIC)
pa_mov_ypr <8-20> Orientation deviation control in tip coordinate system

(‘available only for Visual C++)
pa_mov_YPRO <8-20> Orientation deviation control in tip coordinate system
( available only for Visual BASIC)

pa_mov_mat <8-21> Tip position /orientation absolute position control

741



Chapter 7 Library Reference

FUNCTION LIST O Page number

——— Function on teach point operation & playback control

pa_axs_pnt <8-23> Axis motion control from the present position to the current
point

pa_mov_pnt <8-24> Linear motion control from the present position to the current
point

pa_ply_pnt <8-25> Playback control

pa_chg_pnt {8-27> Teach point pointer alteration ((current point alteration)

pa_add_pnt <8-29> Teach point addition

pa_del_pnt <8-31> Teach point deletion

pa_rpl_pnt <8-32> Teach point replacement

pa_set_pnt <8-33> Teach point attribution setting

pa_set_idn <8-34> ID_No. setting at teach point

pa_chg_dio <8-35> Teach point (PTP) DO attribution setting

pa_vel_pnt <8-36> Playback control velocity coefficient alteration

pa_swt_dio <8-37> Playback control teach point DO valid/invalid setting

pa_get pnt <8-38> Current point teach point data loading

pa_get_cur <8-40> Current point teach point number loading

pa_get_num <8-41> Teach point all numbers loading

pa_get_idn <8-42> Current point ID_No. loading

pa_get_cpt <8-43> Current point circle/arc teach data loading

pa_get_pvl <8-44> Playback control velocity coefficient loading

pa_get_pdo <8-45> Playback control teach point DO valid/invalid loading

pa_lod_pnt <8-46> Loading teach data to controller

pa_sav_pnt <8-47> Saving teach data to man—machine controller

pa_set_dlc <8-48> Playback DO automatic stop/non stop setting

pa_get_dlc <8-49> Playback DO automatic stop/non stop loading

742



Chapter 7 Library Reference

FUNCTION LIST O Page number

pa_ply_set <8-50> Teach data Key acquisition by humber designation
pa_act_pnt <8-51> Active teach data switching

pa_mp_set <8-52> JUMP data acquisition by number designation
pa_get_jmp <8-53> JUMP data acquisition by Key/ID designation
pa_set_jmp <8-54> JUMP data setting

pa_ena_mp <8-55> JUMP condition valid/invalid setting
pa_ply_mod <8-56> Teach mode setting

pa_chg_key <8-57> Current active teach data Key alteration
pa_get_key <8-58> Current active teach data Key acquisition
pa_mon_pnt <8-59> Acquired to monitor teach data status
pa_set_cmt <8-60> Comment setting

pa_jmp_cmt <8-61> Current point shifting by comment
pa_get_ena <8-62> JUMP condition valid/invalid acquisition
pa_get_pmd <8-63> Teach mode acquisition

pa_del_jmp <8-64> JUMP data deletion

pa_sav_ptj <8-65> Saving teach data and JUMP data

pa_lod_ptj <8-66> Loading teach data and JUMP data

pa_get_prj <8-67> Project name acquisition

pa_set_prj <8-68> Project name setting

pa_sav_pr <8-69> Saving project

pa_lod_prj <8-70> Loading project

pa_set_cub <8-71> CUBE designation

pa_get_cub <8-72> CUBE teach designation

pa_cub_len <8-73> CUBE side length designation

pa_cub_cmt <8-74> Naming CUBE

pa_del_cub <8-75> CUBE deletion

pa_ena_cub <8-76> CUBE valid/invalid

pa_inf_cub <8-77> CUBE information reference

——— Velocity control function

pa_mod_vel <8-78> Velocity control mode setting
pa_odr_vel <8-80> Velocity control data set

———Tip absolute position/orientation, axis real-time

control function

pa_mod_dpd <8-82> Target position/orientation real-time control mode setting
pa_odr_dpd <8-84> Target position/orientation real-time control data set
pa_mod_axs <8-85> Axis real-time control mode setting

pa_odr_axs <8-86> Axis real-time control data set

743



Chapter 7 Library Reference

FUNCTION LIST O Page number
——— Direct control function ———————— (Optional function)

pa_mod_dir <8-87> Servo lock ON/OFF when in direct control start

pa_wet_ded <8-88> Weight compensation control

pa_drt_ded <8-89> Arm installation direction setting

pa_chk_cnt <8-90> Synchronization processing in direct control

pa_set_tim <8-91> Time—out setting in synchronization processing

pa_get_tim <8-92> Time—out loading in synchronization processing

pa_get_drt <8-93> Arm installation direction acquisition/loading

——— Function on position setting/definition

pa_set_hom <8-94> Home position setting

pa_set_esc <8-95> Escape position setting

pa_set_saf <8-96> Safety position setting

pa_def_ hom <8-97> Defining current value as home position
pa_def esc <8-98> Defining current value as escape position
pa_def _saf <8-99> Defining current value as safety position

——— Function on coordinate conversion matrix & tip position offset

pa_set_mtx <{8-100> Coordinate spatial conversion matrix (position offset) setting

pa_set_mat <8-101> Coordinate spatial conversion matrix setting

pa_set_wav <8-102> Weaving trajectory setting

pa_odr_xyz <8-103> Tip position offset value setting

pa_lmt_xyz <8-104> Limit value setting when in offset value supplement

pa_get mat <8-105> Current setting conversion matrix loading

pa_get_sns <8-106> Current setting tip offset value loading

pa_get_Imt <8-107> Limit value loading when in offset value supplement
——— Redundant axis control function ————————— (7-axis, only)

pa_mod_jou <8-107> Redundant axis control mode setting

pa_odr_jou <8-110> Redundant axis control data set

pa_mov_jou <8-111> Redundant axis (elbow) motion control

pa_get_jou <8-112> Arm redundant axis control mode loading

7-44



Chapter 7 Library Reference

FUNCTION LIST <>  Page number

——— Arm status information loading function

pa_get_mod <8-113> Arm control status loading
pa_get_ver <8-115> Motion controller S/W version number loading
pa_get_com <8-116> Communication status (no communication/simulation/ actual

machine) loading

pa_get_sts <8-117> Current arm information loading
pa_get_cnt <8-119> Current arm control counter loading
pa_get_err <8-120> Current arm error information loading
pa_get_agl <8-121> Current arm axis value loading
pa_get_xyz <8-122> Current arm tip position loading
pa_get_noa <8-123> Current arm orientation matrix loading
pa_get_ypr <8-124> Current arm position angle loading
pa_get_prm <8-125> Current arm parameter loading
pa_get_tar <8-127> Current arm target data loading

(Additional function from Ver.3.0)

pa_get_sav <8-128> Axis servo ON/OFF status acquisition
pa_sav_sts <8-129> Servo status acquisition

pa_get_smd <8-130> TEACH MODE acquisition from servo
pa_set_ddm <8-131> Dead man SW valid/invalid

pa_get_ddm <8-132> Dead man SW valid/invalid status acquisition
pa_set_lok <8-133> TEACH LOCK setting

pa_get_lok <8-134> TEACH LOCK acquisition

pa_tct_tim <8-135> Tact time (playback time) acquisition
pa_get_max <8-136> Board controllable arm numbers acquisition
pa_get_spt <8-137> Acquiring arm identification number
pa_set_sim <8-138> Simulation magnification setting

pa_set_inc <8-139> Real—time velocity setting

pa_get_sim <8-140> Simulation magnification acquisition
pa_get_inc <8-141> Real-time velocity acquisition

745



Chapter 7 Library Reference

FUNCTION LIST O Page number

——— Digital input/output function

pa_inp_dio <8-142> Digital input (32ch. unit input)
pa_oup_dio <8-143> Digital output (32ch. unit output)
pa_get_dio <8-144> Digital input (1ch. unit input)
pa_set_dio <8-145> Digital output (1ch. unit set)
pa_rst_dio <{8-146> Digital output (1ch. unit reset)

(Additional function from Ver.3.0)————

pa_dio_msk <8-147> DIO mask setting
pa_get_msk <8-148> DIO mask acquisition

——— Function on parameter

pa_set_tol <8-149> Tool information setting
pa_set_vel <8-150> Default velocity alteration
pa_lod_ctl <8-151> loading parameter to controller

(Additional function from Ver.3.0-———

pa_tst_nom <8-152> RETRAC creation ON/OFF setting

pa_get_rmd <8-153> RETRAC creation ON/OFF acquisition
pa_lod_rob <8-154> Robot model file loading

pa_lod_tol <8-155> Tool model file loading

pa_sav_rob <8-156> model file saving "

pa_ena_nom <8-157> RETRAC calculation switching

pa_get_nom <8-158> Acquiring either T-matrix or RETRAC calculation
pa_tkn_nom <8-159> Acquiring RETRAC calculation OK/NOT OK

——— Other functions

pa_map_ctl <8-160> Shared area mapping with controller

pa_fsh_chk <8-161> Waiting for control command processing completion
pa_fsh_sub <8-162> Waiting for control command processing completion
pa_req_ctl <8-163> Issuing command setting intrusion to controller
pa_reg_sub <8-164> Issuing command setting intrusion to controller
pa_rst_ctl <8-165> Arm error information reset

pa_err_mes <8-166> Error message acquisition

746



Chapter 8  PA Library

Chapter 8 PA [/brary

8-1



Chapter 8  PA Library

pa__ini__sys

Function
PA library initialization

Syntax

long pa_ini_sys(void)
Explanation

This “pa_ini_sys” has to be called before using PA library.
Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_ter_sys

Description example

#include <pa.h> .. Library prototype declaration
#include <paerr.h> .. Error code

main()

{

pa_ini_sys();

pa_ter_sys();

}
( Memo )
pa.h :Needs when the library is used.
paerr.h :Needs on account error names are declared.




Chapter 8  PA Library

pa__ter__sys

Function
PA library is terminated.

Syntax
long pa_ter_sys(void)

Explanation
This “pa_ter_sys” has to be called after using PA library.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_ini_sys



Chapter 8  PA Library

pa__oph__arm

Function
Open arm (control arm selection)

Syntax

ERR pa_opn_arm(ARM armno)

armno  Arm number (No.)
Explanation

The arm designated by “armno” can be accessed.

When plural arms are controlled, arms are distinguished by “armno.”
Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_cls_arm

Description example

#include <pa.h> .. Library prototype declaration
#include <paerr.h> .. Error code
main()
{
pa_ini_sys();

pa_opn_arm(ARMT1);.. Arm number selection

pa_cls_arm(ARM1);
pa_ter_sys();

}
( Memo )
pa.h :Needs when the library is used.
paerr.h :Needs on account error names are declared.

All these descriptions are always needed to use the library.



Chapter 8  PA Library

pa__cls__arm

Function
Close arm

Syntax
long pa_cls_arm(ARM armno)

armno  Arm number (No.)

Explanation

The arm designated by “armno” cannot be accessed.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_opn_arm



Chapter 8  PA Library

pa__sta__arm

Function
Motion controller operation start

Syntax
long pa_sta_arm(ARM armno)

armno  Arm number (No.)

Explanation
The controller designated by “armno” starts to communicate with servo driver.
The controller becomes ready to receive motion command.
This function has to be always performed except initialization.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

For return value, there is controller error other than “ERR_OK.”

( Reference )

Refer to error table.

Reference
pa_ext_arm

Description example

#include <pa.h> .. Library prototype declaration
#include <paerr.h> .. Error code
main()
{
pa_ini_sys();

pa_opn_arm(ARM1);.. Arm number selection
pa_sta_arm(ARM1);

Arm motion function

pa_ext_arm(ARM1);
pa_cls_arm(ARM1);
pa_ter_sys();

}
( Memo )
pa.h :Needs when the library is used.
paerr.h :Needs on account error names are declared

All these descriptions are always needed to use the library.
This sentence is omitted in following description examples.

8-6



Chapter 8  PA Library

pa__ext__arm

Function
Motion controller operation exit

Syntax
long pa_ext_arm(ARM armno)

armno  Arm number (No.)

Explanation

The controller designated by “armno” terminates to communicate with servo driver
The controller becomes not ready to receive control command.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_sta_arm



Chapter 8  PA Library

pa__sta__sim

Function
Starts arm motion with simulation mode.

Syntax
long pa_sta_sim(ARM armno)

armno  Arm number (No.)

Explanation
The controller designated by “armno” starts inner servo driver simulation and
controls it.
This library is used in place of “pa_staarm.” Program can be debugged without
moving arm.

Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)
Reference

pa_ext_sim

Description example

#include <pa.h> .. Library prototype declaration
#include <paerr.h> .. Error code
main()
{
pa_ini_sys():
pa_opn_arm(ARMT1);.. Arm number 1 selection
pa_sta_sim(ARM1); .. Uses “pa_sta_arm” when the actual machine is
operated.

Arm motion function

pa_ext_sim(ARM1); .. Uses “pa_ext_.arm” when the actual machine is
operated.

pa_cls_arm(ARM1);
pa_ter_sys();

]
( Memo )

Control can be terminated with “pa_ext_arm,” also, when in simulation (pa_sta_sim).




Chapter 8  PA Library

pa__ext__sim

Function
Simulation mode is terminated.

Syntax
long pa_ext_sim(ARM armno)

armno  Arm number (No.)

Explanation

The controller designated by “armno” terminates inner servo driver simulation and
ends control.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_sta_sim



Chapter 8  PA Library

pa__stp__arm

Function
The brake stops arm motion.

Syntax
long pa_stp_arm(ARM armno, long func)

armno  Arm number (No.)
func Designation whether to wait or not until motion is completed.

Explanation

The controller designated by “armno” stops servo and performs brake—stop to
arm.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion stops completely.
*Designates WM_NOWAIT :returns without confirming a stop.

However, “pa_stp_arm” is performed instantly.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Description example
: .. Arm in motion

if (stop key is pushed)
pa_stp_arm(ARM1,WM_WAIT);
: .. Arm brake—stop

8-10



Chapter 8  PA Library

pa__sus__arm

Function
Stops the arm motion temporarily.

Syntax
long pa_sus_arm(ARM armno, long func)

armno  Arm number (No.)
func Designation whether to wait or not until motion is completed.

Explanation
The arm designated by “armno” becomes servo—lock status if it is in motion.
Maintaining as it was before temporary—stop, continues the status kept by
“par_rsm_arm.”

This function creates motion by “func” as follows:
-Designates WM_WAIT :does not return unless temporarily, motion stops
completely.
*Designates WM_NOWAIT : returns without confirming a temporary stop.
However, “pa_sus_arm” is executed instantly.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_rsm_arm

Description example
: .. Arm in motion
if (temporary stop—key is pushed)
pa_sus_arm(ARM1, WM_WAIT):
: .. While in arm servo lock
if (resuming key is pushed)
pa_rsm_arm(ARM1, WM_WAIT);
.. Arm servo lock released
(Resuming arm motion)

8-11



Chapter 8  PA Library

pa__rsm__arm

Function
Releases arm temporary stop.

Syntax
long pa_rsm_arm(ARM armno, long func)

armno  Arm number (No.)
func Designation whether to wait or not until motion is completed.

Explanation
If the arm designated by “armno” is in temporary stop, it is released resuming
prior motion.

This function creates motion by “func” as follows:
-Designates WM_WAIT :does not return unless temporarily, motion stops
completely.
*Designates WM_NOWAIT : returns without confirming temporary—stop-release.
However, “pa_rsm arm” is executed instantly.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_sus_arm

8-12



Chapter 8  PA Library

pa__exe__axs

Function

Performs each axis motion.

Syntax

long pa_exe_axs(ARM armno, AXIS axis, ANGLEP angle, long func)

armno  Arm number (No.)

axis designates by “enum AXIS”: motion axis designation.
Plural axes can be selected. (Example: S1|S2|S3)

angle Motion angle: is designated by pointer type “ANGLEP” to structure
ANGLE

func Designation whether to wait or not until motion is completed.

Explanation

The axis designated by “axis” creates motion at default angle velocity to the angle
designated by “angle”.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion stops completely.
*Designates WM_NOWAIT : returns without confirming motion completion.

When the designated axis target angle exceeds its axis motion range, its target
angle is altered to motion range allowing maximum value. Automatic target value
alteration is reported to users with the warning: “target angle exceeded.”

Angle velocity default value employs default velocity.

( Reference )

For alteration, arm parameter has to be changed. Arm parameter alteration
method can be referred to parameter setting manual or “pa_set_vel.”

Return value

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference

pa_set_vel

Description example

ANGLE ang;

ang.s1=1.57,
ang.s2=1.57,
ang.w2=1.57;
pa_exe_axs(ARM1, S1|S2|W2, &ang, WM_WAIT);
.. Moves S1, S2 and W2 axis at the distance of 1.57 [rad]

8-13



Chapter 8  PA Library

pa__exe__hom

Function
Controls each axis to home position.

Syntax
long pa_exe_hom(ARM armno, long func)

armno  Arm number (No.)
func Designation whether to wait or not until motion is completed.

Explanation

Moves to the home position setting in the arm parameter.
Home position default angle for all axes is 0 [deg].

( Reference )

Home position default angle correction method can be referred to parameter setting

manual or “pa_set_hom.”

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.

*Designates WM_NOWAIT : returns without confirming motion completion.

Return value
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_hom Alters home position.
pa_def_ hom Replaces home position with current value.

8-14



Chapter 8  PA Library

pa__exe__esc

Function
Controls each axis to “escape” position.

Syntax
long pa_exe_esc(ARM armno, long func)

armno  Arm number (No.)
func Designation whether to wait or not until motion is completed.

Explanation
Moves to the “escape” position setting in parameter.
Escape position default angles are:
S2 : 45[deg]
E1 : 90[deg]
W1 : 45[deg]
Others: Oldeg]

( Reference )

Escape position default angle correction method can be referred to parameter

setting or “pa_set esc.”

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT : returns without confirming motion completion.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_esc Alters escape position.
pa_def esc Replaces escape position with current value.

8-15



Chapter 8  PA Library

pa__exe__saf

Function
Controls each axis to “safety position.”

Syntax
long pa_exe_saf(ARM armno, long func)

armno  Arm number (No.)
func Designation whether to wait or not until motion is completed.

Explanation
Moves to “safety” position setting in parameter.
Safety position default angles are:

S2 : 45[deg]
E1 : 90[deg]
W1 :—45[deg]

Others: Oldeg]

( Reference )

Escape position default angle correction method can be referred to parameter

setting or “pa_set_saf.”

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT : returns without confirming motion completion.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_saf Alters safety position.
pa_def saf Replaces safety position with current value.

8-16



Chapter 8  PA Library

pa_mov__XYZ

Function
RMRC base coordinate position deviation control

Syntax
long pa_mov_XYZ(ARM armno, float X, float Y, float Z, long func)

armno  Arm number (No.)

X Base coordinate toward X position deviation [mm]

Y Base coordinate toward Y position deviation [mm]

Z Base coordinate toward Z position deviation [mm]

func Designation whether to wait or not until motion is completed.
Explanation

With base coordinate axis as standard, the tip position moves at exact distance
created from designated position deviation toward X, Y and Z. Tip orientation does
not change.

Tip motion trajectory is linear. Velocity is interpolated creating modified sin curve
profile for start—up/shutdown.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT : returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation
setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]
(930 [mm] length from S2 rotation origin to W1 rotation origin). Singularity check
is performed when the target value is created in RMRV control.

( Reference |

For more, refer to programming manual in chapter 3.

When the tip target position calculated from designated deviation, exceeds arm

motion range, warning occurs: “target value arm length exceeds 925 [mm]
(automatically cut target value).”

If arm motion continues and exceeds motion range, the operation is automatically
switched to temporary—stop status. Immediately, the servo—lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this motion is not
performed as the motion range exceeds.

Two motion range types: LENGTH 925 [mm] available for RMRC control and axis
angle limit. If exceeding either limit, arm motion is not performed.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-17



Chapter 8  PA Library

pa_mov__YPR

Function
RMRC Base coordinate orientation deviation control

Syntax
long pa_mov_YPR(ARM armno, float Y, float P, float R, long func)

armno  Arm number (No.)

Y Base coordinate  rotation on X axis orientation deviation [rad]

P Base coordinate  rotation on Y axis orientation deviation [rad]

R Base coordinate  rotation on Z axis orientation deviation [rad]

func Designation whether to wait or not until motion is completed.
Explanation

With base coordinate axis as standard, the tip orientation (direction) rotates at
exact distance created from designated deviation: Yaw, Pitch and Roll. Tip
position does not change.

Tip rotational velocity is interpolated creating modified sin curve profile for
start—up/shutdown.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT : returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation
setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]
(930 [mm] length from S2 rotation origin to W1 rotation origin).

( Reference )

For more, refer to programming manual in chapter 3.

No warning occurs even if the tip target orientation calculated by the designated
deviation exceeds arm motion range.

If arm motion continues and exceeds motion range, the operation is automatically
switched to temporary—stop status. Immediately, the servo—lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this motion is
not performed as the motion range exceeds.
Two motion range types: LENGTH 925 [mm] available for RMRC control and axis
angle limit. If exceeding either limit, arm motion is not performed.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-18



Chapter 8  PA Library

pa__mov__Xyz (for Visual BASIC, pa__mov__XYZO0)

Function
RMRC mechanical interface coordinate position deviation control

Syntax
long pa_mov_xyz(ARM armno, float x, float y, float z, long func)

armno  Arm number (No.).

X Mechanical interface coordinate toward X position deviation [mm]

y Mechanical interface coordinate toward Y position deviation [mm]

z Mechanical interface coordinate toward Z position deviation [mm]

func Designation whether to wait or not until motion is completed.
Explanation

With base coordinate axis as standard, the tip position moves at the only distance
created from designated position deviation toward X, Y and Z. Tip orientation does
not change.

Tip motion trajectory is linear. Velocity is interpolated creating trapezoidal profile.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT : returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation
setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]
(930 [mm] length from S2 rotation origin to W1 rotation origin). Singularity check
is performed when the target value is created in RMRV control.

( Reference )

For more, refer to programming manual in chapter 3.

When the tip target position calculated from designated deviation, exceeds arm
motion range, warning occurs: “target value arm length exceeds 925 [mm]
(automatically cut target value).”

If arm motion continues and exceeds motion range, the operation is automatically
switched to temporary—stop status. Immediately, the servo—lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this motion is not
performed as the motion range exceeds.

Two motion range types: LENGTH 925 [mm] available for RMRC control and axis
angle limit. If exceeding either limit, arm motion is not performed.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-19



Chapter 8  PA Library

pa__mov__ypr (for Visual BASIC, pa__mov__YPRO)

Function
RMRC mechanical interface coordinate orientation deviation control

Syntax
long pa_mov_ypr(ARM armno, float y, float p, float r, long func)

armno  Arm number (No.).

y Mechanical interface coordinate rotation on X axis position deviation
[rad]

p Mechanical interface coordinate rotation on Y axis position deviation
[rad]

r Mechanical interface coordinate rotation on Z axis position deviation
[rad]

func Designation whether to wait or not until motion is completed.

Explanation

The tip orientation moves with RMRC control at the distance created from
orientation deviation designated at y, p and r in the mechanical interface
coordinate.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT : returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation
setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]
(930 [mm] length from S2 rotation origin to W1 rotation origin).

( Reference |

For more, refer to programming manual in chapter 3.

No warning occurs even if the tip target orientation calculated by the designated

deviation exceeds arm motion range.
If arm motion continues and exceeds motion range, the operation is automatically
switched to temporary—stop status. Immediately, the servo—lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this motion is
not performed as the motion range exceeds.
Two motion range types: LENGTH 925 [mm] available for RMRC control and axis
angle limit. If exceeding either limit, arm motion is not performed.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-20



Chapter 8  PA Library

pa__mov__mat

Function
Tip position/orientation target absolute position designation control

Syntax
long pa_mov_mat(ARM armno, MOVEMODE mmod, MATRIX mat,
ANGLEP angle, long func)

armno  Arm number (No.).
mmod  Absolute target matrix classification ? #f5c B $E175F& 52722772

mat Absolute tip position/orientation target matrix

angle Each axis value for redundant axis restriction control [rad]

func Designation whether to wait or not until motion is completed.
Explanation

Moves to the target provided by “mat” for the arm designated by “armno”.
Three motion target designation methods: absolute position, absolute orientation
and absolute position/orientation. These can be designated by “mmod”.
Trajectory to the designated target value is interpolated linearly.

MOVEMODE mmod classification:

*MM_XYZ :By “mat”, position is altered without changing absolute
position target matrix tip orientation.
-MM_NOA :By “mat”, orientation is moved without changing absolute
orientation target matrix tip position.
‘MM_XYZNOA :By “mat”, absolute position orientation matrix tip
position/orientation is moved.
MATRIX mat:
NXx ox ax px
ny oy ay py matrix:  mat[3][4]

Nz oz az pz

ANGLEP angle
Also, in this control, redundant axis control mode (the mode selected by
“pa_mod_jou”) to control elbow position is available and restricted by each axis
value provided by “angle.” For 6-axis or 7—axis arm, when redundant axis
control mode is OFF (no restriction), “angle” is invalid. However, a variable has
to be set 0.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT : returns without confirming motion completion.

PA-10 RMRC control: method to interpolate arm tip trajectory and orientation
setting position and orientation as the target value.

In PA-10 RMRC control, uncontrollable areas exist.

This is defined as a singularity. It is the point where E1 axis becomes 0 [deg]
(930 [mm] length from S2 rotation origin to W1 rotation origin).

( Reference |

For more, refer to programming manual.

8-21



Chapter 8  PA Library

Return value
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Description example

MATRIX mat;
ANGLE an;

mat[0][0] = 0.0;
mat[2][3]= 850.0;
an.s1 =0.0;
an.s2 = 0.0;

an.s3 = 60.0/180.0«M_PI; ..60[deg]

an.w2 = 0.0;
pa_mov_mat(ARM1, MM_XYZNOA, mat, &an, WM_WAIT);

Moves with RMRC interpolation from the current point to the tip
position/orientation indicated by “mat”.

8-22



Chapter 8  PA Library

pa__axs__pnt

Function
Moves from the present point to the current point.

Syntax
long pa_axs_pnt(ARM armno, long func)

armno  Arm number (No.).
func Designation whether to wait or not until motion is completed.

Explanation
Moves the arm with axis interpolation from the present point to the current point.

< Differences between pa_axs_pnt and pa_mov_pnt>
-Whatever a current point data type is, “pa_axs_pnt” moves with axis control.
*For “pa_mov_pnt,” when the current point data type is PTP data, moves with linear
interpolation (RMRC) control. When type is CP data, moves with axis interpolation
(axis angle control.)

When the present and current point position/orientation are completely different, it
is advisable to use axis interpolation. From any position/orientation (home
orientation, etc.) it can reach the current point.
Explanation for “func” is the same as “pa_mov_pnt”.

Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_mov_pnt Moves linearly to the current point.

Description example
pa_chg pnt(ARM1, PM_TOP, 0); .. Moves teach point pointer to the top.

pa_axs_pnt(ARM1, WM_WAIT); .. Moves to the current (top) teach point with
axis interpolation.

8-23



Chapter 8  PA Library

pa__mov__pnt

Function

Moves from the present point to the current point.
Syntax

long pa_mov_pnt(ARM armno, long func)

armno  Arm number (No.).
func Designation whether to wait or not until motion is completed.

Explanation
Moves the arm from the present point to the current point interpolating linearly tip
trajectory and tip orientation.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT :returns without confirming motion completion.

For this method, RMRC control is employed, the arm tip position trajectory from
the present position to the current one is linearly interpolated and orientation is
also interpolated.

For 7-axis arm:
Even if the tip position/orientation trajectory is the same, plural axis values exist
then. So that redundant axis control has to be set.
*If redundant axis operation control mode is selected, current point teach data
axis value restricts motion.
*If redundant axis operation control mode not restricted is selected, motion is not
restricted by current point teach data axis value.
Either redundant axis control modes, the tip trajectories are the same. But, each
axis value is different.
Redundant axis control mode is available in all RMRC controls until it is reset.

( Reference )

For more, refer to programming manual in chapter 3.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_chg_pnt Current point alteration
pa_axs_pnt Each axis moves to the current point.
pa_ply_pnt Playback control
pa_mod_jou Restricted axis control mode

Description example
pa_mod_jou(ARM1, JM_ON): .. Redundant axis control mode "All axes restriction”

selection
pa_chg pnt(ARM1, PM_TOP, 0); .. Moves the teach point pointer to the top
pa_mov_pnt(ARM1, WM_WAIT); .. Moves to the current (top) teach point with

axis interpolation.

8-24



Chapter 8  PA Library

pa__ply__pnt

Function
Performs playback control.

Syntax
long pa_ply_pnt(ARM armno, PLAYBACK pbmod, long number, long func)

armno  Arm number (No.).

pbmod  Motion direction and motion method are designated by “enum
PLAYBACK.”

func Designation whether to wait or not until motion is completed.

Explanation
Performs playback motion designated by “pbmod”.

PB_FORES: Performs playback with step toward.
If data is PTP, motion continues to the next.

PB_BACKS : Performs playback with step reverse.
If data is PTP, motion continues to the next.

PB_FORE: Starts to consecutively playback forward for teach data from the
current point. Playback is performed as many as designated by the number.
If the number is designated —1, playback is infinitely performed.

This function creates motion by “func” as follows:
*Designates WM_WAIT :does not return unless motion is completed.
*Designates WM_NOWAIT : returns without confirming motion completion.

Playback motion is available when teach data is being loaded or when teaching is
performed. However, this can be used only when the current point and the arm
position are placed together. If not, move the arm to the current point.

Playback control: method to interpolate the tip position/orientation calculated
from teach data axis value and control it.

8-25



Chapter 8  PA Library

/ 7-axis arm function /

For 7-axis arm, Even if the tip position/orientation trajectory is the same, plural
axis values exist. So that redundant axis operation has to be set.

Before performing playback control:

*If redundant axis operation control mode is selected, teach point data axis value
restricts motion.

*If redundant axis operation control mode: “JM_OFF” is selected, motion is not
restricted by teach point data axis value.
Default is JM_OFF.

With any redundant axis control mode, the tip trajectory is the same. But, each
axis value is different.

Redundant axis control mode is available in all RMRC controls until it is reset.

( Reference )

For more, refer to programming manual.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_mov_pnt Moves linearly to the arm current point.
pa_axs_pnt Each axis moves to the arm current point.
pa_mod_jou Performs redundant axis operation control.

Description example

pa_mod_jou(ARM1, JM_ON); .. Redundant axis control mode “all axes restriction”
selection

pa_chg_pnt(ARM1, PM_TOP, 0); .. Moves the teach point pointer to the top
pa_mov_pnt(ARM1, WM_WAIT); .. Moves to the current (top) teach point with
axis interpolation.
pa_ply_pnt(ARM1, PB_FORE, -1, WM_WAIT); .. Playback control starts from the
current point (top) to infinity.

8-26



Chapter 8  PA Library

pa__chg pnt

Function
Alters the current point of teach point.

Syntax
long pa_chg_pnt(ARM armno, PNTMOVE pmov, long jpt)

armno  Arm number (No.).

pmov Designates teach point pointer forwarding place with “enum PNTMOVE.”
jpt Pointer shifting designhation number

pmov = Available when in “PM_JMP.”

Explanation
Changes teach point pointer to the teach point position designated by “pmov”.
Teach point pointed out by teach point pointer is called current point.

PM_TOP :Moves the teach point pointer to the top.

PM_NEXT :Moves the teach point pointer to the next teach point.

( Memo )

This function is available when teach data is being loaded or when
teaching is performed. If the current point is at the last teach point,
nothing is performed.

PM_PRIV :Moves the teach point pointer to the previous teach point.

( Memo )

This function is available when teach data is being loaded or when
teaching is performed. If the current point is at the top teach point,
nothing is performed.

PM_BTM :Moves the teach point pointer to the last teach point.

( Memo )

This function is available when teach data is being loaded or when
teaching is performed. If the current point is at the last teach point,
nothing is performed.

PM_JMP :Moves the teach point pointer to the teach point. With designated
number “jpt”.

PM_CIR :Researches the circle teach point forward from the current point and
moves the teach point pointer to the teach point found in the first
place.

PM_ARC :Researches the arc teach point forward from the current point and
moves the teach point pointer to the teach point found in the first
place.

When the current point (the 2ndpoint) is the circle first point, if “PM_NEXT”
is designated, the current point become the 5% point. To summarize, the
points able to be the current point are point attribution: PTP and circle 1%

point and arc 1% point.

8-27



Chapter 8  PA Library

Return value
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_sav_pnt

(_Memo )

Teach point pointer:
When operation function on teach point is performed, the teach point has to be
indicated for the operation target. The one indicating this teach point is the teach

point pointer.

The teach point pointed out by teach point pointer is called the current point
(current teach point).

After pointer shifting operation, if intending to restart playback, the current point
and present arm position have to be placed together.
When teach data is loaded, the current point is the top teach point.

Teach point operation is total only for teach data operation. It has nothing to do
with actuating arm itself.

( Reference )

For more, refer to programming manual 3

8-28



Chapter 8  PA Library

pa__add__pnt

Function
Adds the current position to the teach point.

Syntax
long pa_add_pnt(ARM armno, PNTTYPE ptyp)

armno  Arm number (No.).
ptyp Teach point addition position and data type designated by “enum PNTTYPE”.

Adds the current value as teach point with the method designating by “ptyp”.

*PT_PTP : Adds PTP linear interpolation data after the current point.
The current point becomes the added teach point.

*PT BPTP : Adds PTP linear interpolation data before the current point.
The current point becomes the added teach point.

-PT_ARC1 : Adds the arc 1° point.
The current point becomes the added teach point.

*PT_ARC2 : Adds the arc 2" point.
The current point has to be the arc 1% point.
The current point becomes the added teach point.

*PT_ARC3 : Adds the arc 3™ point.
The current point has to be the arc 2™ point.
The current point becomes the added teach point.

*PT_CIR1 : Adds the circle 1% point.
The current point becomes the added teach point.

*PT_CIR2 : Adds the circle 2™ point.
The current point has to be the circle 1% point.
The current point becomes the added teach point.

*PT_CIR3 : Adds the circle 3" point
The current point has to be the circle 2™ point.
The current point becomes the added teach point.

‘PT_AXS : Adds PTP axis interpolation data retaining axis recovery attribution
after the current point.
The current point becomes the added teach point.

‘PT_BAXS : Inserts PTP axis interpolation data retaining axis recovery
attribution before the current point.
The current point becomes the inserted teach point.

8-29



Chapter 8  PA Library

*PT_POS : Adds PTP linear interpolation NOAP data after the current point.
The current point becomes the added teach point.

‘PT_BPOS : inserts PTP linear interpolation NOAP data before the current
point.
The current point becomes the added teach point.

"PT_ARC4 : Adds the arc 1% point with NOAP data.
The current point becomes the added teach point.

*PT_ARC5 : Adds the arc 2" point with NOAP data.
The current point has to be the arc 1% point.
The current point becomes the added teach point.

PT_ARC6 : Adds the arc 3" point with NOAP data.
The current point has to be the arc 2™ point.
The current point becomes the added teach point.

*PT_CIR4 : Adds the circle 1% point with NOAP data.
The current point becomes the added teach point.

PT_CIR5 : Adds the circle 2™ point with NOAP data.
The current point has to be the circle 1% point.
The current point becomes the added teach point.

PT_CIR6 : Adds the circle 3" point with NOAP data.
The current point has to be the circle 2™ point.
The current point becomes the added teach point.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_chg_pnt Current point alteration
pa_del_pnt Teach data deletion

Description example

pa_chg pnt(ARM1, PM_JMP, 5); .. Moves the teach point pointer to the
5% teach point.
pa_add_pnt(ARM1, PT_PTP); .. loads PTP linear interpolation data
teach point to the 6% teach point.

8-30



Chapter 8  PA Library

pa__del__pnt

Function
Deletes the teach point.

Syntax
long pa_del_pnt(ARM armno, PNTDEL pdel)

armno  Arm number (No.).

pdel Designates teach point to be deleted, with “enum PNTDEL”.
Explanation

Deletes teach point designated by “pdel”.

* PD_CUR : Deletes teach point of current point.

If current point is deleted, teach point pointer moves back to the prior teach
point after deletion.

On account current point is changeable, when intending to restart playback,
the arm has to be moved to the current point position to get coordination.

‘PD_ALL : Deletes all teach points of current teach Key.
PD_ALLDATA : Deletes all teach data points.
Command cannot be accepted while in playback.
Return value

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_chg_pnt Current point alteration
pa_add_pnt Teach point addition

8-31



Chapter 8  PA Library

pa__rpl__pnt

Function
Replaces the present axis value with teach point data of current point.

Syntax
long pa_rpl_pnt(ARM armno)

armno  Arm number (No.).

Explanation
Replaces the present axis value with teach point data of current point.

This function is available when teach data is being loaded or when teaching is
performed.

There is no function to recover replaced data.

This replacement function is available when the current point is PTP data.

When intending to change only the position of certain completed teach data, if this
replacement and current point alteration functions are combined well, alteration can
be easily performed.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_chg_pnt Current point alteration

Description example

pa_chg pnt(ARM1, PM_JMP, 3); .. Moves the teach point pointer to the 3™
teach point.
pa_rpl_pnt(ARM1); .. Replace the 3" teach point with the

current point.

8-32



Chapter 8  PA Library

pa__set_pnt

Function
Sets the teach point attribution.

Syntax
long pa_set_pnt(ARM armno, PNTATTR pattr, long* Idat, float fdat)

armno  Arm number (No.).
pattr Designates attribution altered, with “enum PNTATTR”.
Idat Attribution altered
fdat Attribution altered

Explanation
Attribution designated by current point: “armno” has to be set in “Idat” or “fdat”.

*PA_CHGVEL :Alters playback linear velocity.
“fdat” dimension: [mm/sec]

*PA_CHGWAIT: Alters playback waiting time. “Idat[0]” dimension: [msec]
*PA_VELPTN : Alters teach data velocity interpolation pattern.

Idat[0] shows velocity pattern.

Idat[1] shows start up time [*10mSec]

Idat[2] shows start up time [*10mSec]
*PA_ROTVEL : Alters playback rotational velocity.

“fdat” dimension: [rad/sec]
*PA_AXSACC: Alters each axis accuracy. “fdat” dimension: [deg]
*PA_RMRCACG: Alters straight line accuracy. “fdat” dimension: [mm]
*PA_JUMPID: Alters JUMP numbers. Setting at Idat[0].

( Reference )

For teach data format, refer to programming manual.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Description example
long i,|dat[3];
for(i=0;i<3;i++) Idat[i]=0;

pa_chg pnt(ARM1, PM_JMP, 3)... Moves the teach point pointer to the 3" teach
point.

pa_set pnt(ARM1, PA_ CHGVEL, Idat, 1.2f); .. Changes 3™ teach point velocity to
1.2[mm/sec].

8-33



Chapter 8  PA Library

pa__set__idn

Function
Sets teach point ID data attribution.

Syntax
long pa_set_idn(ARM armno, PNTID pa, long dat)

armno  Arm number (No.).

pa Alteration attribution designation
dat Attribution value
Explanation

This “pa” designates teach point attribution intended to change. Now, the
attribution supported by this library is only one.

Macro definition
PA_SETID : Sets ID number.

This ID number is set to be designated by “dat”.
Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_get_idn Teach point ID number acquisition

Description example

pa_set_idn(ARMO,PA_SETID,0x1234); .. ID No. setting

8-34



Chapter 8  PA Library

pa__chg__dio

Function
Sets teach point (PTP) DO data attribution.

Syntax
long pa_chg_dio(ARM armno, DIOSTATUSP dp)

armno  Arm number (No.).
dp Pointer to the DO data attribution structure “DIOSTATUS”.

Explanation
Sets each designated port data attribution as current point DO data attribution.
(Port 1 cannot be set on account of the system activation.)
Setting cannot be performed while in playback control.

Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Description example
DIOSTATUS dos;

dos.io1 = 0x01; ..PORT1 CH1 ON

dos.io2 = 0x80; .. PORT2 CH8 ON
dos.io3 = 0x40; .. PORT3 CH7 ON
pa_chg dio(ARM1,&dos); .. Sets current point teach data DIO information.

DO information format inside teach data is long. Beware when putting
this format into “DIOSTATUS” type.

Example: For adding PORT1_CH1 ON, PORT2_CH3 ON and PORT3_CH8 ON to
current point DO information.

PNTDAT pnt;
UBYTE* ubp;
DIOSTATUS dos;

pa_get_pnt(ARMO,&pnt); .. Current point DO information loading

ubp = (UBYTE*)&pnt.ply.pnt.atr[6]; .. Setting with DIOSTATUS type.
dos.io1 = *(ubp+2);

dos.io2 = *(ubp+1); (ATTENTION! To each port address.)
dos.io3 = *ubp;

dos.io1 |= 0x01; ..Adds DIO information.

dos.io2 |= 0x04;

dos.io3 |= 0x80;

pa_chg dio(ARMO,&dos); .. Setting to current point DIO information

8-35



Chapter 8  PA Library

pa__vel__pnt

Function
Alters all teach data interpolation velocity in playback control.

Syntax
long pa_vel_pnt(ARM armno, float vgain)

armno  Arm number (No.).
vgain Interpolation velocity alteration gain

Explanation
Alters arm playback interpolation velocity designated by “armno”.
Velocity of all data with PTP interpolation is corrected.

PTP interpolation velocity in playback control is the shifting time calculating from
shifting value created from tip linear motion velocity: Vxyz and tip rotational motion
velocity: Vypr.

ATxyz=AXYZ./Vxyz
ATypr=AYPR.”Vypr
Larger one is selected.
Selected velocity (Vxyz or Vypr) is altered by “vgain”.
If “ATxyz > ATypr”,
Vxyz = Vxyz*vgain
Velocity is interpolated on the basis of “Vxyz”.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_get_pvl Playback velocity coefficient information acquisition

8-36



Chapter 8  PA Library

pa__swt__dio
Function
Sets teach point DO data valid/invalid.
Syntax
long pa_swt_dio(ARM armno, long sw)
armno  Arm number (No.).
sw Valid/invalid parameter
Explanation

When parameter (sw) is 0, DO attribution inside teach data becomes invalid and is
not output even during playback control.

If parameter (sw) is not 0, output is exactly performed following teach data DO
attribution in playback control.

Default is 1

This can be changed while in playback control.

Return value
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_ply_pnt performs playback control.
pa_get_pdo DO data valid/invalid acquisition while in playback.

8-37



Chapter 8  PA Library
pa__get_ pnt
Function
Acquires teach point attribution of current point.
Syntax

long pa_get_pnt(ARM armno, PNTDATP tea)

Arm number (No.).

armno
tea Download area for teach point attribution of current point.
Explanation

Acaquires current point teach data.

tea.ply.pnt.agl[0]

~tea.ply.pnt.agl[6]

tea.ply.pnt.vel[0]
tea.ply.pnt.vel[1]
tea.ply.pnt.atr[0]
tea.ply.pnt.atr[1]

tea.ply.pnt.atr[2]

tea.ply.pnt.atr[3]
tea.ply.pnt.atr[4]
tea.ply.pnt.atr[5]
tea.ply.pnt.atr[6]
tea.ply.pnt.atr[7]

tea.ply.pnt.atr[8]
tea.ply.pnt.atr[9]
tea.ply.pnt.atr[10]
tea.ply.pnt.atr[11]
tea.ply.cmt[32]

tea.noa.xyz[0]~tea.noa.xyz[3]
tea.noa.noal0] ~tea.noa.noal3]

teajmp.cid

tea,jmp.jdg[0].cnd[0]
tea,jmp.jdg[0].cnd[1]

tea jmp.jdg[0].xdi
tea jmp.jdg[0].tim
tea,jmp.jdg[0].key
tea jmp.jdg[0].pid
teajmp.jdg[0].cnt

tea,jmp.jdg[7].cnd[0]
teajmp.jdg[7].cnd[1]

tea jmp.jdg[7].xdi
tea jmp.jdg[7].tim
teajmp.jdg[7].key

8-38

S1 axis angle [rad]~W2 axis [rad]

Linear velocity [mm/sec]

Rotational velocity [rad/sec]

Teach point type (PTP/PTP(NOAP))
Interpolation method (straight
line/circle/arc)

Velocity type (Acceleration & Deceleration/
Acceleration/ Deceleration/Straight line)
Waiting time [*10mSec]

Serial number (not available for users)

ID number

DO information

Accuracy

Upper 16 bit: RMRC accuracy (0-25.5[mm])
Lower 16 bit: axis accuracy (0-25.5[deg])

JUMP conditional number
Acceleration time [*0.01mSec]
Deceleration time [*0.01mSec]
Spare

Maximum 32 letters comment

Arm X, Y and Z coordinate [mm]
Arm orientation

Number specifying JUMP condition
JUMP condition

Not available

DI information

Time—out [mSec]

Teach data Key

Teach point ID

Inside information

JUMP condition
Not available

DI information
Time—out [mSec]
Teach data Key



Chapter 8  PA Library

teajmp.jdg[7].pid Teach point ID
teajmp.jdg[7].cnt Inside information

JUMP condition can be set 8 (eight).

( Reference )

For interpolation pattern, refer to programming manual.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_get_cur Acquires teach point number of current point.
pa_get_num Acquires total numbers of teach point.
pa_get_idn Acquires teach point ID number.

8-39



Chapter 8  PA Library

pa__get cur

Function
Acquires current point teach point number.

Syntax
long pa_get_cur(ARM armno, long* cur)

armno  Arm number (No.).
cur Current point teach point number.

Explanation

Acquires teach point number from teach point attributions of current point.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_get_pnt Acquires current point teach point attribution.
pa_get_num Acquires teach point total numbers.

8-40



Chapter 8  PA Library

pa__get_ _num

Function
Acquires teach point total numbers.

Syntax
long pa_get_num(ARM armno, long* num)

armno  Arm number (No.).
num Teach point total numbers

Explanation
Acquires teach point total numbers.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_get_pnt Acquires current point teach point attribution.
pa_get_cur Acquires current point teach point number.

8-41



Chapter 8  PA Library

pa__get__idn

Function
Acquires teach point ID data attribution.

Syntax
long pa_get_idn(ARM armno, long* idn)

armno  Arm number (No.).
idn attribution value

Explanation

Acquires current point ID data attribution.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_idn Teach point ID number setting

Description example
long id;

pa_get_idn(ARMO,&id); .. Gurrent point ID number acquisition

8-42



Chapter 8  PA Library

pa__get cpt

Function
1%t 2" and 3™ point information are acquired when current point is circle/arc.

Syntax
long pa_get_cpt(ARM armno, PNTNO pno, PNTDATP pntdat)

armno  Arm number (No.).
pno Circle/arc Identification number designation.
pntdat Pointer for teach data structure “PNTDAT”.

Explanation
Teach data to obtain by “pa_get pnt” is only the current point data. Therefore, if
intending to acquire 2"Y/3" data for circle/arc, use this function.

Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_get_pnt Acquires current point teach point attribution.

8-43



Chapter 8  PA Library

pa__get_ pvl

Function

Acaquires playback velocity coefficient information.
Syntax

long pa_get_pvI(ARM armno, float* div)

armno  Arm number (No.).

div Playback velocity coefficient
Explanation

Acquires current setting playback velocity coefficient information.
For Playback velocity coefficient, default = 1. This default can be changed by
“pa_vel_pnt”.

Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_vel_pnt Playback velocity coefficient information setting

8-44



Chapter 8  PA Library

pa__get_ pdo

Function
Acquires DO information valid/invalid inside teach data when in playback control.

Syntax
long pa_get_pdo(ARM armno, long* stat)

armno  Arm number (No.).
stat DO valid/invalid flag

Explanation
stat = 1 :Playback data DO information valid.
stat = O:Playback data DO information invalid.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference

pa_swt_dio Teach data DO information valid/invalid setting when in
playback control.

8-45



Chapter 8  PA Library

pa__lod__pnt

Function
Loads teach point to controller.

Syntax
long pa_lod_pnt(ARM armno, STRING file)

armno  Arm number (No.).

file Teach point data file name
Explanation

Loads data designated by “file” to the arm designated by “armno”.
Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_sav_pnt Teach data saving

8-46



Chapter 8  PA Library

pa__sav__pnt

Function
Loads teach points from the controller. Saves them in hard disk of man—machine

controller.

Syntax
long pa_sav_pnt(ARM armno, STRING file)

armno  Arm number (No.).
file Teach data storing file name

Explanation
Uploads teach data from the arm controller designated by “armno”. Saves it with
the designated file name in the hard disk of man—machine controller.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_lod_pnt Teach data loading

8-47



Chapter 8  PA Library

pa__set__dic

Function
Sets either to stop automatically or not synchronizing DO information with arm
motion in playback control.

Syntax
long pa_set_dlc(ARM armno, long data)

armno  Arm number (No.).
data DO automatic stop valid/invalid parameter

Explanation
When teach point DO information is outputted during playback control, if the arm
is temporarily stopped (paused) or in brake—stop, set either to stop or not to output
DO information.

When parameter (data) is O, if the arm is stopped, DO information output is also
stopped.

When parameter (data) is 1, even if the arm is stopped, DO information output
continues.

Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_get_dlc

8-48



Chapter 8  PA Library

pa__get__dlc

Function

Acquires determination whether to automatically stop or not synchronizing DO
information with arm motion in playback control.

Syntax
long

armno
stat

Explanation

pa_get_dlc(ARM armno, long* stat)

Arm number (No.).
DO automatic stop valid/invalid flag

stat = O:Teach data DO information automatic stop invalid.
stat = 1:Teach data DO information automatic stop valid.

Return value

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference

pa_set_dlc

8-49



ChaEter 8 PA Librarx

pa__ply__set
Function
Acquires teach data Key with number designation.
Syntax
long pa_ply_set(ARM armno, long number, long* key):
armno  Arm number (No.).
number Teach data number
key Teach data Key number pointer
Explanation

Acquires teach data Key with number designation.
Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_jmp_set Acquires JUMP data with Key and number designation

Description example:
long key;

pa_ply_set(ARMO,0,8key); .... Acquires teach data Key with number
designation.

8-50



ChaEter 8 PA Librarx

pa__act__pnt

Function
Active teach data switching

Syntax
long pa_act_pnt(ARM armno, long key)

armno  Arm number (No.).
key Teach data Key number

Explanation
Switches currently active teach data to designated Key.

Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_chg_key Switching currently active teach data to Key.

Description example:

pa_act_pnt(ARMO,3); .... Alters from Key No.3 data into active teach data.

8-51



ChaEter 8 PA Librarx

pa__jmp__set

Function

JUMP data acquisition with number designation

Syntax
long pa_mp_set(ARM armno, long key, long num, JUMPP jmp);

armno  Arm number (No.).

key Teach data Key number
num Data number
jmp JUMP data

Explanation

Acquires JUMP data by teach data Key and number designation

Return value
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_jmp JUMP data setting
pa_get_jmp JUMP data acquisition

Description example:
JUMP  jmp;

pa_jmp_set(ARMO,2,0,&mp); .. JUMP data acquisition by Key2 and number

designation

8-52



ChaEter 8 PA Librarx

pa__get__imp

Function
JUMP data acquisition.

Syntax
long pa_get_ jmp(ARM armno, long key, long id, JUMPP jmp);

armno  Arm number (No.).

key Teach data Key number

id Teach point ID number

Jjmp JUMP data pointer
Explanation

Acquires JUMP data.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_jmp JUMP data setting

Description example:
JUMP  jmp;

pa_get_imp(ARMO0,2,0,&mp); ... This is defined in Key=2 and ID=0.
JUMP data acquisition

8-53



ChaEter 8 PA Librarx

pa__set_ imp

Function
JUMP data setting

Syntax
long pa_set_ jmp(ARM armno, long key, long id, JUMPP jmp);

armno  Arm number (No.)

key Teach data Key number
id Teach data ID number
jmp JUMP data

Explanation

Sets JUMP data.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_get_jmp JUMP data acquisition

8-54



ChaEter 8 PA Librarx

pa__ena__jmp

Function
JUMP data valid/invalid setting.

Syntax
long pa_ena_mp(ARM armno, long stat);

armno  Arm number (No.).
stat 0: invalid
1: valid

Explanation
Sets JUMP data valid/invalid.

Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_get_ena JUMP data valid/invalid status acquisition

Description example:

pa_ena_mp(ARMO,1); .... JUMP data is valid

8-55



ChaEter 8 PA Librarx

pa__ply__mod

Function
Teach mode setting

Syntax
long pa_ply_mod(ARM armno, long mod);

armno  Arm number (No.).

mod 0: Teach mode released
1: Low
2: Medium
3: High
Explanation

Sets teach mode.
Macro definitions employed in “mod” are as follows:

Macro definition:

TEACH_OFF Teach mode released
TEACH_LOW Teach mode: Low
TEACH_MID Teach mode : Medium

TEACH_HIGH Teach mode:High
Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_get_pmd Teach mode acquisition

Description example:

pa_ply_ mod(ARMO, TEACH_LOW); .... Teach mode ON (low velocity)

8-56



ChaEter 8 PA Librarx

pa__chg__key

Function
Alters currently active teach data Key.

Syntax
long pa_chg_key(ARM armno, long key);

armno  Arm number (No.).
key Teach data Key number pointer

Explanation
Alters currently active teach data Key.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_act_pnt Alters active teach data.
pa_get_key Acquires currently active teach data Key.

Description example:

long key;
pa_get_key(ARMO,&8key); ... Alters currently active teach data Key.
if(key==1) ... When active teach data Key is 1

pa_chg key(ARMO,2); .... Alters currently active teach data Key to

2.

8-57



ChaEter 8 PA Librarx

pa__get__key

Function
Acquires active teach data Key.

Syntax
long pa_get_key(ARM armno, long* key);

armno  Arm number (No.).
key Teach data Key number pointer

Explanation
Acquires active teach data Key.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_chg_key Alters currently active teach data Key.
pa_act_pnt Alters active teach data.

8-58



ChaEter 8 PA Librarx

pa__mon__pnt

Function
Acquires current teach point data (for monitor.)

Syntax
long pa_mon_pnt(ARM armno, PNTDATP pntdat);

armno  Arm number (No.).
pntdat  Pointer to teach point data structure.

Explanation
Acquires current teach point data (for monitor.)

Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_get_pnt Acquires current teach point data.

8-59



ChaEter 8 PA Librarx

pa__set__cmt

Function
Teach data comment setting

Syntax
long pa_set_cmt(ARM armno, char* cmt);

armno  Arm number (No.).

cmt Comment
Explanation

Designates comment at teach point (maximum 32 letters.)
Return value

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Description example:

pa_set_cmt(ARMO,” Diverging point”); ... Sets comment at current point.

8-60



ChaEter 8 PA Librarx

pa__imp__cmt

Function
Moves current teach point by comment designation.

Syntax
long pa_mp_cmt(ARM armno, long key, char* cmt);

armno  Arm number (No.).

key Teach data Key number designation
cmt Comment designation
Explanation

Moves current teach point by comment designation.
Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_chg_pnt

Description example:

pa_mp_cmt(ARMO,1,” Diverging point”); ...Moves current point to teach point
with comment designated by Key 1.

8-61



ChaEter 8 PA Librarx

pa__get ena

Function
JUMP data valid/invalid acquisition.

Syntax
long pa_get_ena(ARM armno, long* stat);

armno  Arm number (No.).
stat 0: valid
1: invalid

Explanation
Acquires JUMP data valid/invalid.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_ena_mp JUMP data valid/invalid setting

8-62



ChaEter 8 PA Librarx

pa__get__pmd

Function
Teach mode acquisition

Syntax
long pa_get_pmd(ARM armno, long* mod);

armno  Arm number (No.).

mod 0:Teach mode released
1:Low
2:Medium
3:High
Explanation

Acquires teach mode.
Macro definitions employed in “mod” are as follows:

Macro definition:

TEACH_OFF Teach mode released
TEACH_LOW Teach mode: Low
TEACH_MID Teach mode : Medium

TEACH_HIGH Teach mode:High
Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_ply_mod Teach mode setting

8-63



ChaEter 8 PA Librarx

pa__del__jmp

Function
JUMP data deletion

Syntax
long pa_del_jmp(ARM armno, long key, long jnm);

armno  Arm number (No.).

key Key number
jnm JUMP number
Explanation

Deletes JUMP data.
Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_set_jmp JUMP data setting

Description example:

long key;
pa_get_key(ARMO,&8key); .... Active Key acquisition

pa_jmp_cmt(ARMO,key,0); ... JUMP data deletion

8-64



ChaEter 8 PA Librarx

pa__sav__ptj

Function
Teach and JUMP data saving.

Syntax
long pa_sav_ptj(ARM armno, char* name);

armno  Arm number (No.).
name File name

Explanation
Saves active teach data and its JUMP data.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_lod_ptj Teach data and JUMP data loading
pa_lod_prj Project loading
pa_sav_prj Project saving
pa_lod_pnt Teach data loading
pa_sav_pnt Teach data saving

Description example:

pa_sav ptj(ARMO,” c:¥¥data.csv”); ... Teach and JUMP data saving.

8-65



ChaEter 8 PA Librarx

pa__lod__ptj

Function
Teach and JUMP data loading.

Syntax
long pa_lod_ptj(ARM armno, char* name);
armno  Arm number (No.).
name File name

Explanation

Loads active teach data and its JUMP data.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_sav_ptj Teach data and JUMP data loading
pa_lod_prj Project loading
pa_sav_prj Project saving
pa_lod_pnt Teach data loading
pa_sav_pnt Teach data saving

Description example:

pa_lod ptj(ARMO,” c:¥¥data.csv”); ... Teach and JUMP data loading

8-66



ChaEter 8 PA Librarx

pa__get_ prj

Function
Project name acquisition

Syntax
long pa_get_prj(ARM armno, char* name);
armno  Arm number (No.).
name Project name

Explanation

Acquires project name.
Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_set_prj Project name setting

8-67



ChaEter 8 PA Librarx

pa__set__prj

Function
Project name setting

Syntax
long pa_set_prj(ARM armno, char* name);
armno  Arm number (No.).
name Project name

Explanation

Sets project name with maximum 128 letters.
Return value
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference
pa_get_ptj Project name acquisition

Description example:

pa_set_prj(ARMO,” Test project”); ... Project name setting

8-68



ChaEter 8 PA Librarx

pa__sav__ptj

Function
Project saving

Syntax
long pa_sav_prj(ARM armno, char* fdname);

armno  Arm number (No.).
name Storing folder name

Explanation
Saves project.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_sav_ptj Teach data and JUMP data loading
pa_lod_ptj Teach data and JUMP data loading
pa_lod_prj Project loading
pa_lod_pnt Teach data loading
pa_sav_pnt Teach data saving

Description example:

pa_sav_prj(ARMO,” c:¥¥data”); ... Project saving

8-69



ChaEter 8 PA Librarx

pa__lod__prj

Function
Project loading

Syntax
long pa_lod_prj(ARM armno, char* fdname):;
armno  Arm number (No.).
name Storing folder name

Explanation

Loads project.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_sav_ptj Teach data and JUMP data saving
pa_lod_ptj Teach data and JUMP data loading
pa_sav_prj Project saving
pa_lod_pnt Teach data loading
pa_sav_pnt Teach data saving

Description example:

pa_lod_prj(ARMO,” c:¥¥data”); ... Project loading

8-70



ChaEter 8 PA Librarx

pa__set__cub

Function
CUBE designation

Syntax
long pa_set_cub(ARM armno, long num, float xyz[], float ypr[l);

armno  Arm number (No.).
num CUBE number (0-23)

xyz[] Maximum value [mm]
ypr[] Minimum value [mm]
Explanation

Designates CUBE.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_get_cub CUBE information teaching
pa_cub_len CUBE side length designation

Description example:
float xyz[3];
float ypr[3];

xyz[0]=100.0;

xyz[1]=100.0;

xyz[2]=100.0;

ypr[0]=0.0;

ypr[11=0.0;

ypr[2]=0.0;

pa_set_cub(ARMO, 0, xyz, ypr); .... 0 (zero) CUBE designation

8-71



ChaEter 8 PA Librarx

pa__get__cub

Function
CUBE teaching designation

Syntax

long pa_get_cub(ARM armno, long num, long mod);

armno  Arm number (No.).
num CUBE number (0-23)
mod 1:Maximum value
2 :Minimum value
3:Center

Explanation
Designates CUBE teaching.

Macro definitions employed in “mod” are as follows:
Macro definition:

MAXPNT : Maximum value

MINPNT : Minimum value

CENTERPNT: Center

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_cub CUBE information designation
pa_cub_len CUBE side length designation

Description example:

pa_get_cub(ARMO, 0, MAXPNT); ... 0 (zero) CUBE designation

8-72



ChaEter 8 PA Librarx

pa__cub__len

Function
CUBE side length designation

Syntax
long pa_cub_len(ARM armno, long num, float xyz[]);

armno  Arm number (No.).
num CUBE number (0-23)
Xyz Each side length [mm]

Explanation
CUBE side length designation

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_cub CUBE information designation
pa_get_cub CUBE information teaching

8-73



ChaEter 8 PA Librarx

pa__cub__cmt

Function
Names CUBE.
Syntax
long pa_cub_cmt(ARM armno, long num, char* name);

armno  Arm number (No.).
num CUBE number (0-23)
name CUBE name

Explanation
Names CUBE.(maximum 32 letters)

Return value

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-74



ChaEter 8 PA Librarx

pa__del__cub

Function
CUBE deletion

Syntax

long pa_del_cub(ARM armno, long num);

armno  Arm number (No.).
num CUBE number (0-23)

Explanation
CUBE deletion

Return value

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-75



ChaEter 8 PA Librarx

pa__ena__cub

Function
CUBE valid/invalid

Syntax

long pa_ena_cub(ARM armno, long num, long mod);

armno  Arm number (No.).
num CUBE number (0-23)
mod 1 :valid

O:invalid

Explanation
Sets CUBE valid/invalid

By designating num as —1, all CUBE information can be set to be invalid at a time.
Valid designation is impossible.

Return value
ERR OK Normal termination

Others: Anomalous termination (Refer to error table)

8-76



ChaEter 8 PA Librarx

pa__inf_cub

Function
CUBE information reference

Syntax
long pa_inf_cub(ARM armno, long num, CUBEP cub);

armno  Arm number (No.).
num CUBE number (0-23)

cub CUBE information
Explanation
Refers to CUBE information.
cub..ena CUBE information valid/invalid
cub..mod Designation method when in CUBE information creation
NOCUBE: CUBE information not exists
CUBEON: Maximum value/minimum value designation
CUBEMAX: Maximum value teaching
CUBEMIN: Minimum value teaching
CUBECENTER: Center teaching
CUBESIDE: Side length designation
cub.max[3] Maximum value or side length
cub.min[3] Minimum value or center
cub.cmt[32] Comment

Combination of cub.mod are as follows:

CUBEON Maximum value/minimum value designation
CUBEMAX/CUBEMIN Maximum value/minimum value teaching
CUBECENTER/CUBESIDE Side length/center teaching

This combination is not correct. CUBE information is not established.

Return value
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference
pa_set_cub CUBE information designation
pa_get_cub CUBE information teaching
pa_cub_len CUBE side length designation

877



ChaEter 8 PA Librarx

pa__mod__vel

Function:
Sets velocity mode.

Syntax:
long pa_mod_vel(ARM armno, VELMODE vmod, AXIS axis)

armno  Arm number (No.)

vmod Designates velocity mode by “enum VELMODE”.

axis Designates motion axis. Plural valid axes can be designated only when
axis velocity mode is designated.  Velocity can be also. (ex) S1|S3

Explanation:
Sets in velocity mode designated by “vmod”.
If velocity mode is set, the arm moves with velocity set value.
Setting or alteration for velocity set value is performed by “pa_odr_vel®.

VM_XYZ:Linear velocity mode in base coordinate
(for Visual BASIC: VM_XYZ1)
VM_YPR: Rotational velocity mode in base coordinate
(for Visual BASIC: VM_YPRT1)
VM_xyz: Linear velocity mode in mechanical interface coordinate
(for Visual BASIC: VM_XYZ2)
VM_ypr: Rotational velocity mode in mechanical interface coordinate
(for Visual BASIC: VM_YPR2)
VM_ONE : Axis velocity mode
Makes the axis designated by “axis” move with the designated velocity.
VM_XYZYPR: Linear/rotational velocity mode in base coordinate
(for Visual BASIC: VM_XYZYPR1)
VM_xyzypr: Linear/rotational velocity mode in mechanical interface coordinate
(for Visual BASIC: VM_XYZYPR2)

Uncontrollable areas exist in any control except in axis velocity control.
This is defined as a singularity. It is the point where E1 axis becomes 0 [deg] (930
[mm] length from S2 rotation origin to W1 rotation origin).

( Reference )

For more, refer to programming manual in chapter 3.

When the tip target position calculated from designated velocity, exceeds arm
motion range, warning occurs: “target value arm length exceeds 925 [mm]
(automatically cut target value).”

If arm motion continues and exceeds motion range, the operation is automatically
switched to temporary—stop status. Immediately, the servo—lock performs.

When LENGTH value is beyond 925 [mm] before being in motion, this designation is
ignored on account of being out of motion range.

878



ChaEter 8 PA Librarx

For axis velocity control likewise, each axis angle exceeds each axis angle limit at

designated velocity, the following warnings occur:

-1070
-1071
-1072
-1073
-1074
-1075
-1076

There are two motion ranges: LENGTH 925 [mm] available for RMRC control and

If exceeding either limit, arm motion cannot be performed to the
direction exceeding the motion range.

axis angle limit.

ignored.

Return value:

ERR_OK Normal termination

S1 axis
S2 axis
S3 axis
E1 axis
E2 axis
W1 axis
W2 axis

velocity control
velocity control
velocity control
velocity control
velocity control
velocity control
velocity control

Others: Anomalous termination (Refer to error table)

Reference:
pa_odr_vel

8-79

Velocity setting in velocity mode

angle exceeded
angle exceeded
angle exceeded
angle exceeded
angle exceeded
angle exceeded
angle exceeded

Velocity command to this direction is
But, velocity command to the movable direction can be provided.



ChaEter 8 PA Librarx

pa__odr__vel

Function:
Sets velocity for velocity mode.

Syntax:
long pa_odr_vel(ARM armno, float spd[])

armno  Arm number (No.)
spd[] Velocity setting (Its significance is different depending on velocity mode.)

Explanation:
Sets velocity for velocity control mode.

for Base coordinate linear velocity mode &
Mechanical interface coordinate linear velocity mode

spd[0]: Displacement/velocity toward x [mm/sec]
spd[1]: Displacement/velocity toward y [mm/sec]
spd[2]: Displacement/velocity toward z [mm/sec]

for Base coordinate rotational velocity mode &
Mechanical interface coordinate rotational velocity mode

spd[0]: Angular velocity on x axis [rad/sec]
spd[1]: Angular velocity on y axis [rad/sec]
spd[2]: Angular velocity on z axis [rad/sec]

for Axis velocity mode

spd[0]: S1 axis motion angular velocity [rad/sec]
spd[1]:S2 axis motion angular velocity [rad/sec]
spd[2]: S3 axis motion angular velocity [rad/sec]
spd[3]:E1 axis motion angular velocity [rad/sec]
spd[4]:E2 axis motion angular velocity [rad/sec]
spd[5]:W1 axis motion angular velocity [rad/sec]
spd[6]:W2 axis motion angular velocity [rad/sec]

for Base coordinate linear/rotational velocity mode &
Mechanical interface coordinate linear/rotational velocity mode

spd[0] : Displacement/velocity toward x [mm/sec]
spd[1]: Displacement/velocity toward y [mm/sec]
spd[2]: Displacement/velocity toward z [mm/sec]
spd[3]: Angular velocity on x axis [rad/sec]
spd[4]: Angular velocity on y axis [rad/sec]
spd[5]: Angular velocity on z axis [rad/sec]

8-80



ChaEter 8 PA Librarx

Sets velocity command value with seven float type configurations. After entering velocity

control mode, velocity command (“pa_odr vel” or “pa_chk cnt”) has to be issued every
time—out (maximum value: 1000 msec) setting by “pa_set_tim”. If command is not issued
within time—out, it is recognized as controller anomaly. The arm automatically stops
velocity control and sets in brake—stop status.

Return value:
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_mod_vel Velocity mode setting
pa_chk_cnt Synchronization processing
pa_set_tim Time—out setting

Description example:
float spd[7];

pa_set_tim(ARM1, 20); .- -Time—out setting

(200msec)

pa_mod_vel(ARM1, VM_XYZ, 0); ... Velocity mode setting

Hereafter, “pa_odr_vel” or “pa_chk_cnt” has to be issued, at least once, within

200msec.

spd[0] = -50.0; X

pd[1]= 40.0; Y

spd[2] = 100.0; 4

pa_odr_vel(ARM1, spd); ... Velocity alteration

spd[0] = 0.0; X

spd[1] = 0.0; %

spd[2] = 0.0; 2z

pa_odr_vel(ARM1, spd); ... Velocity clear
pa_sus_arm(ARM1, WM_NOWAIT); -+ Velocity control termination

( Memo )

AXIS is invalid except VM_ONE.

8-81



ChaEter 8 PA Librarx

pa_mod__dpd

Function:
Sets target tip position/orientation direct real-time control mode.

Syntax:
long pa_mod_dpd(ARM armno);

armno  Arm number (No.)

Explanation:
Sets directly target tip position/orientation.
This mode creates motion, taking target value provided by “pa_odr_dpd” as absolute
value.
Even though motion to absolute target value can be performed employing
“pa_mov_mat”, there is a difference whether interpolation is performed or not.

Trajectory from current position to target value provided by “pa_odr_dpd” is not

interpolated. Therefore, when this mode is employed, velocity/trajectory
interpolation has to be performed by users.

If entering real—time control mode, command library (pa_odr_dpd) has to be issued
at least once within 1000msec all the time. If command is not issued within 1000
msec, it is recognized as man—machine controller anomaly. The arm automatically
terminates real—-time control mode and sets in brake—stop status.

For time—out setting, use “pa_set_tim”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_odr_dpd RMRC real-time control
pa_chk_cnt Synchronization processing
pa_set_tim Time—out setting

8-82



ChaEter 8 PA Librarx

Description example:
MATRIX mat;
ANGLE an;
pa_mov_mat(ARM1, MM_XYZNOA, mat, &an, WM_WAIT);

pa_set_tim(ARM1, 20); -++ Time—out setting (200msec)

pa_mod_jou(ARM1, JM_ON); -++ Redundant axis control mode setting (all
axes restricted)

pa_mod_dpd(ARM1); .-+ Control mode selection by tip matrix

Hereafter, “pa_odr_dpd” or “pa_chk pnt” has to be issued, at least once, within
200msec.
Renewing “mat”.
pa_odr_dpd(ARM1, mat, &an); -+ Tip matrix and restriction data axis value setting
( Refer to “pa_odr_dpd”)
Renewing “mat”.
pa_odr_dpd(ARM1, mat, &an);

pa_sus_arm(ARM1 , WM_NOWAIT); -+ Real—-time control termination

8-83



ChaEter 8 PA Librarx

pa__odr__dpd

Function:
Sets target tip position/orientation data in real time.

Syntax:
long pa_odr_dpd(ARM armno, MATRIX mat, ANGLEP angle);

armno  Arm number (No.)

mat Absolute target position/orientation matrix
angle Each axis value for redundant axis restriction control
Explanation:

Sets target value when in target position/orientation direct mode.

For “mat”, designates absolute position/orientation every control cycle (10ms).
Motion controller performs RMRC feedback control without trajectory interpolation
for position/orientation provided by “mat”.

To summarize, arm control trajectory is controlled by the value set in PA library.
Therefore, a difference between current position/orientation and setting “mat” has
to be one cycle deviation (velocity divided by control cycle.)

In this control, likewise, redundant axis control mode (mode selected by
“pa_mod_jou”) to control elbow position is valid and restricted by each axis value
provided by “angle”.

If redundant axis control mode is “no restriction” or “S3 axis fixed”, “angle” is
invalid.

If redundant axis control mode is “S3 interpolation”, “MATRIX mat” likewise, S3
axis angle every control cycle is also set in “angle”.

If entering real—time control mode, command library (pa_odr_dpd) has to be issued at
least once within 1000msec all the time. If command is not issued within 1000
msec, it is recoghized as man—machine controller anomaly. The arm automatically
terminates real—-time control mode and sets in brake—stop status.

For time—out setting, use “pa_set_tim”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_mod_dpd RMRC real-time control mode setting
pa_mod_axs Each axis real-time control mode setting
pa_odr_axs Each axis real-time control
pa_chk_cnt Synchronization processing
pa_set_tim Time—out setting

8-84



ChaEter 8 PA Librarx

pa__mod__axs

Function:
Sets target angle direct control (real-time) mode.

Syntax:
long pa_mod_axs(ARM armno);

armno  Arm number (No.)

Explanation:
Sets directly target angle.
This mode creates motion, taking target value provided by “pa_odr_axs” as absolute
value.
Even though motion to target angle value can be performed employing “pa_exe_axs”,
there is a difference whether interpolation is performed or not.

Angle from current position to target value provided by “pa_odr_axs” is not
interpolated. Therefore, when this mode is employed, velocity/angle interpolation
has to be performed by users.

If entering real—time control mode, command library (pa_odr_axs) has to be issued at
least once within 1000msec all the time. If command is not issued within 1000
msec, it is recoghized as man—machine controller anomaly. The arm automatically
terminates real—time control mode and sets in brake—stop status.

For time—out setting, use “pa_set_tim”.

Return value:

ERR OK Normal termination

Others: Anomalous termination (Refer to error table)
Reference:

pa_odr_axs Each axis real—-time control

Description example:
ANGLE angle;

pa_get_agl(ARMT1, &angle);

pa_odr_axs(ARM1, &angle); ... Each axis value (current value) setting
pa_set_tim(ARM1, 20); -+« Time—out setting (200msec)
pa_mod_axs(ARMT1); ... Control mode selection by axis real-time control

Hereafter, “pa_odr_axs” or “pa_chk_pnt” has to be issued, at least once, within 200msec.

angle.s3 += 0.5%M_P1/180.0; ... Each axis renewal

pa_odr_axs(ARM1, &angle); ... Each axis value setting

: .. Each axis renewal
pa_odr_axs(ARM1, &angle); ... Each axis value setting
pa_sus_arm(ARM1, WM_NOWAIT); - -+ Real-time control termination

8-85



ChaEter 8 PA Librarx

pa__odr__axs

Function:
Sets target axis data in real time.

Syntax:
long pa_odr_axs(ARM armno, ANGLEP angle);

armno  Arm number (No.)
angle Each axis target value for each axis real-time control

Explanation:
Sets target axis value in real time.
For “angle”, designates each axis value every control cycle (10ms).
Motion controller performs axis feedback control without axis interpolation for each
axis provided by “angle”.
To summarize, arm axis is controlled by the value set in PA library. Therefore, the
difference between current angle and setting “angle” has to be one cycle deviation
(velocity divided by control cycle.)

If entering real-time control mode, command library (pa_odr_axs) has to be issued at
least once within 1000msec all the time. If command is not issued within 1000
msec, it is recoghized as man—machine controller anomaly. The arm automatically
terminates real—time control mode and sets in brake—stop status.

For time—out setting, use “pa_set_tim”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_mod_axs Each axis real-time control setting
pa_odr_dpd RMRC real—time control

8-86



ChaEter 8 PA Librarx

pa__mod__dir

Function:
Direct control (servo lock) ON/OFF

Syntax:
long pa_mod_dir(ARM armno, DIRECTMODE dmod);

armno  Arm number (No.)
dmod Designates servo lock by “enum DIRECTMODE”.

Explanation:
Before changing to weight compensation control or simplified weight compensation
control, the arm has to be in servo-lock status.
Its servo—lock status ON/OFF switching is performed.

DM_START: Servo—lock ON
DM_STOP : Servo—lock OFF

If entering weight compensation control, (to be concrete, issuing pa_wet_ded),
synchronization processing library (pa_chk_cnt) has to be issued, at least once,
within 1000msec. If command is not issued within 1000 msec, it is recognized as
man—machine controller anomaly. The arm automatically terminates real—-time
control mode and sets in brake—stop status.

For time—out setting, use “pa_set_tim”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_chk_cnt Synchronization processing
pa_set_tim Time—out setting

8-87



ChaEter 8 PA Librarx

pa__wet__ded

Function:
Weight compensation control

Syntax:
long pa_wet_ded(ARM armno, AXIS axis);

armno  Arm number (No.)
axis  Weight compensation axis designation

Explanation:

Weight compensation control is performed with axis angle, adjacent arm link weight
and gravity center position.

Macro definitions Designated axes
LOCKAXIS_S3 : S1|S2|E1|E2|W1|w2
LOCKAXIS_S1 : S2|S3|E1|E2|W1|w2

As macro definitions shown above, there are only two weight compensation controls.
Axes able to operate simultaneously are six. Either S1 or S3 axis is always in
servo—lock status. (If different setting except the ones above are adopted,
“LOCKAXIS_S3 “is automatically set on the motion control calculator side.)

This function can be performed only when in arm direct control.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_mod_dir Direct control status ON/OFF

Description example:
AXIS axis;

axis = LOCKAXIS Sf1;

pa_set_tim(ARMO,20); .-+ Time—out setting
(200msec)
pa_mod_dir(ARMO,DM_START); ... Direct control start

pa_wet_ded(ARMO,axis); ... S1 servo—lock selection

Hereafter, “pa_odr dpd” or “pa_chk pnt” has to be issued, at least once, within
200msec.

: “mat” renewal
pa_sus_arm(ARMO, WM_NOWAIT); --- Weight compensation control termination

8-88



ChaEter 8 PA Librarx

pa__drt__ded

Function:
Sets arm installation position. (floor mounted/suspending from ceiling)

Syntax:
long pa_drt_ded(ARM armno, long vec);

armno  Arm number (No.)
vec Arm installation position designation

Explanation:

Before performing weight compensation control, designate the arm status either
floor mounted or suspending from ceiling. On account of arm being already
initialized as floor mounted status, only when the arm is suspended from the ceiling,
this library has to be performed.

Macro definition employed in “vec” as follows:

Macro definitions Designation
ARM _STANDING Floor mounted status
ARM_HANGING Status suspended from ceiling

Arm installation positions when in weight compensation control are only two macro
definitions as described above. Other definitions cannot be employed.

Return value:
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_wet_ded Direct control status ON/OFF
pa_get drt Direct control installation position acquisition

8-89



ChaEter 8 PA Librarx

pa__chk__cnt

Function:

Synchronization processing in weight compensation control (velocity, redundant
axis velocity and real—time control)

Syntax:
long pa_chk_cnt(ARM armno)

armno  Arm number (No.)

Explanation:

Synchronization processing between man—machine controller and motion
controller is performed in weight compensation control.
If entering weight compensation control, this PA library has to be issued at least
once within 1000msec all the time. If command is not issued within 1000 msec, it
is recognized as man—machine controller anomaly. The arm automatically
terminates real—-time control mode and sets in brake—stop status.
For time—out setting, use “pa_set_tim”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_wet_ded Weight compensation control start
pa_set_tim Time—out setting in synchronization processing

Description example:
AXIS axis;

axis = LOCKAXIS_ST;

pa_set_tim(ARMO,20); --+ Time—out setting

(200msec)
pa_mod_dir(ARMO,DM_START); -+ Direct control start

pa_wet_ded(ARMO,axis); -++ S1 axis servo—lock selection

Hereafter, “pa_odr_dpd” or “pa_chk_pnt” has to be issued, at least once, within 200msec.

while(1){
pa_chk_cnt(ARM1); - -+ Synchronization processing
Sleep(100);
< Actuates arm manually.>
}

pa_mod_dir(ARM1, DM_STOP); -+ Direct control termination

8-90



ChaEter 8 PA Librarx

pa__set__tim

Function:
Time—out setting in synchronization processing

Syntax:
long pa_set_tim(ARM armno, long tim);

armno  Arm number (No.)
tim Time—out

Explanation:
Sets synchronization processing time—out in weight compensation, velocity and

redundant axis control
Default (when power is ON) is 1000ms.
Setting range is 10~1000ms.
Unit is[*10ms].

(ex) tim=1: 10ms

tim > 100 : error

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_wet_ded Weight compensation control
pa_chk_cnt Synchronization processing
pa_get_tim Time—out acquisition

8-91



ChaEter 8 PA Librarx

pa__get tim

Function:
Time—out acquisition in synchronization processing

Syntax:
long pa_get_tim(ARM armno, long* tim);

armno  Arm number (No.)
tim Time—out

Explanation:

Acquires synchronization processing time—out in weight compensation, velocity
and redundant axis control. Unit is[*10ms].

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_chk_cnt Synchronization processing
pa_set_tim Time—out setting

8-92



ChaEter 8 PA Librarx

pa__get__drt

Function:

Arm installation position acquisition in direct control (floor mounted/suspending
from ceiling)

Syntax:
long pa_get_drt(ARM armno, long* stat);

armno  Arm number (No.)
stat Arm installation position parameter

Explanation:

Before performing weight compensation control, acquire arm status either
mounted on the floor or suspended from the ceiling.

Parameter (stat) is 1: floor mounted
Parameter (stat) is —1: suspending from ceiling

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_drt_ded Arm installation direction setting in direct control

8-93



ChaEter 8 PA Librarx

pa__set__hom

Function:
Alters home position

Syntax:
long pa_set_hom(ARM armno, ANGLEP angle);

armno  Arm number (No.)
angle Designates each axis angle. Unit: [rad]

Explanation:
Alters home position set in arm parameter.
Returns to default value when power supply is off.
Home position default angle is O[deg] for all axes.
For home position default angle correction method, refer to parameter setting.)

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_def_hom Defines current value as home position
pa_exe_hom Arm control to home position

Description example:

ANGLE angle;

angle.s1 =1.3;
angle.s2 = 1.5;
anglew2 = 0.0;

pa_set_hom(ARMT1, &angle);

8-94



ChaEter 8 PA Librarx

pa__set__esc

Function:
Alters escape position.

Syntax:
long pa_set_esc(ARM armno, ANGLEP angle);

armno  Arm number (No.)
angle Designates each axis angle. Unit: [rad]

Explanation:

Alters escape position set in arm parameter.
Returns to default value when power supply is off.
Escape position default angles are:

S2: 45 [deg]

E1: 90 [deg]

W1: 45 [deg]

Others: O[deg]

( Reference )

For escape position default angle correction method, refer to parameter setting.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_def esc Defines current value as escape position
pa_exe_esc Arm control to escape position

8-95



ChaEter 8 PA Librarx

pa__set__saf

Function:
Alters safety position.

Syntax:
long pa_set_saf(ARM armno, ANGLEP angle)

armno  Arm number (No.)
angle Designates each axis angle. Unit: [rad]

Explanation:

Alters safety position set in arm parameter.
Returns to default value when power supply is off.
Safety position default angles are:

S2: 45 [deg]

E1: 90 [deg]

Wi1: —45 [deg]

Others: O[deg]

( Reference )

For safety position default angle correction method, refer to parameter setting.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_def _saf Defines current value as safety position.
pa_exe_saf Arm control to safety position

8-96



ChaEter 8 PA Librarx

pa__def__hom

Function:
Memorizes each axis angle of current value as home position.

Syntax:
long pa_def_ hom(ARM armno);

armno  Arm number (No.)

Explanation:
Memorizes each axis angle of current value as home position.
Returns to default value when power supply is off.
Home position default angle is 0 [deg] for all axes.

( Reference |

For home position default angle correction method, refer to parameter setting.

Return value:
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_set_hom Home position alteration
pa_exe_hom Arm control to escape position

Description example:

pa_def hom(ARM1); ... Defines current value as home position.

8-97



ChaEter 8 PA Librarx

pa__def__esc

Function:
Memorizes each axis angle of current value as escape position.

Syntax:
long pa_def esc(ARM armno);

armno  Arm number (No.)

Explanation:
Memorizes each axis angle of current value as escape position.
Returns to default value when power supply is off.
Escape position default angles are:
S2: 45 [deg]
E1: 90 [deg]
W1: 45 [deg]
Others: O[deg]

( Reference )

For escape position default angle correction method, refer to parameter setting.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_set_esc Escape position alteration
pa_exe_esc Arm control to escape position

8-98



ChaEter 8 PA Librarx

pa__def__saf

Function:

Memorizes each axis angle of current value as safety position.
Syntax:

long pa_def saf(ARM armno)

armno  Arm number (No.)

Explanation:
Memorizes each axis angle of current value as safety position.
Returns to default value when power supply is off.
Safety position default angles are:
S2: 45 [deg]
E1: 90 [deg]
W1: —45 [deg]
Others: O[deg]

( Reference )

For safety position default angle correction method, refer to parameter setting.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_set_saf Safety position alteration
pa_exe_saf Arm control to safety position

8-99



ChaEter 8 PA Librarx

pa__set__mtx

Function:

Conversion matrix setting in three dimension space coordinate while in playback
control

Syntax:
long pa_set_ mtx(ARM armno, MATRIX mat1)

armno  Arm number (No.)
mat1 Coordinate conversion matrix

Explanation:
Sets coordinate conversion matrix “mat1” for the arm designated by “armno”.
Arm trajectory control is corrected by conversion matrix in playback control.
Coordinate conversion matrix default value is unit matrix I.

10 0 O
I = 0 1 0 O
0 0 1 O

( Reference )

For more, refer to programming manual, chapter 3.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Description example:

MATRIX matl;

pa_set mtx(ARM1, mat1); ... Sets coordinate conversion matrix.

8-100



ChaEter 8 PA Librarx

pa__set mat

Function:

Playback trajectory coordinate conversion

Syntax:
long pa_set_mat(ARM armno, MATRIX mat0, MATRIX mat1);

armno Arm number (No.)

mat0 Work coordinate matrix
mat1 Teach data coordinate matrix
Explanation:

Places playback teach data from teach data coordinate to work coordinate
system.

Creating standard coordinate matrix (:matl) from teach data, provides work
coordinate matrix (:mat0) to place deviation in its coordinate system.

( Reference |

For work coordinate matrix/teach coordinate matrix creation method, refer to
programming manual, chapter 3.

“pa_set_mtx” is unit matrix [I] created from one of this function: “mat1”.

This function cannot be performed while in playback control.

Return value:
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_set_mtx

Description example:
MATRIX matO,matl;

(Work coordinate matrix creation: mat0)
(Teach data coordinate matrix creation: mat1)

pa_set_mat(ARMO,matO,mat1); ... Sets coordinate conversion matrix

8-101



ChaEter 8 PA Librarx

pa__odr__xyz

Function:
Sets tip position offset.

Syntax:
long pa_odr_xyz(ARM armno, TRANSMATP trans);

armno  Arm number (No.)

trans Designates either coordinate system with absolute deviation or with
relative deviation. Pointer to trajectory offset data structure:
TRANSMAT.
Explanation:

Sets tip position offset with mode and coordinate designated by “trans—>Enable”.
Coordinates and modes of “trans—>Enable” are as follows:

MODE_xyz : Mechanical interface coordinate, absolute deviation
Offset is set as trans—> xyz[0]-[2].
(for Visual BASIC: MODE _XYZ1)
MODEIxyz : Mechanical interface coordinate, relative deviation
Offset is set as trans—>Ixyz[0]-[2].
(for Visual BASIC: MODE_XYZ2)
MODE_XYZ : Base coordinate, absolute deviation
Offset is set as trans—>_XYZ[0]-[2].
(for Visual BASIC: MODE_XYZ3)
MODEIXYZ : Base coordinate, relative deviation
Offset is set as trans—>IXYZ[0]-[2].
(for Visual BASIC: MODE _XYZ4)
MODE_wave: Trajectory coordinate, absolute deviation
Offset is set as trans—> wave[0]-[2].
(for Visual BASIC: MODE_WAVET1)
MODEIlwave: Trajectory coordinate, relative deviation
Offset is set as trans—>Iwave[0]-[2].
(for Visual BASIC: MODE_WAVE2)

With this function, offset value can be changed in real-time during playback
control. This makes it possible to detect playback trajectory deviation with sensor,
etc. and correct it.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error charts)

Reference:

pa_get_sns Trajectory offset acquisition during playback control

8-102



ChaEter 8 PA Librarx

Description example:
TRANSMAT tm;
float data;
pa_ply_pnt(ARMO,PB_FORE,—1WM_WAIT); .. Playback start

data = 0.5f; ... Limit value when in offset addition = 0.5[mm]

pa_lmt_xyz(ARMO, data); ... Limit value setting when in offset addition
tm.Enable = MODE_xyz; .. mechanical interface coordinate absolute deviation selection

tm._xyz[0] = 2.0; ... Offset value toward x = 2.0[mm]

tm. xyz[1] = 0.0; .. Offset value toward y = 0.0[mm]

tm._xyz[2] = 0.0; .. Offset value toward z = 0.0[mm]

pa_odr xyz(ARMO,&tm); .. Adds offset value to mechanical interface coordinate

8-103



ChaEter 8 PA Librarx

pa__Imt__xyz

Function:
Sets limit value (value added every cycle) when in tip position offset addition

Syntax:
long pa_lmt_xyz(ARM armno, float data);

armno  Arm number (No.)
data Limit value when in offset addition. Unit; [mm]

Explanation:

In offset control, when tip position offset is provided by “pa_odr xyz”, offset value
first enters the offset pool. This offset value is added with very small fixed
quantity every cycle until offset value fills out the pool in several cycles,

Sets a very small fixed quantity every cycle (here is called limit value.)

Return value:
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_Imt Tip position offset limit value acquisition

8-104



ChaEter 8 PA Librarx

pa__get_ mat

Function:
Acquires coordinate conversion matrix when in playback.

Syntax:
long pa_get_mat(ARM armno, MATRIX mat0, MATRIX mat1);

armno  Arm number (No.)
mat0 Work coordinate matrix
mat1 Teach data coordinate matrix

Explanation:
Acquires teach data coordinate matrix and work coordinate matrix currently set
by “pa_set mat” or “pa_set mtx”.
As work coordinate matrix is the only one set by “pa_set. mtx”, “mat1” ought to
be a unit matrix.

MATRIX mat0, mat1:
Nx ox ax px
ny oy ay py Matrix  matO[3][4], mat1[3][4]
Nz oz az pz

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_set_mat Playback trajectory coordinate conversion
pa_set_mtx Conversion matrix setting in three dimension space coordinate

when in playback control

8-105



ChaEter 8 PA Librarx

pa__get sns

Function:
Acquires trajectory offset when in playback.

Syntax:
long pa_get_sns(ARM armno, TRANSMATP sns);

armno  Arm number (No.)
sns Pointer to currently provided trajectory offset structure TRANSMAT

Explanation:
Trajectory offset is stored in TRANSMAT type: sns.

sns._xyz[] : Mechanical interface coordinate, absolute deviation offset value (x,y,z)
(for Visual BASIC: sns.xyz11)

sns.Ixyz[] : Mechanical interface coordinate, relative deviation offset value (x,y,z)
(for Visual BASIC: sns.xyz12)

sns._XYZ[] : Base coordinate, absolute deviation offset value (X,Y,Z)
(for Visual BASIC: sns.xyz21)

sns.IXYZ[] : Base coordinate, relative deviation offset value (X,Y,Z)
(for Visual BASIC: sns.xyz22)

sns._.wave[]: Trajectory coordinate, absolute deviation offset value (xw,yw,zw)
(for Visual BASIC: sns.wavel)

sns.Iwave[l: Trajectory coordinate, relative deviation offset value (xw,yw,zw)
(for Visual BASIC: sns.wave2)

For absolute deviation, offset value currently set by “pa_odr_xyz” is set.
For relative deviation, integration value of offset value set by “pa_odr xyz” is set.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_odr_xyz Tip position offset setting

8-106



ChaEter 8 PA Librarx

pa__get_ Imt

Function:
Acquires limit value (value added every cycle) when in tip position offset addition.

Syntax:
long pa_get_Imt(ARM armno, float* dat);

armno  Arm number (No.)
dat Limit value when in offset addition. Unit; [mm]

Explanation:

Acquires very small quantity offset value (limit value) added every cycle in tip
offset control.

Return value:
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference:
pa_lmt_xyz Limit value setting when in offset addition

8-107



ChaEter 8 PA Librarx

pa__mod__jou / 7-axis arm function /

Function:
Redundant axis control mode

Syntax:
long pa_mod_jou(ARM armno, JOUMODE jmod);

armno  Arm number (No.)
jmod Designates redundant axis control mode by “enum JOUMODE”.

Explanation:
Sets redundant axis control mode
For 7-axis arm, like PA-10, even if tip position and orientation trajectory are the
same, plural axis values exist. Redundant axis operation has to be set.

IN all RMRC control, if intending to control elbow position, following redundant axis
control modes are provided:

JM_OFF :Redundant axis control restriction release
Redundant axis control is reset in RMRC control.
JM_ON :Redundant axis control all axes restriction mode

Each axis value, when in motion, is restricted by teach point or each
axis value of designated data in RMRC control.
JM_S3ON :Redundant axis control only S3axis restricted mode
Each axis value of S3 axis when in motion is restricted by teach point
or each axis value of designated data in RMRC control.
JM_S3DIV :Redundant axis control S3 axis interpolation restriction mode
Each axis value of S3 axis when in motion is restricted by teach point
or each axis value of designated data in RMRC control.
JM_S3HOLD : Redundant axis control S3 axis fixation restriction mode
Each axis value of S3 axis when in motion is fixed by teach point or
each axis value of designated data in RMRC control.

In any method, tip trajectory is the same. But, each axis value is different.

( Reference )

For more, refer to programming manual, chapter 3.

Restriction force for each provided axis data is as follows:

No restriction <Small> <Medium> <large> Fixed
JM_OFF —» JM.ON — JM_S3ON — JM_S3DIV — JM_S3HOLD

When intending to change elbow position keeping the same position and orientation
in RMRC control:

JM_SET :Sets the mode to operate redundant axis control parameter.
For parameter operation method, uses “pa_odr_jou”.

JM_RESET : Returns redundant axis control parameter to default value (no
restriction).

8-108



ChaEter 8 PA Librarx

JM_VSET :Sets the mode to operate redundant axis control parameter at
constant velocity.

For parameter operation method, uses “pa_odr vel”.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_odr_jou Redundant axis control ON/OFF
pa_odr_vel Velocity mode velocity setting

Description example:

pa_mod_jou(ARM1, JM_ON); ... Redundant axis control mode

“All axes restriction” selection

pa_ply_pnt(ARM1, PB_FORE, -1, WM_WAIT); ... Playback control

8-109



ChaEter 8 PA Librarx

pa__odr__jou / 7-axis arm function /

Function:
Redundant axis control parameter operation

Syntax:
long pa_odr_jou(ARM armno, JOUTYPE jtyp);

armno  Arm number (No.).

jtyp Redundant axis transition direction

Explanation:
If redundant axis control parameter is operated, arm position can be changed.
This parameter is valid only when “dJM_SET” is selected by “JM_SET”.

JT_RIGHT : Shifts redundant axis restriction parameter to the right.
JT_LEFT :Shifts redundant axis restriction parameter to the left.
JT_HOLD :retains redundant axis restriction parameter.
Parameter operation continues until next operation is performed.
Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)
Reference:
pa_mod_jou Redundant axis control mode

Description example:

pa_mod_jou(ARM1, JM_SET); ... Redundant axis restriction parameter operation

mode
pa_odr_jou(ARM1, JT_LEFT); ... Shifts Redundant axis restriction parameter to
the left.

8-110



ChaEter 8 PA Librarx

pa__mov__jou / 7-axis arm function /

Function:
Redundant axis control motion by S3 axis designation

Syntax:
long pa_mov_jou(ARM armno, float s3, long func);

armno  Arm number (No.).

s3 Designates S3 axis target angle [rad]
func Designation whether to wait or not motion completion
Explanation:

For 7—axis arm, like PA-10, even if tip position and orientation trajectory are the
same, plural axis values exist. Therefore, this is the mode to control 7—axis arm as
6-axis one by interpolating a certain axis (S3). Designating S3 axis target angle
without changing tip position/orientation, controls redundant axis (elbow) changing
S3 axis angle to the target angle.

After performing this processing, redundant axis control mode is in S3 interpolation
restriction. The mode continues to be in S3 axis interpolation restriction status if
it is not changed.

The explanation on “func” is the same as “pa_mov_XYZ”.

Return value:
ERR _OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_mod_jou Redundant axis control mode setting
pa_odr_vel Velocity mode velocity setting

Description example:

float s3;
s3 = 80.0«M_P1/180.0; ... S3 axis target value = 80[deg]

pa_mov_jou(ARM1, s3, WM_WAIT); ... Redundant axis (elbow) control

pa_mov_XYZ(ARM1, 0.0, 100.0, 0.0, WM_WAIT);
(Moves 100 mm toward Y (Y=100[mm]) kept on laying redundant axis (elbow) down.)

8-111



ChaEter 8 PA Librarx

pa__get__jou / 7-axis arm function /

Function:
Acquires redundant axis control mode in RMRC control.

Syntax:
long pa_get_jou(ARM armno, long* stat);

armno  Arm number (No.).
stat Redundant axis control status

Explanation:
“stat” is set by “JOUMODE” as follows:

stat=JM_OFF :Redundant control is OFF status.

stat=JM_ON :Redundant control is all axes restriction control mode status.
stat=JM_S3ON :Redundant control is S3 axis restriction control mode status.
stat=JM_S3DIV :Redundant control is S3 axis interpolation control mode status.
stat=JM_S3HOLD : Redundant control is S3 axis fixation control mode status.

Return value:
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference:
pa_mod_jou Redundant axis control mode setting.

8-112



Chaeter 8 PA Librarz

pa__get__mod

Function:
Acquires motion control calculator status.

Syntax:
long pa_get_.mod(ARM armno, long* stat);

armno  Arm number (No.)
stat Current motion control calculator status

Explanation:
Acquires motion control calculator status.
Motion control calculator status is as follows:

Not available
Not available
Brake—stop status
Not available
Not available
Not available
Not available

oOoNOOD~OWODN =

Each axis angle control status

9 : Each axis velocity control status

10: Direct servo—lock status

11: Simplified weight compensation status

12: Weight compensation status

13: RMRC control status

14: RMRC redundant axis control status

15: Each axis control servo—lock status

16: Not available

17: Each axis angle correction status

18: Circle interpolation playback status

19: Linear interpolation playback status

20: Arc interpolation playback status

21: RMRC control servo—lock status

22: Playback start waiting status (each axis control)

23: Each axis control servo—lock status (while in playback)
24: RMRC control servo—lock status (while in playback)
25: Playback start waiting status (RMRC control)

26: Playback tip position shifting status

27 : Redundant axis movable status

28: RMRC real-time status

29: Playback axis interpolation angle correction status
30: Interim status shifting to the point after coordinate conversion
31: Redundant axis movable status (S3 axis interpolation)
32: Each axis real-time control mode status

33: Motion between teach data (RMRC control)

34: Motion between teach data (each axis control)

8-113



Chaeter 8 PA Librarz

Return value:
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

8-114



Chaeter 8 PA Librarz

pa__get_ver

Function:
Acquires motion control program version.

Syntax:
long pa_get_ver(ARM armno, float* ver);

armno  Arm number (No.)
ver Motion control program version.

Explanation:
Acquires motion control CPU program version.

Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-115



Chaeter 8 PA Librarz

pa__get  com

Function:
Acquires current arm communication status.

Syntax:
long pa_get_com(ARM armno, long* stat);

armno  Arm number (No.)
stat Current arm communication status.

Explanation:
Acquires communication status between the controller while in arm
control and the servo driver (not communicating / while in communication and
actual machine control / while in communication and simulation control.)

Macro definition employed by “stat” is as follows:

STP_STATUS 0 Status not in communication
MOV_STATUS 1 while in communication and actual machine control
SIM_STATUS 2 while in communication with inner servo driver of

motion control section and in simulation mode control

Before issuing PA library function loading current arm information, when this
definition is used to confirm whether or not the controller is communicating now, if
it is communicating, it is clearly seen that current information can be loaded by
issuing the library. If not communicating, current information cannot be loaded by
even issuing PA library.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Description example:
long jou;

long stat;

While in RMRC control

pa_get_com(ARM1, &stat); -+ Acquires communication status
if(lstat){ If not in communication
pa_sta_arm(ARMO); .-+ Starts communication.

}

pa_get_jou(ARMO, &jou);* - - Loading current redundant axis control mode.

8-116



Chaeter 8 PA Librarz

pa__get__sts

Function:

Acquires current arm information.

Syntax:
long pa_get_sts(ARM armno, ARMSTATUSP asts);

armno  Arm number (No.)

asts Current arm information
Explanation:

armno Acquires current arm information of “armno”.
asts.max Board controllable arm numbers 1or2
asts.arm Arm identification number Oor1

asts.axis Arm axis numbers

asts.typ Arm type

asts.drv Servo driver classification

asts.dio Expansion DIO board  exist / not exist

asts.remote
asts.count
asts.error
asts.angle.s1

asts.angle.w2

operation mode (valid / invalid)
Control counter value

Error code

Current S1 axis value

Current W2 axis value

asts.noap[0][0] Current tip orientation matrix

asts.noap[2][3]
asts.ypr[0]

Current tip position matrix (Z)
Current orientation (TAW)

When command processing is finished, the controller computes by adding the
count of the inner variable. With this function, comparing inner variable before and
after issuing command, users can recognize processing termination for command.

This inner variable is “asts.count”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_cnt
pa_get_err
pa_get_agl
pa_get xyz
pa_get_noa
pa_get ypr

8-117



Chaeter 8 PA Librarz

Description example:
ARMSTATUS asts;

pa_get_sts(ARMT1, &asts);
printf( “error%ld S1:%If W2:%If”, asts.error , asts.angle.s1 , asts.angle.w?2 );

8-118



Chaeter 8 PA Librarz

pa__get_cnt

Function:

Acquires control count from arm information.

Syntax:
long pa_get_cnt(ARM armno, long* cunt);

armno  Arm number (No.)
cunt Control count information

Explanation:

Acquires control count information from current arm information.

When command processing is finished, the controller computes by adding the
count of the inner variable. With this function, comparing inner variable before and
after issuing command, users can recognize processing termination for command.
This inner variable is control count value.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_sts
pa_get_err
pa_get_agl
pa_get xyz
pa_get_noa
pa_get_ypr

8-119



Chaeter 8 PA Librarz

pa__get__err

Function:

Acquires error information from arm information.

Syntax:
long pa_get_err(ARM armno, long* err);

armno  Arm number (No.)
err Error information (error code)

Explanation:
Acquires error code information from current arm information.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_sts
pa_get cnt
pa_get_agl
pa_get xyz
pa_get_noa
pa_get_ypr

8-120



Chaeter 8 PA Librarz

pa__get_ agl
Function:
Acquires axis information from arm information.
Syntax:
long pa_get_agl(ARM armno, ANGLEP angle);
armno  Arm number (No.)
angle Current axis value information [rad]
Explanation:

Acquires axis information from arm information.
angle.s1:Current S1 axis value
angle.s2: Current S2 axis value
angle.s3: Current S3 axis value
angle.e1:Current E1 axis value
angle.e2: Current E2 axis value
angle.w1: Current W1 axis value
angle.w2 : Current W2 axis value

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_sts
pa_get cnt
pa_get_err
pa_get xyz
pa_get_noa

8-121



Chaeter 8 PA Librarz

pa__get_ xyz

Function:

Acquires tip position information from arm information.

Syntax:
long pa_get xyz(ARM armno, VEGCTOR vec);

armno  Arm number (No.)
vec Current tip position information [mm]

Explanation:
Acquires tip position information from arm information.
vec[0]: Arm tip X coordinate value
vec[1]: Arm tip Y coordinate value
vec[2]: Arm tip Z coordinate value

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_sts
pa_get_cnt
pa_get_err
pa_get_noa
pa_get_ypr

8-122



Chaeter 8 PA Librarz

pa__get_ _noa

Function:
Acquires tip position/orientation matrix information from arm information.

Syntax:
long pa_get_noa(ARM armno, MATRIX noap);
armno  Arm number (No.)
noap Current tip position/orientation information

Explanation:
Acquires tip position/orientation matrix information from current arm information.
NX oOx ax px
ny oy ay py
nz oz az pz

noap[3][4]

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_sts
pa_get cnt
pa_get_err
pa_get xyz
pa_get_ypr

8-123



Chaeter 8 PA Librarz

pa__get__ypr

Function:

Acquires tip orientation information from arm information.

Syntax:
long pa_get_ypr(ARM armno, VECTOR ypr);

armno  Arm number (No.)
ypr Current tip orientation information [rad]

Explanation:
Acquires tip orientation information from current arm information.
ypr[0]: Arm tip orientation “yaw” value
ypr[1]: Arm tip orientation “pitch” value
ypr[2]: Arm tip orientation “roll” value

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_sts
pa_get_cnt
pa_get_err
pa_get_xyz
pa_get_noa

8-124



Chaeter 8 PA Librarz

pa__get__prm

Function:
Acquires parameter information from arm information.

Syntax:
long pa_get_ prm(ARM armno, PARAMP prm);
armno  Arm number (No.)
prm Current parameter information
Explanation:

Acquires parameter information from current arm information.

prm.rezl; Resolver resolution
prm.pul[7]; Position limiter (+)
prm.pdI[7]; Position limiter(—)

prm.vell7 + 2];
prm.dev[7 + 2];
prm.lim[7 + 2];
prm.ceh[7 + 2];
prm.cem[7 + 2];
prm.cel[7 + 2];

Velocity limiter
Default velocity

prm.pg1[7]; Position control gain 1

prm.pg2[7]; Position control gain 2

prm.vgl1[7]; Velocity control gain

prm.tg1[7]; (Not available)

prm.pcm[7]; Position control selection matrix
prm.fem[7]; (Not available)

prm.arl[7]; Arm length

prm.arg[7]; Axis gravity center position
prm.arw[7]; Axis weight

prm.hom[7]; Home position recovery target value
prm.saf[7]; Other point recovery target value
prm.esc[7]; Escape point recovery target value
prm.tol[7]; Tool parameter

prm.fvi[7];

prm.dmy[7]; (Not available)

prm.spal7]; Spare

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_get sts
pa_get cnt
pa_get_err
pa_get xyz
pa_get_noa
pa_get_ypr

8-125



Chaeter 8 PA Librarz

Description example:
PARAM prm;
pa_get_prm(ARM1, &prm);

printf( “S1_max:%ld S1_min:%ld “ ,prm.pul[0] ,prm.pdI[0] );
printf( “S2_max:%ld S2_min:%ld “ ,prm.pul[1] ,prm.pdI[1] );

8-126



Chaeter 8 PA Librarz

pa__get_ tar
Function:
Acquires target angle and target tip position/orientation matrix information.
Syntax:
long pa_get_tar(ARM armno, ARMTARGETP tar);
armno  Arm number (No.)
tar Target angle and tip position/orientation information
Explanation:

Acquires arm target value information.
ARMTARGET type consists of data structures below:
typedef struct {

ANGLE angle;
MATRIX noap;
float ypr[3];

} ARMTARGET, *ARMTARGETP;

For “angle”, each target axis angle every control cycle in axis control is included.
For “noap”, target tip position/orientation every control cycle in RMRC control is
included.

nx OoX ax PX
noap[3][4] = ny oy ay py
Nz oz az Pz

For “ypr”, Yaw, Pitch and Roll value calculated from tip orientation: “noa” are
included

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get_agl
pa_get _noa
pa_get xyz
pa_get_ypr

8-127



Chaeter 8 PA Librarz

pa__get sav

Function:
Acquires each axis servo ON/OFF status.

Syntax:
long pa_get_sav(ARM armno, long* sav);

armno  Arm number (No.)

sav Servo status

Explanation:
Acquires each axis servo status.

When S1 servo is ON sav=0x01
When S2 servo is ON sav=0x02
When S3 servo is ON sav=0x04
When E1 servo is ON sav=0x08
When E2 servo is ON sav=0x10
When W1 servo is ON sav=0x20
When W2 servo is ON sav=0x40
All axes servo ON sav=0x7F

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-128



Chaeter 8 PA Librarz

pa__sav__sts

Function:
Acquires each axis servo status.

Syntax:
long pa_sav_sts(ARM armno, long* sts);

armno  Arm number (No.)
sts Each axis servo status

Explanation:
Acquires each axis servo status.
sts[0]  S1 axis servo status
sts[1]  S2 axis servo status

sts[6] W2 axis servo status
sts[7]  Master servo status

Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-129



Chaeter 8 PA Librarz

pa__get__smd

Function:
Acquires “TEACHMODE” from servo.

Syntax:
long pa_get_smd(ARM armno, long* mod);

armno  Arm number (No.)
mod 0:OFF
1:0ON

Explanation:
Acquires “TEACHMODE” from servo.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-130



Chaeter 8 PA Librarz

pa__set__ddm

Function:

Dead man SW valid/invalid

Syntax:

long pa_set_.ddm(ARM armno, long type, long val);

armno  Arm number (No.)
type Switch type
val 1:valid

0:invalid

Explanation:

Sets dead man SW valid/invalid.

Return value:
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

8-131



Chaeter 8 PA Librarz

pa__get__ddm

Function:
Acquires dead man SW valid/invalid status.

Syntax:
long pa_get_ddm(ARM armno, long type, long* val);

armno  Arm number (No.)
type Switch type
val 1:valid

0:invalid

Explanation:
Acquires dead man SW valid/invalid status.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-132



Chaeter 8 PA Librarz

pa__set__lok

Function:
TEACHLOCK setting

Syntax:
long pa_set_lok(ARM armno, long mod);

armno  Arm number (No.)
mod 1:Teach mode ON
0:Teach mode OFF

Explanation:
Sets TEACHLOCK.

Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-133



Chaeter 8 PA Librarz

pa__get_ lok

Function:
TEACHLOCK acquisition

Syntax:
long pa_get_lok(ARM armno, long* mod);

armno  Arm number (No.)
mod 1:Teach mode ON
0:Teach mode OFF

Explanation:
Acquires TEACHLOCK.

Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-134



Chaeter 8 PA Librarz

pa__tct__tim
Function:
Tact time (playback time) acquisition
Syntax:
long pa_tct_tim(ARM armno, long* tim);
armno  Arm number (No.)
tim Tact time
Explanation:

Acquires tact time (playback time)
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-135



Chaeter 8 PA Librarz

pa__get max

Function:
Acquires board controllable arm numbers.

Syntax:
long pa_get_max(ARM armno, long* num);

armno  Arm number (No.)

num Controllable arm numbers 1or2
Explanation:

Acquires board controllable arm numbers.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-136



Chaeter 8 PA Librarz

pa__get__spt

Function:
Acquires arm identification number.

Syntax:
long pa_get_spt(ARM armno, long* spt);

armno  Arm number (No.)
spt 0 or 1

Explanation:

Acquires arm identification number on account of two arms being actuated with
one board.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-137



Chaeter 8 PA Librarz

pa__set__sim

Function:
Simulation magnification setting

Syntax:
long pa_set_sim(ARM armno, long tim);

armno  Arm number (No.)

tim Simulation magnification (1~50)
Explanation:

Sets simulation magnification.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-138



Chaeter 8 PA Librarz

pa__set__inc

Function:
Real-time velocity setting

Syntax:
long pa_set_inc(ARM armno, float inc);

armno  Arm number (No.)
inc Real—time velocity (0.01~1)
Explanation:
Sets real-time velocity.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-139



Chaeter 8 PA Librarz

pa__get_ sim

Function:
Simulation magnification acquisition

Syntax:
long pa_get_sim(ARM armno, long* sim);

armno  Arm number (No.)
sim Simulation magnification (1~50)
Explanation:
Acquires simulation magnification.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-140



Chaeter 8 PA Librarz

pa__get__inc

Function:
Real-time velocity acquisition

Syntax:
long pa_get_inc(ARM armno, float* inc);

armno  Arm number (No.)
inc Real—time velocity (0.01~1)
Explanation:
Acquires real—time velocity.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-141



Chaeter 8 PA Librarz

pa__inp__dio

Function:
Digital input (32¢ch. unit input)

Syntax:
long pa_inp_dio(ARM armno, DIOKIND kind, DIOSTATUSP dio);

armno  Arm number (No.)
kind DIO_INTERNAL (System)
DIO_EXTERNAL (Expansion DIO board)
dio Designates digital input area by structure “DIOSTATUSP”.

Explanation:
Gets the status from standard digital input and sets it in the designated area: “dio”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_oup_dio Digital input (32ch. unit input)
pa_get_dio Digital input (1ch. unit input)
pa_set_dio Digital output (1ch. unit set)

pa_rst_dioDigital output (1ch. unit reset)

Description example:
DIOSTATUS dio;

pa_inp_dio(ARM1, DIO_EXTERNAL, &dio);
printf( “dio_1:%x “ ,dio.io1 );
printf( “dio_2:%x “ ,dio.io2 );
printf( “dio_3:%x ” ,dio.io3 );
printf( “dio 4:%x ” ,dio.io4 );

8-142



Chaeter 8 PA Librarz

pa__oup__dio

Function:
Digital output (32ch. unit output)

Syntax:
long pa_oup_dio(ARM armno, DIOKIND kind, DIOSTATUSP dio);

armno  Arm number (No.)
kind DIO_INTERNAL (System)
DIO_EXTERNAL (Expansion DIO board)
dio Designates digital output value by structure “DIOSTATUSP”.

Explanation:
Designates standard digital output value by structure “DIOSTATUSP”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_inp_dio Digital input (32ch. unit output)
pa_get_dio Digital input (1ch. unit output)
pa_set_dio Digital output (1ch. unit output)
pa_rst_dio Digital output (1ch. unit output)

Description example:
DIOSTATUS dio;

dio.io1 = 0x00;

dio.io2 = 0x20;

dio.io3 = 0x24;

dio.io4 = Oxff;

pa_oup_dio(ARM1, DIO_EXTERNAL, &dio);

8-143



Chaeter 8 PA Librarz

pa__get__dio

Function:
Channel unit digital input

Syntax:
long pa_get_dio(ARM armno, DIOKIND kind,
DIOPORT port, DIOCH ch, unsigned char* in);

armno  Arm number (No.)
kind DIO INTERNAL (System)
DIO_EXTERNAL (Expansion DIO board)

(*)port Designates input port by “enum DIOPORT”.
ch Designates input channel by “enum DIOCH”.
in Input data area:

Ifin=0: OFF
Ifin<>0: ON
Explanation:

Channel unit input for standard/Expansion digital input.
Loads port channel “ch” value indicated by “port”.

<NOTE> (*) Not only digital input information, but also output information can be
acquired.
port =
DP_XXXXX: acquires input information as usual.
DPO_XXXXX: is information set to output by PA library.
DPX_XXXXX: is information for current output value (output value created
by PA library or information in playback data).

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_inp_dio Digital input (32ch. unit input)
pa_oup_dio Digital output (32ch. unit output)
pa_set_dio Digital output (1ch. unit setting )
pa_rst_dio Digital output (1ch. unit resetting)

Description example:
unsigned char io;

pa_get dio(ARM1, DIO_EXTERNAL, DP_PORT1, DC_CH4, &io);

8-144



Chaeter 8 PA Librarz

pa__set__dio

Function:
Channel unit setting for digital output.

Syntax:
long pa_set_dio(ARM armno, DIOKIND kind,
DIOPORT port, DIOCH ch);

armno  Arm number (No.)
kind DIO INTERNAL (System)
DIO_EXTERNAL (Expansion DIO board)

port Designates output port by “enum DIOPORT”
ch Designates output channel by “enum DIOCH”.
Explanation:

Channel unit setting for standard output.
Sets port channel “ch” indicated by “port”.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_inp_dio Digital input (32ch. unit input)
pa_oup_dio Digital output (32ch. unit output)
pa_get_dio Digital input (1ch. unit input)
pa_rst_dio Digital output (1ch. unit resetting)

Description example:

pa_set_dio(ARM1, DIO_EXTERNAL, DP_PORT1, DC_CH4);

8-145



Chaeter 8 PA Librarz

pa__rst__dio

Function:
Channel unit resetting for digital output.

Syntax:
long pa_rst_dio(ARM armno, DIOKIND kind,
DIOPORT port, DIOCH ch);

armno  Arm number (No.)
kind DIO INTERNAL (System)
DIO_EXTERNAL (Expansion DIO board)

port Designates output port by “enum DIOPORT”.
ch Designates output channel by “enum DIOCH”.
Explanation:

Channel unit resetting for standard output.
Resets port channel “ch” indicated by “port”.

Return value:
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_inp_dio Digital input (32ch. unit input)
pa_oup_dio Digital output (32ch. unit output)
pa_get_dio Digital input (1ch. unit input)
pa_set_dio Digital output (1ch. unit setting)

Description example:

pa_rst_ dio(ARM1, DIO_EXTERNAL, DP_PORT1, DC_CH4);

8-146



Chaeter 8 PA Librarz

pa__dio__msk

Function:
DIO mask setting

Syntax:
long pa_dio_msk(ARM armno, long dio, long kind, long msk);

armno  Arm number (No.)

dio DOMSK or DIMSK

kind Board type

msk Mask bit (System is only lower 8bit, expansion 32bit)
Explanation:

Sets DIO  mask.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-147



Chaeter 8 PA Librarz

pa__get__msk

Function:

DIO mask acquisition

Syntax:

long pa_get_msk(ARM armno, long dio, long kind, long* msk);

armno  Arm number (No.)

dio DOMSK or DIMSK
kind Board type
msk

Mask bit (System is only lower 8bit, expansion 32bit)

Explanation:
Acquires DIO mask.

Return value:
ERR OK Normal termination

Others: Anomalous termination (Refer to error table)

8-148



Chaeter 8 PA Librarz

pa__set__tol

Function:
Sets tool information.

Syntax:
long pa_set_tol(ARM armno, float x, float y, float z, float off);

armno  Arm number (No.)

X Offset value toward “x” from arm tip to tool tip [mm]

y Offset value toward “y” from arm tip to tool tip [mm]

z Offset value toward “z” from arm tip to tool tip [mm]

off Offset value toward “z” from tool tip to work face [mm]
Explanation:

Sets tool information (offset value from arm tip to tool tip) of controller parameter
file.
All tool information default values are 0 [mm].
This value cannot be set during RMRC control.
This value is vanishing when power supply is off.
If intending to change parameter file default value, use parameter setting.

As this offset is added for arm mechanical interface coordinate system, added

points are kept even if in orientation rotation. Only tip direction changes.

Return value:

ERR OK Normal termination

Others: Anomalous termination (Refer to error table)
Reference:

pa_get_prm
pa_set_vel

Description example:

pa_set_tol(ARM1, 100.0, 50.0, 300.0, 40.0 );

8-149



Chaeter 8 PA Librarz

pa__set__vel

Function:
Alters default velocity.

Syntax:
long pa_set_vel(ARM armno, VELTYPE vtype, float vel[]);

armno  Arm number (No.)
vtype  Default velocity classification
(x) velll Default velocity alteration value

Explanation:
Alters default velocity indicated by “vtype” to “vellrad/sec]”.
It vanishes with power supply: OFF.
VT_ONEVEL: Axis default velocity alteration [rad/sec]
VT_XYZVEL: Tip position default velocity alteration [mm/sec]
VT_YPRVEL: Tip orientation default velocity alteration [rad/sec]

(x) <NOTE>
When in “VT_ONEVEL”, default velocity for 7 axes can be set by “vel[7]”.
When in “VT_XYZVEL. VT_YPRVEL: vel[1].

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_get prm

pa_set_tol

Description example: (1)

ANGLE angle;

float vell[7];

vel[0] = 0.6; -+ S1 axis [rad/sec]
vel[1] = 0.6; -+ 82 axis [rad/sec]
vel[6] = 3.14; -+ W2 axis [rad/sec]
pa_set_vel(ARM1, VT_ONEVEL, vel ); ... Axis default velocity alteration
angle.s3 = 3.14;

pa_exe_axs(ARMT1, S3, &angle, WM_NOWAIT); ... Axis control only for S3 axis

Description example: (2)

float  vel;

vel = 40.0; --- Tip position default velocity
[mm/sec]

pa_set_vel(ARM1, VT_XYZVEL, &vel ); --- Tip position default velocity alteration

pa_mov_XYZ(ARMT1, 50.0, 100.0, 0.0, WM_WAIT);
- RMRC base coordinate position deviation control

8-150



Chaeter 8 PA Librarz

pa__lod__ctl
Function:
Downloads parameter to the controller.
Syntax:
long pa_lod_ctl(ARM armno, char* file);
armno  Arm number (No.)
file Parameter file name
Explanation:

Downloads parameter designated by “file” to the controller designated by “armno”.
When intending to change parameter file contents, use parameter setting.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Description example:

pa_lod_ctl(ARM1, “CTRL.PAR” )

8-161



Chaeter 8 PA Librarz

pa__tst _nom

Function:
RETRAC parameter creation mode ON/OFF setting

Syntax:
long pa_tst. nom(ARM armno, long sw);

armno  Arm number (No.)
swW 0:OFF
1:0ON

Explanation:

Sets RETRAC parameter creation mode ON/OFF.
Return value:

ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference:
pa_get_rmd

8-162



Chaeter 8 PA Librarz

pa__get__rmd

Function:
RETRAC parameter creation mode ON/OFF acquisition.

Syntax:
long pa_get_rmd(ARM armno, long* sw);

armno  Arm number (No.)
swW 0:OFF
1:0ON

Explanation:
Acquires RETRAC parameter creation mode ON/OFF.

Return value:
ERR_OK Normal termination

Others: Anomalous termination (Refer to error table)

Reference:
pa_tst nom

8-153



Chaeter 8 PA Librarz

pa__lod__rob

Function:
Robot model file loading

Syntax:
long pa_lod_rob(ARM armno,char *file);

armno  Arm number (No.)
file Robot model file name

Explanation:
Loads robot model file.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_lod_tol
pa_sav_rob

8-154



Chaeter 8 PA Librarz

pa__lod__tol
Function:
Tool model file loading
Syntax:
long pa_lod_tol(ARM armno,char *file);
armno  Arm number (No.)
file Tool model file name
Explanation:

Loads tool model file.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_lod_rob
pa_sav_rob

8-1b5



Chaeter 8 PA Librarz

pa__sav__rob

Function:
Robot model file saving

Syntax:
long pa_sav_rob(ARM armno);

armno  Arm number (No.)

Explanation:
Saves robot model file.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_lod_tol
pa_sav_rob

8-156



Chaeter 8 PA Librarz

pa__ena__nom

Function:
RETRAC calculation switching

Syntax:
long pa_ena_nom(ARM armno,long sw);

armno  Arm number (No.)
swW 0:T Matrix calculation
1:RETRAC calculation

Explanation:
Switches to RETRAC calculation.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_get nom
pa_thk_nom

8-157



Chaeter 8 PA Librarz

pa__get  _nom

Function:
Acquires either T-matrix calculation or RETRAC calculation processing.

Syntax:
long pa_get_nom(ARM armno, long* nom);

armno  Arm number (No.)
nom 0: in T—matrix calculation
1: in RETRAC calculation

Explanation:
Acquires either T-matrix calculation or RETRAC calculation.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_ena_nom
pa_thk_nom

8-158



Chaeter 8 PA Librarz

pa__tkn__nom

Function:
Acquires whether or not the ability to perform RETRAC calculation.

Syntax:

long pa_tkn_.nom(ARM armno, long* nom);

armno  Arm number (No.)
nom 0: Not possible
1: Possible

Explanation:
Acquires whether or not the ability to perform RETRAC calculation.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_get nom
pa_ena_nom

8-159



Chaeter 8 PA Librarz

pa__map__ctl

Function:
Mapping area shared with the controller.

Syntax:
long pa_map_ctl(ARM armno);

armno  Arm number (No.)

Explanation:
Mapping the controller area designated by “controller.armno” to man—machine
controller.

( Reference )

For mapping details, refer to the chapter 4.

This function is the first one to be called in all PA libraries. Therefore, this
function is not performed alone.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-160



Chaeter 8 PA Librarz

pa__fsh__chk
Function:
Waiting for command completion.
Syntax:
short pa_fsh_chk(ARM armno);
armno  Arm number (No.)
Explanation:

When command processing is finished, the controller computes by adding the
count of the inner variable. With this function, comparing inner variable before and
after issuing command, users can recognize processing termination for command.

This function is the first one to be called in all PA libraries. Therefore, this
function is not performed alone.

Return value:
0 Processing is completed.
1 Processing is not completed.

8-161



Chaeter 8 PA Librarz

pa__fsh__sub

Function:
Waiting for command completion.

Syntax:
short pa_fsh_sub(ARM armno);

armno  Arm number (No.)

Explanation:
When command processing is finished, the controller computes by adding the
count of the inner variable. With this function, comparing inner variable before and
after issuing command, users can recognize processing termination for command.

This function is employed when issuing following PA libraries. But, this function is
not employed alone.

pa_odr_xyz: Tip position offset setting
pa_swt_dio: Teach point DO data valid/invalid setting
pa_set_inc:Real-time velocity setting

Return value:

0 Processing is completed.

1 Processing is not completed.
Reference:

pa_fsh_chk

8-162



Chaeter 8 PA Librarz

pa__req__ctl

Function:
Writing completion/interruption occurrence

Syntax:
long pa_req_ctl(ARM armno, long num);

armno  Arm number (No.)
num Retry times

Explanation:
The controller recognizes completion of writing data to PCI shared area by
“writing completion interruption”.
Interruption retry is performed at certain times designated by “num”.

This function is called in all PA libraries and not performed alone.

Return value:
ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:
pa_req_sub

8-163



Chaeter 8 PA Librarz

pa__req__sub

Function:
Writing completion/interruption occurrence

Syntax:
long pa_req_sub(ARM armno, long num);

armno  Arm number (No.)
num Retry times

Explanation:
The controller recognizes completion of writing data to PCI shared area by
“writing completion interruption”.
Interruption retry is performed at certain times designated by “num”.

When command is issued employing “pa_req_ctl”, the same as “pa_fsh_sub”, this
function is employed to issue simultaneously another command.

This function is employed when issuing following PA libraries. But, this function is
not performed alone.

pa_odr_xyz: Tip position offset setting
pa_swt_dio: Teach point DO data valid/invalid setting
pa_set_inc: Real-time velocity setting

Return value:
ERR OK Normal termination
Others: Anomalous termination (Refer to error table)

Reference:

pa_req_ctl
pa_fsh_sub

8-164



Chaeter 8 PA Librarz

pa__rst__ctl

Function:
Performs error information resetting.

Syntax:
long pa_rst_ctl(ARM armno);

armno  Arm number (No.)
Explanation:

Requests error information resetting, set by arm controller designated by “armno”.
Return value:

ERR_OK Normal termination
Others: Anomalous termination (Refer to error table)

8-165



Chaeter 8 PA Librarz

pa__err__mes

Function:

Acquires error message.

Syntax:

long pa_err_mes(ERR errNo ,cahr* err);

errNo Error number

err The area to load error message.

Explanation:

Acquires an error message responding to a error number.

Return value:
ERR_OK Normal termination
Others: Anomalous termination
(=ERR_MES: No error message responding to the error number.)

8-166



Appendix 1

PA library summary table

Table summarizing each PA library control condition.

employing PA libraries.

If the library can be issued, it is indicated with O.

it is indicated with <ALL>.
If each PA library is obtaining synchronization between controllers, it is indicated with O. If not,
it is indicated with X
Here, below, shows the summary table for control number and its description.
Arm control number & description table

Appendix 1

This can be used for programming

If the library can be issued in any condition,

data (Each axis control)

one Teaching Data and another in playback control.

Status No. Indicated message Control description Status class.
3 Brake stop status All axes brake—stop (a)
8 Each axis angle control In motion with axis control (d)

status
9 Each axis velocity control Axis velocity control mode €7

status

10 Servo lock status All axes servo—lock in direct control 0]

12 Self weight compensated Weight compensation control in direct control 0]
status

13 RMRC control status In motion with RMRC control (e)

14 RMRC redundant axis interpolation | Redundant axis correction when switching to RMRC mode
status

15 Each Axis control servo lock | Each axis pause (temporary stop) in playback control (b)
status Step-stop. Playback control continuation possible.

17 Playback each axis Motion created by axis interpolation to current point. (d)
correction status

18 Playback circle interpolation | Motion created by circle interpolation in playback control. (e)
status

19 Playback linear interpolation | Motion created by linear interpolation in playback control. (e)
status

20 Playback arc interpolation Motion created by arc interpolation in playback control. (e)
status

21 RMRC control servo lock RMRC pause (temporary stop) in playback control, (c)
status Playback step—stop

22 Waiting Playback start Playback control start waiting (b)
Status Each axis servo—lock

23 Each axis control servo lock | Target value lock in axis feedback control (b)
status

24 RMRGC control servo lock Target value lock in RMRC feedback control (c)
status

25 Waiting Playback start Waiting for playback control start command. (c)
Status RMRC servo—lock

26 Playback tip correction Motion created by linear interpolation to current point. (e)
status

27 Redundant axis control Redundant axis parameter operation mode (h)
status

28 RMRC real-time control Tip position/orientation real—-time control mode (k)
status

29 Playback each axis Motion created by axis interpolation in playback control (d)
interpolation status

30 Coordinate conversion Shifting position/orientation to playback trajectory (e)
position correction status by coordinate conversion

31 Redundant axis S3 Redundant axis (elbow) in motion without changing (h)
interpolation control status tip position/orientation

32 Axis real-time control Each axis real-time control mode 6)
status

33 Move between Teaching In motion of RMRC control to move between one (e)
data (RMRC control) Teaching Data and another in playback control.

34 Move between Teaching In motion of each axis control to move between (d)

Appendix 1-1




Appendix 1

Arm Condition Classification

<STOP>
Brake-stop e (a)
Axis control servo-lock (Axis feedback) @~ seeees (b)
RMRC servo—lock (Axis feedback) ~  eeeees (c)
<IN MOTION>> : Shifts to stop after moving with one motion command.
Axis control (Axis feedback) ~ eeeees (d)
RMRC control (RMRC feedback) ~ seeens (e)
<IN MOTION MODE> :Control is not changed until termination command is issued.
Axis velocity control mode (Axis feedback) @~ serees f
RMRC velocity control mode (RMRC feedback) ~  ------ (&)
Redundant axis control mode (RMRC feedback) @~ =------ (h)
Direct control mode (torque control, axis feedback) ~  +----- @)
Axis real-time control mode (axis feedback) @~ seeees @
RMRC real-time control mode (RMRC feedback) @~ +----- (k)

Appendix 1-2



Appendix 1

[Supplementary Explanation]

Supplementary explanation on PA library temporary stop and temporary—stop release function
(pa_sus_arm. pa_rsm_arm) is as follows:

Temporary stop (pause) means to stop renewing target value and create servo—stop . It does not
mean the whole control stops. Therefore, redundant axis (elbow) might move in RMRC servo—lock.

Temporary—stop release (restart) means basically to restart the prior motion. It might happen
not to restart.

“pa_sus_arm” (pause, temporary stop) & “pa_rsm_arm” (restart, temporary—stop release) table to be
issued.

Status No. Control pa_sus_arm Status NO. after pause pa_rsm_arm
3 Brake—stop (O) - -
8 Axis velocity control O 15 O
9 Axis velocity control O 15 X

10 Servo-lock O 15 %
12 Weight compensation X — -
13 RMRC control O 21 O
(RMRC velocity control) O 21 X
14 RMRC redundant axis correction O 15 O
15 Axis control servo—lock (®)) - -
17 Playback axis correction O 23 @)
18 Playback circle interpolation O 24 O
19 Playback linear interpolation O 24 O
20 Playback arc interpolation O 24 O
21 RMRC control servo—lock (O) — -
22 Playback start waiting O 23 O
23 Axis control servo-lock (@) — —
24 RMRC control servo—lock (®)) — -
25 Playback start waiting O 24 O
26 Playback tip correction O 24 O
27 Redundant axis control O 21 X
28 RMRC real-time control O 21 X
29 Playback axis interpolation O 23 @)
30 Coordinate conversion position correction O 24 O
31 Redundant S3 axis interpolation control O 21 O
32 Axis real-time control O 15 X
33 Move between Teaching data O 24 O
(RMRGC control)
34 Move between Teaching data O 15 @)
(Each axis control)

O : Valid (possible)
X : Invalid (not possible)
(O): Valid, but, not changing status.

Appendix 1-3



¥- 1 Xipuaddy

Control

Function

ID

10

—_
(S}

20

N
—_

22

23

24

25

26

27

28

29

30

31

32

33

34

Syncron
ization

Status Control

pa_stp_arm

pa_sus_arm

pa_rsm_arm

pa_exe_axs

pa_exe_hom

pa_exe_esc

pa_exe_saf

0|00

00O

Axis motion control

pa_mov_XYZ

“1ole's

“lolo

1000

pa_mov_YPR

pa_mov_xyz

pa_mov_ypr

pa_mov_mat

OOOO§

Tip
position/orientation

control

pa_axs_pnt

pa_mov_pnt

O|ojojo 000|000

00|00 00 0joj0o0 00
o olojoooolojoo oo

0/0[0j0000/000

Oo00O0OO0OOO0O0OOO

pa_ply_pnt

pa_tct_tim

Playback control

pa_add_pnt

pa_del_pnt

O O~

pa_rpl_pnt

000

00O
(ONONO)

00O

pa_set_pnt

pa_set_idn

pa_chg_dio

000000
O00O00O0

OO0 O00O0

O0000O0

pa_vel_pnt

pa_swt_dio

pa_set_cmt

>>|>/0Jo 00|o o|> 0|o|o[o]o o|o/o|o|oo]o|o]> >

Vvv0000OO0OvOO0O0DO0O0OO0O000O00V v

Ox 0000000 XxOO0OOOOOOOOOOOIOOO

1 xtpuaddy



G- [ x1puaddy

Control

Function

ID

10

20

21

22

23

24

27

28

29

30

31

32

33

34

Syncroni
zation

Teach
point
operation(1)

pa_chg_pnt

PM_TOP
PM_NEXT
PM_PRIV
PM_BTM

@)

@)

@)

@)

@)
@)

©)

PM_JMP

PM_CIR

PM_ARC

pa_jmp_cmt

Teach
point
operation(2)

pa_get_pnt

01010010

OO Og

00000

O[0 00O

O] 000
Ol 00|00

o) ooﬁ

O] 000

pa_get_cur

pa_get_num

pa_get_idn

pa_get_cpt

pa_get_pvl

pa_get_pdo

A~ O A~ Al~nO] OO0

_>>0>>>l0jooo00

_v[volvviviolooolo

pa_lod_pnt

pa_sav_pnt

2119}

0 O
C O

pa_set_dlc

pa_get_dlc

Area—Cube

operation

pa_set_cub

pa_get_cub

pa_cub_len

pa_cub_cmt

pa_del_cub

pa_ena_cub

pa_inf_cub

Redfediodied o io0e

ooloolojoo
0000000
0000000

C0|0 0000~ ~

ooloololoo)> »

0000/000|v v

0000000
0000000

0000000

0000000
0000000

O 000000 |x 0|0 0O|x|x O|x | x[x]|O|0|00O|O

1 xtpuaddy



9- 1 x1puaddy

Control

Function

ID

10

—_
()]

20

N
—_

22

23

24

27

28

29

30

31

32

33

34

Syncroni
zation

Teach
data

operation

pa_ply_set

pa_act_pnt

pa_ply_mod

pa_chg key

pa_get_key

pa_mon_pnt

pa_get_pmd

pa_get_prj

pa_set_prj

NN AN TN AN

>>>>»>0 |0>

[ i i i

[ i i i

v iviviviviO Ov

pa_sav_ptj

pa_lod_prj

eo

Playback
JUMP attribute

operation

pa_jmp_set

pa_get_jmp

pa_set_jmp

pa_ena_mp

pa_get_ena

AAAO A

pa_del_jmp

SETERETSHT

SITTE T

pa_sav_ptj

pa_lod_ptj

00O

00O
00O

O|00[x O[O O O0I000|0O|x|x x|OO|0 O

Velocity Control
Function

pa_mod_vel

VM_XYZ
VM_YPR
VM_xyz
VM_ypr
VM_XYZYPR
VM_xyzypr

©)

VM_one

pa_odr_vel

>0

o)®)

1 xtpuaddy



L- T x1puaddy

Control Function ID 10(12(13|14(15|16|17|18|19]|20|21|22(23|24(25|26|27|28|29|30|31|32|33|34| Syncroni
zation
Redundant axis pa_mod_jou |JM_OFF
control function JM_ON
JM_S30N O O O OO0O00O0 O O O O O
JM_S3DIV
JM_S3HOLD
JM_VSET ©) ®) ©) 00 ©)
JM_SET ©) ©) ©) 0.0 ©)
JM_RESET O O ©) ©)
pa_odr_jou < A L L > @)
pa_mov _jou O 7 @) @) @)
pa_get_jou < A L L > X
Real-time control pa_mod_dpd @) @) @) @) @)
function pa_odr_dpd < A L L > O
pa_mod_axs (@) (@) @) O 0 @) @)
pa_odr_axs < A L L > O
Direct control pa_mod_dir  |DM_START @) O O .0 @)
function DM_STOP @) )
pa_wet_ded OO0 O
pa_drt_ded OO O
pa_chk_cnt < A L L > O
pa_set_tim < A L L > O
pa_get_tim < A L L > X
pa_get drt < A L L > X

1 xtpuaddy



8- I x1puaddy

Control

Function

ID

—_
w

—_
(S}

20

N
—_

N
w

N
N

25

26

N
~

N
(e

29

30

w
—_

w
N

33

34

Syncroni
zation

Orientation setting &

definition function

pa_set_hom

pa_set_esc

pa_set_saf

000

pa_def_ hom

pa_def_esc

pa_def _saf

000000

O O0|l0O0 00O

00000

O00O00O0
000000

O00O0O0O0
OO0O0OO00O0

000000
OO0O0O0O0O0

Tip offset function

pa_set_mtx

pa_set_mat

(o)e)

OO

OO0

(o)e)

OO0

OO

pa_set_wav

pa_odr_xyz

pa_lmt_xyz

pa_get_mat

pa_get_sns

pa_get_Imt

Status information

Loading function

pa_get_mod

pa_get ver

pa_get_com

pa_get_sts

pa_get_cnt

pa_get_err

pa_get_agl

pa_get_xyz

pa_get_noa

pa_get_ypr

pa_get prm

pa_get_tar

pa_get_sav

pa_sav_sts

pa_get_smd

NI NG AN NI AN AN AN IANAEAN AN AN AN AN AN AN

>>>>>>>>>>>>>>>>>>>>»>00000000

rriririrmrlrcrirmririrmmmimmm - mOO

rrerCcCcrcrrcrircrrrlrecermrerr 00

"C""vvvvv\/vvvvvvvvvvvvvvoooooooo

X IX XX X X X X X XX Xx XX X|[xxxO0O0000OO0O0OO0OO0O

1 xtpuaddy



6- 1 X1puaddy

Control Function ID 3 10|12 (13|14 |15(16|17(18|19|20|21|22|23(24]|25(26|27|28|29|30|31|32|33(34| Syncroni
zation
Digital input/output pa_inp_dio < A L L i > X
function pa_oup_dio < A L L > X
pa_get_dio < A L L > X
pa_set_dio < A L L b2 N N N T T T I O O X
pa_rst_dio < A L L > X
Functionr pa_set. tol oF o . o O
on parameter | pa set vel o O o oo . o
pa_lod_ctl <AL L > O
Error pa_rst_ctl < A L L > @)
processing function pa_err_mes < A L L > X
pa_clr_log < A L L > X
pa_sav_log A L L X
[Other PA library function] [Special PA library function]
Control Function Control Function
Control Function Simulation rate pa_set_sim
Control minimum { pa_ini_sys pa_get_sim
required function pa_ter_sys Real-time speed rate pa_set_inc
(Employed as a pair) { pa_opn_arm pa_get_inc
pa_cls_arm
{ pa_sts_arm [SystemPA library function ]
pa_ext_arm Control Function
[ pa_sta_sim Dead—Man Switch disable/enable pa_set_ddm
L pa_ext_sim set and refer pa_get_ddm
Function not needed for pa_map_ctl TEACH-LOCK set and refer pa_set_lok
programming pa_fsh_chk pa_get_lok
pa_fsh_sub Arm max number (To be able to control) pa_get_max
pa_req_ctl Self arm number pa_get_spt

1 xtpuaddy



Appendix 2

Appendix 2

PA Library Return Value (Error Code)

(13 . . . ”
Previous error code remaining.

After issuing PA library from the operation control section, when the processing is completed,
error code written on ISA (or VME) shared memory at this moment is defined as library return
value.

If anomaly occurs during processing in the motion control section, error code fitting to its
anomaly becomes return value. If processing is terminated normally, error code fitting to previous
error code becomes return value. Because error information on ISA (VME) shared memory is
overwritten only when anomaly occurs during processing in the motion control section.

For PA library (refer to appendix 1) not acquired synchronization between controllers, if it is
issued from the operation control section, information on ISA (VME) shared memory is loaded.
When loading finishes, error code on ISA (VME) shared memory becomes return value. This error

code has no connection with PA library processing not acquired synchronization, issued this time.
Library acquired synchronization and its error occurred during previous processing are culprits.

Taking into account the above, use PA library return value (error code) practically.

Here, below, explains how to deal with error codes.

(@ Every time PA library synchronized is issued, check errors. When error occurs, perform
brake—stop, etc.

if((err = pa_mov_xyz(arm, 0.0,200.0,0.0, WM_WAIT)) '= ERR_OK) Brake—stop.:

(@ Employing function “pa_rst_ctl” for resetting an error, reset (error code: 0) previous error
code.

® When issuing function not synchronized, do not obtain return value.

Appendix2-1



Appendix 3

Appendix 3
Control restart function after temporary stop during playback control

If PA library is issued while in temporary stop (pa_sus_arm) during playback control, two options
for playback control can be possible either to restart or not.

*Playback control restart: possible
With temporary—stop release (pa_rsm_arm), playback control can be restarted.
*Playback control restart: impossible
On account of playback control termination, playback control cannot be restarted with
temporary—stop release (pa_rsm_arm).
When intending to perform playback control again, if it is needed, after altering
(pa_chg_pnt) the current point, move (pa_mov_pnt) to the current point, start playback
control.

There are two playback controls: the one is in RMRC feedback control and the other one, in axis
feedback control. Even if issuing the same PA library, on account of a different feedback system,

control restart might not work..

Table for PA library function issuing after temporary stop in playback control and playback
control restart possibility.

< Playback control restart function in PA library issued after temporary stop >

Playback
Function Function Restart Remarks
Possible th
possible
pa_chg_pnt Teach point pointer alteration O
pa_add_pnt Teach point addition O
pa_del_pnt Teach point deletion O
pa_rpl_pnt Teach point replacement @)
pa_set_pnt Teach point attribution setting O
pa_set_idn Teach point ID_No. setting O
pa_chg_dio Teach point (PTP) DO attribution setting O
pa_get_pnt Current point teach point information loading O
pa_get_cpt Current point circle (arc) teach data loading O
JM_OFF :No restriction @)
Redundant JM_ON  :All axes restricted O
. axis control | JM_S30ON:S3 axis restriction O RMRC feedback control
pa_mod_jou ode O Axis feedback control
setting JM_S3DIV: O RMRC feedback control
S3 axis interpolation O Axis feedback control
JM_S3HOLD:S3 axis fixed ©)
pa_set_hom Home position setting O
pa_set_esc Escape orientation setting O
pa_set_saf Safety orientation setting O
pa_def_hom Current axis value defined as home (@)
position
pa_def esc Current axis value defined as escape (@)
position
pa_def _saf Current axis value defined as safety O
position
) . . | ___——— | RMRC feedback control
pa_set_tol Tool information setting o Axis feedback control
pa_set_vel Default velocity alteration O

Appendix 3-1




Appendix 4

APPENDIX 4
SAMPLE PROGRAM INSTRUCTION

1. Sample Program :EX1
(1) Operation

2. Sample Program: EX2(VisualBASIC Version)
(1) Operation

3. Sample Program: EX3(VisualBASIC Version)
(1) Operation

(2)Program

4. Sample Program: EX2(VisualC++ Version)
(1) Operation

Appendix 4-1



Appendix 4

1. SAMPLE PROGRAM :EX1

Sample program “E X 1” employs VisualBASIC,. VisualC++ and MFC for each development
environment, having similar operation display.

Each is installed to the directory path below:

O]

@

®

Visual Basic Version
¥winpapci¥src¥sample¥VB¥EX1
Visual C++ Version
¥winpapci¥src¥sample¥VC¥EX1
MFC Version
¥winpapci¥src¥sample¥MFC¥EX1

"¥winpapci” stands for the directory designation of “winpapci” for installation.

(1) Operation

Screen below displayed when EX1.exe is activated.
As this program operation is equivalent to each development environment, explains
the operation employing MFC as an example. Screen below shown when Exl.exe is

activated. Arm is already controllable in actual machine mode, when displayed on screen.

Shifts to the previously set position.

& P&-10 Arm for Windows, SampleSrras;

x|

Fleaze click the fallwing b to let PA-10 maove Displays arm joint

angle in actual time.

All axes brakes: ON.

— fxiz select ——
................. Move to Basic Position N [~ 51
Mowve to Ezcape Poszition [ 52

Displays message on arm

~ cio Pt

control

\ All axes servo: ON.

Brake on all axes

T

</ A

fctivate all axes into Servu«

Each axiz m

[ EZ2 I
. [ I deg| Displays message on
= we d arm error.
Select all |
Terminates arm control Evit Fezet all |
and program.
\ reCr

firm Status  |Brake stop status \

Error Mo. | \ \ /

Operates each axis motion: UP (Joint angle increase)and DOWN
(Joint angle decrease)for the axis selected by the operation axis
located in the right area. Usually, every one push moves 0.01[rad]. If
the turbo is chosen, moves 0.1[rad.].

Appendix 4-2



Appendix 4

2. SAMPLE PROGRAM:EX2 (VisualBASIC Version)

Sample program “EX2” loads project data on the basis of EX1 and is added a serial operation

function. However, this function is created only in VisualBASIC development environment.

Installed to the following directory path:
¥winpapci¥src¥sample¥VB¥EX2

"¥winpapci” stands for the directory designation of “winpapci” for installation.

(1) Operation

Screen below shown when “EX2.exe” is activated.

Operation is the same as EX1.

~ Bngle

Deletes loaded project.

Pleaze click the followineg buttons to let PP-W
Mowve ta H ngition i| [ fxis zelect
=
/ [ 52
Move to Safety Pozition =3
/ Brake on all axes [ El
(F\ctivate all axez into Servo OM L
. . [ Wi
Eath axiz motion
[ w2
Ciown [~ Turbo Select all
Loads project data. :
\B{M\ Fezet all

/I/ on

@uus Clperatian
LoaNProject Data | |

Mave Gurrent

iject

Data

tart cuntinm
opration

Gurrent point | Foirt (fxiz)
A maunt 0 -
v By protesst | e/
] N~
frm status Brake stop status )

Error Mo,

\Ert |

Shifts to the current point
with axis motion or linear

mation

Appendix 4-3

Starts/terminates serial operation.
Performs forward serial operation
for loaded “project” jumping to the
JUMP destination designated by
its JUMP data.




Appendix 4

3. SAMPLE PROGRAM: EX3 (VisualBASIC Version)

Sample program EX3: programmed to actuate arms with velocity control using game joystick.
However, EX3 is created only in VisualBASIC development environment.

Installed to the following directory path:

¥winpapci¥src¥sample¥VB¥EX3 EX3 program File
¥winpapci¥src¥sample¥VB¥EX3¥DLL EX3 Velocity Control DLL File
¥winpapci¥src¥sample¥VB¥EX3¥OCX EX3 OCX File

"¥winpapci” stands for the directory designation of “winpapci” for installation.

(1) Operation
Screen below shows when EX3.exe is activated.
While in velocity control, the arm can be actuated to front/back, right/left and rotated
by keeping on pushing the joystick button. Arm motion velocity can be controlled by

the joystick slant.

Shows arm control status.

Servo ON:
Arm status: servo ON.

;IEIEI Brake on all axes:

Brake ON to all axes.

|Brake stop status (& o
Move to Safety Position:
'@ | Brake on all axes | Move to Safety Posit Keeps arm in safe position..

_ F'ﬂ"lE le <|§
K{¥aw) ¥{Pitch)} =

im, Velocity control by jovstick

/ I nn \’\§ 00 [deel Shows arm joint angle.

[ oo 53 00 [deel
ET[ 900 [dee]
E2[ 00 [deel
Wl [~ -450 [dee]
W2~ 00 [dee]

Shows command velocity
\‘ created by joystick.

/[

Contral

% Position control |
™ Oriegtation contral Start End o
Start/End velocity control.

AN

Switches velocity control in position or \

orientation. However, Not changeable while in
velocity control.

Shows arm error information.

Appendix 4-4



(2)Program

Appendix 4

EX3 program motion is as follows:

J/S OCX

(Pajs.ocx) Joystick

J/8S slant loading

J/S DLL
(Pajs.dll)

Periodic velocity command

PA Library DLL

For EX3, the joystick can be simply moved by inserting OCX for joystick (J/S).

Joystick (J/S) OCX contains properties and methods as follows.

PROPERTY
*pa_arm_no

*pa_arrow

*pa_axis

~pa_device_no

*pa_interval

=pa_offset_deg

*pa_offset_ mm

Sets motion target arm number within 0~ 15.(Default; O)

Switches into position or orientation velocity control. ( Default:
Position)

Switches into base or tip coordinate.(Default: Base coordinate)
Selects device number 1 or 2 connected with the joystick.(Default is
1:JOYSTICKID1)

Sets velocity command output cycle with “mSec” unit. (Default:100
[mSec]. If setting for a long cyclic period it may cause over
surveillance time and error—stop.)

Sets dead zone for joystick input value while in rotational velocity
control. (Default: 1000)

Sets dead zone for joystick input value while in linear velocity control.

(Default: 1000)

Appendix 4-5



Appendix 4

METHOD ( Method entity presence in J/S DLL, performed on thread. )

"pa_js_start Starts velocity control.
Arm initialization operation is performed on another thread. Loading J/S slant at
designated cycle. Velocity control command output is performed to the arm.
Velocity control is not interrupted even if dragging EX3 operation display window on
account of employing another thread.
Joint angle display on screen cannot be renewed while dragging.
The following parameter is needed to call this method.

Object.pa_js_start(Mode,ArmNo,Axis,Interval, OffsetMM,OffsetDEG,DevNO)

Mode: Arm control mode (O :Actual machine 1 :Simulation)
ArmNo: Arm Number
Axis: Coordinates VM _XYZ1(Base coordinate linear velocity control)

VM_XYZ2(Tip coordinate linear velocity control)
VM YPR1 (Base coordinate rotational velocity
control )

VM_YPR2(Tip coordinate rotational velocity

control )
Interval: Velocity command output cycle [mSec]
OffsetDEG: Dead zone when in orientation control
OffsetMM: Dead zone when in position control
DevNO: Joystick device number
*pa_js_continue Acquires velocity command.

Acquires velocity command value while in velocity control.
The following parameter is needed to call this method.
Object.pa_js_continue(x,y,z,yaw,pitch,roll)
X: Command velocity toward X
Command velocity toward Y

Command velocity toward Z

Yaw: Yaw direction command velocity
Pitch: Pitch direction command velocity
Roll: Roll direction command velocity
*pa_js_stop Terminates velocity control (thread is also deleted.)

Parameter is not specially needed to call this method.

Object.pa_js_stop()

Appendix 4-6



Appendix 4

4. SAMPLE PROGRAM:EX2 (VisualC++ Version)

Sample program “E X 1” adds real-time control function employing “pa_odr dpd-pa_odr axs” on

the basis of EX1. However, this function is created only in VisualC++

development environment.

Installed to the directory path below:
¥winpapci¥src¥sample¥VC¥EX2

"¥winpapci” stands for the directory designation of “winpapci” for installation.

(1) Operation

Screen below shown when EX2.exe is activated.

1 PA-10 far Windaws Sample Program 1

Fleaze click the

ove to Home Poszition

Move to Safety Position [~ 53

Brake on all axes

Activate all axes into Servo OR |

|—Ea|:h axiz Motion

(lncrease )(Decrea-se). i | Down | T Turbo

provided in every control cycle
(2 msec) when in RMRC

fig buttons to let PA-10 move

— Bz zelect

[~ &1
Move to Escape Position [ 52

[ El
[ E2
[ Wi
[ Wiz
| 1 |(Increase )|! |(De-
Absolute position/ orientation Select all ase). .Axialue

Operation is the same as EX1.

=l

deg
deg

deg
deg

deg

EREEE:

deg
n

\

provided in every control

Rezet all

real—-time control.

' Control

real—time control.

cycle (2 msec) when in axis

FMRG ————— —fnele \
RMRC real—time
Real-tim +51 | +52 | +33 | +E1 | +E2 |+
control ON/ OFF. Cortral = 1 I o - - - - - -
Start —VOING +
O L O I
. -z | | | +z
E.::ll'u ta_xm =31 | =52 | -53 | -E1 | -E2 | -1 | W2
al-time
Cartral o o0 00| oo oo/ oo oo oo
AXIS real-time tart [mmzec] [deezec]
control ON / OFF. | \ B
/ |\
firm Status e stop status \ \ ErrCilr

Error M

1\

RMRC real-time control is performed employing
indicated value as absolute position/orientation
value every control cycle (2 msec). In this sample,
RMRC real—time control function is issued every 200
[msec].

Appendix 4-7

Axis real—-time control is performed employing
indicated value as axis value every control
cycle (2 msec). In this sample, axis
real—-time control function is issued every 200
[msec].




Microsoft Corporation used in the U. S. and other countries.

WInRT is the brand name of the U. S. BSQUARE Corporation.
Names of the companies and products described in this manual are their trade marks or registered
brand names.

List of Instruction Manuals for PA10 Series (PA10-6CE)

Microsoft, Windows, Visual Basic and Visual C++ are the registered brand names of the U. S.

Subject Administrative No.
@) MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-6CE 91-10014
INSTRUCTION MANUAL FOR INSTALLATION, MAINTENANCE & SAFETY
MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-6CE
@) P 91-10015

OPERATION MANUAL FOR OPERATION SUPPORT PROGRAM

®)

MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
INSTRUCTION MANUAL FOR SERVO DRIVER

SKC-GC20004

(4)

MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
SOFTWARE INSTALLATION MANUAL (WindowsNT/2000/XP)

SKC-GC20001

(6)

MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
PROGRAMING MANUAL

SKC-GC20002

(6)

MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
PARAMETER SETTING MANUAL

91-10020

@)

MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES
OPERATION MANUAL FOR SIMPLE SIMULATOR

SKC-GC20003

(8) | MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES 91-10016
INSTRUCTION MANUAL FOR TEACHING PENDANT
List of Instruction Manuals for PA10 Series (PA10-7CE)
(1) | MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PAL0 SERIES PA10-7CE 91-10023
INSTRUCTION MANUAL FOR INSTALLATION, MAINTENANCE & SAFETY
2) MITSUBISHI HEAVY INDUSTRIES, LTD. General Purpose Robot PA10 SERIES PA10-7CE 91-10024

OPERATION MANUAL FOR OPERATION SUPPORT PROGRAM (ADDITIONAL EDITION)

Above documents are described in our home page (http://www.robot-arm.com/), which can be down

loaded if required.

Specifications described in this manual are subject to changes for modification without previous

notification.

PA10 SERIES

PROGRAMMING MANUAL
SKC-GC20002
REV.3

MITSUBISHI HEAVY INDUSTRIES, LTD. General purpose Robot




Sales,Manufactures and Afterservices
}\ MITSUBISHI HEAVY INDUSTRIES, LTD.

HEAD OFFICE

Laser & Electronics group

Turbomachinery & General Machinery Department
MITSUBISHI HEAVY INDUSTRIES, LTD.
E-mail: kazuhiro_iijjima@mbhi.co.jp

Phone: +81-3-6716-3845

Fax: +81-3-6716-5798

16-5,Konan2-chome,Minato-ku
Tokyo 108-8215 Japan





